

Hyderabad | Delhi | Bhopal|Pune | Bhubaneswar | Bengaluru | Lucknow | Patna | Chennai| Vijayawada |Visakhapatnam | Tirupati|Kukatpally | Kolkata H.O: 204, II Floor, Rahman Plaza, Opp. Methodist School, Abids, Hyderabad-500001, Ph: 040-23234418, 040-23234419, 040-23234420, 040-24750437

ACE Pre-GATE 2017

Branch: EE

Q. 1 - Q. 5 Carry One Mark Each

1. Reaching a place of appointment on Friday. I found that I was two days earlier than the scheduled day. If I had reached on the following Wednesday then how many days late would I have been?
(a) one
(b) Two
(c) three
(d) four
2. Ans: (c)

Sol: Friday $\rightarrow 2$ days earlier
Therefore, scheduled day $=$ Friday $+2=$ Sunday
Sunday $+3=$ Wednesday
Therefore, I would have been late by 3 days
02. Choose the most appropriate phrase from the options given below to complete the following sentence.

The bus stopped to \qquad more passengers.
(a) Take in
(b) Take on
(c) Take up
(d) Take for
02. Ans: (b)
03. Choose the appropriate sentence from the following options.
(a) She has been discharged since.
(b) She has since been discharged.
(c) She has been since discharged.
(d) She since has been discharged.
03. Ans: (b)
04. Fill in the blank with an appropriate phrase.

The jet \qquad into the air.
(a) Soared.
(b) Soured.
(c) Sourced.
(d) Sored.
04. Ans: (a)
05. Choose the most appropriate word from the options given below to complete the following sentence.
If I had known that you were coming, I \qquad you at the airport.
(a) Would meet
(b) Would have met
(c) Will have met
(d) Had met
05. Ans: (b)

SHORT TERM BATCHES FOR GATE + PSUs - 2018

HYDERABAD

\[

\]

Q. 6 - Q. 10 Carry two marks each

6. Which of the following can be logically inferred from the given statement.
"No other studied medicine except Helen"
(a) Helen only studied medicine
(b) Only Helen studied medicine
(c) Helen studied only medicine
(d) Helen studied medicine only
7. Ans: (b)
8. The average electricity bill of a household for January to June is ₹ 980 , for July to September is ₹ 670 , for October to December is ₹ 720 . If the family goes on vacation for June and July and no electricity is used, what would be the average electricity bill for that year?
(a) ₹ 500
(b) ₹ 600
(c) ₹ 700
(d) ₹ 800

07. Ans: (c)

Sol: Average electricity bill from January to June $=₹ 980$
\therefore Total electricity bill from January to May $=980 \times 5=₹ 4900$
(As no electricity is used in June)
Similarly, total electricity bill from August to September (as no electricity is used in July) $=670 \times 2=₹ 1340$

And total electricity bill from October to December $=720 \times 3=₹ 2160$
Therefore, total electricity bill from January to December $=4900+1340+2160=₹ 8400$
Thus, average electricity bill for the whole year $=\frac{8400}{12}=₹ 700$
08. The following question has four statements of three segments each. Choose the alternative where the third segment in the statement can be deduced using both the preceding two but not just from one of them.
A. Sonia is an actress. Some actresses are pretty. Sonia is pretty.
B. All actors are pretty. Manoj is not an actor. Manoj is not pretty
C. Some men are cops. Some men are brave. Some brave people are cops.
D. All cops are brave. Some men are cops. Some men are brave.
(a) only C
(b) only A
(c) only D
(d) B and C
08. Ans: (c)

Sol: Statements:

All cops are brave
Some men are cops

Conclusion:

Some men are brave (True)
Hence, only D follows.
09. A contractor, who got the contract for building the flyover, failed to construct the flyover in the specified time and was supposed to pay ₹ 50,000 for the first day of extra time. This amount increased by ₹ 4,000 each day. If he completes the flyover after one month of stipulated time, he suffers a loss of 10% in the business. What is the amount he received for making the flyover in crores of rupee? (One month $=30$ days)
(a) 3.1
(b) 3.24
(c) 3.46
(d) 3.68
09. Ans: (b)

Sol: The sum of money that the contractor was supposed to pay for the period of an month over the stipulated time is

$$
\begin{aligned}
& =S_{n}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \mathrm{a}=50,000, \mathrm{n}=30, \mathrm{~d}=4000 \\
& \mathrm{~S}_{30}=\frac{30}{2}[2 \times 50,000+(30-1) \times 4000]=15[100,000+29 \times 4000]
\end{aligned}
$$

$₹ 3240000=₹ 32.4$ lakhs
Loss in the business $=10 \%$
\therefore Amount he received for making the flyover $=\frac{3240000}{0.1}=32400,000=₹ 3.24$ crores
10. Study the following pie chart and table carefully to answer the following question that follow: Percentage break up of employees working in various departments of an organisation and the ratio of men to women in them.

Total number of employees $=1800$

Percentage break up of employees:

Ratio of men to women

Department	Men	Women
Production	11	1
HR	1	3
IT	5	4
Marketing	7	5
Accounts	2	7

What is the number of men working in the marketing department?
(a) 132
(b) 174
(c) 126
(d) 189
10. Ans: (d)

Sol: Number of men working in the marketing department $=1800 \times \frac{18}{100} \times \frac{7}{12}=189$

Q. 11 - Q. 35 Carry one mark each.

11. The number of loops in the following signal flow graph is/are \qquad

Ans: 3 (Range 3 to 3)
12. Input voltage to the following single phase bridge rectifier is 220 V (RMS), 50 Hz . The load resistance is 7Ω. The delay angle (in degree) required to deliver 3.61 kW is \qquad .

Ans:88 (Range 88.0 to 88.3)

Sol: $V_{o r}^{2}=\frac{1}{\pi} \int_{\alpha}^{\pi} V_{m}^{2} \sin ^{2} \omega t d \omega t$

$$
=\frac{V_{m}^{2}}{2 \pi}\left[\pi-\alpha+\frac{1}{2} \sin 2 \alpha\right]
$$

$$
P_{0}=\frac{V_{o r}^{2}}{R}=\frac{V_{m}^{2}}{2 \pi R}\left[(\pi-\alpha)+\frac{1}{2} \sin 2 \alpha\right]
$$

$$
=\frac{(220 \sqrt{2})^{2}}{2 \pi \times 7}\left[(\pi-\alpha)+\frac{1}{2} \sin 2 \alpha\right]=3610
$$

$$
\Rightarrow(\pi-\alpha)+\frac{1}{2} \sin 2 \alpha=1.64 \Rightarrow \alpha=88^{\circ}
$$

13. $\underset{\mathrm{x} \rightarrow \infty}{\operatorname{Lt}} \sqrt{\left(\mathrm{x}^{2}+\mathrm{x}+1\right)}-\mathrm{x}=$ \qquad

Ans: 0.5
Sol: $\underset{x \rightarrow \infty}{\operatorname{Lt}} \sqrt{\left(x^{2}+x+1\right)}-x=\underset{x \rightarrow \infty}{\operatorname{Lt}}\left[\sqrt{x^{2}+x+1}-x\right]\left[\frac{\sqrt{x^{2}+x+1}+x}{\sqrt{x^{2}+x+1}+x}\right]$

$$
=\frac{1+0}{\sqrt{1+0+0}+1}=\frac{1}{2}
$$

14. The area frequency response characteristics of a $200 \mathrm{MW}, 50 \mathrm{~Hz}$ power system is $105 \mathrm{MW} / \mathrm{Hz}$ and regulation constant is $0.01 \mathrm{~Hz} / \mathrm{MW}$. The load frequency constant of power system is
\qquad MW/Hz

Ans: 5 (no range)

Sol: $\mathrm{B}=\mathrm{D}+\frac{1}{\mathrm{R}}$

$$
105=\mathrm{D}+\frac{1}{0.01} \Rightarrow \mathrm{D}=5 \mathrm{MW} / \mathrm{Hz}
$$

15. The signal $\mathrm{x}(\mathrm{t})=\cos (50 \pi \mathrm{t})+\cos (80 \pi \mathrm{t})$ is sampled at 200 Hz . The minimum number of samples required to prevent leakage is \qquad Since 1995

Ans: 40 (No Range)

Sol: $\frac{\omega_{1} T_{s}}{2 \pi}=\frac{50 \pi / 200}{2 \pi}=\frac{1}{8}=\frac{5}{40}$
$\frac{\omega_{2} \mathrm{~T}_{\mathrm{s}}}{2 \pi}=\frac{80 \pi / 200}{2 \pi}=\frac{1}{5}=\frac{8}{40}$
\therefore The minimum number of samples required to prevent leakage is 40
16. What is $\mathrm{V}_{\mathrm{c}_{1}}\left(0^{+}\right)=$?

(a) $\frac{25}{3} \mathrm{~V}$
(b) $\frac{20}{3} \mathrm{~V}$
(c) 5 V
(d) None

Ans: (a)

Sol: $\mathrm{V}_{\mathrm{c}_{1}}\left(0^{+}\right)=\frac{5 \times 10}{30}+\frac{10 \times 20}{30}=\frac{5}{3}+\frac{20}{3}=\frac{25}{3}$

DISTRACTOR LOGIC:

Option: B $\quad \mathrm{V}_{\mathrm{c}_{1}}\left(0^{+}\right)=\frac{10 \times 20}{30}=\frac{20}{3}$
Option: $\mathbf{C} \quad \mathrm{V}_{\mathrm{c}_{1}}\left(0^{+}\right)=\mathrm{V}_{\mathrm{c}_{1}}\left(0^{-}\right)=5 \mathrm{~V}$
Option: D At $t=0^{+} \mathrm{KVL}$ is violated
17. A $3-\phi, 460 \mathrm{~V}, 1740 \mathrm{rpm}, 60 \mathrm{~Hz}, 4$ pole WRIM has the following parameter per phase

$$
\mathrm{R}_{1}=0.25 \Omega, \mathrm{R}_{2}^{1}=0.2 \Omega
$$

$$
\mathrm{X}_{1}=\mathrm{X}_{2}^{1}=0.5 \Omega, \mathrm{X}_{\mathrm{m}}=30 \Omega
$$

The rotational losses are 1700 W with the rotor terminals short circuited. Find breakdown frequency, when motor is operated from a $3-\phi, 460 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.
(A) 0.39 HZ
(B) 11.5 HZ
(C) 11.75 HZ
(D) 26.44 HZ

Ans: (c)

Sol: $\mathrm{S}_{\mathrm{T}_{\max }}=\frac{0.2}{\sqrt{0.25^{2}+(0.49+0.5)^{2}}}$

$$
\begin{aligned}
& =0.1958 \\
\mathrm{f}_{2_{\mathrm{T} \max }} & =0.1958 \times 60=11.752 \mathrm{~Hz}
\end{aligned}
$$

DISTRACTOR LOGIC

Option:A

Sol: $\mathrm{S}_{\mathrm{T}_{\max }}=\frac{0.2}{\sqrt{0.25^{2}+(30+0.5)^{2}}}$

$$
\begin{aligned}
& =0.0065 \\
\mathrm{f}_{\mathrm{T}_{\mathrm{T} \max }} & =0.0065 \times 60=0.39 \mathrm{~Hz}
\end{aligned}
$$

Option B:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{T}_{\max }} & =\frac{0.2}{0.25^{2}+(0.49+0.5)^{2}} \\
& =0.1918 \\
\mathrm{f}_{\mathrm{r}_{\max }} & =0.1918 \times 60=11.5 \mathrm{~Hz}
\end{aligned}
$$

Option:D

$$
\begin{aligned}
\mathrm{S}_{\mathrm{T}_{\max }} & =\frac{0.45}{\sqrt{0.25^{2}+(0.49+0.5)^{2}}} \\
& =0.4407 \\
\mathrm{f}_{2_{\mathrm{T} \max }} & =0.4407 \times 60=26.44 \mathrm{~Hz}
\end{aligned}
$$

18. An electrodynamometer wattmeter measures a power in single phase, 50 Hz AC circuit. The load voltage is 230 V and load current is 10 A at 0.5 lagging p.f. The wattmeter pressure coil resistance is $10 \mathrm{k} \Omega$ and inductance is 100 mH , then $\%$ error will be
(A) zero
(B) -1.68%
(C) 0.54%
(D) 0.156%

Ans: (C)
Sol: $\tan \beta=\frac{X_{P}}{R_{P}}$

$$
=\frac{2 \pi \times 50 \times 100 \times 10^{-3}}{10 \times 10^{3}}=0.00312
$$

$\beta=0.179$

$$
\begin{aligned}
\% \text { error } & =+(\tan \phi \tan \beta) \times 100 \\
& =1.732 \times 0.00312 \times 100 \\
& =0.54 \%
\end{aligned}
$$

DISTRACTOR LOGIC

Option: (A) There is no effect of pressure coil resistance on wattemeter reading
Option: (B) if it is energey meter

$$
\begin{aligned}
\% \text { error } & =\frac{\sin (10-30)-0.5}{0.5} \times 100 \\
& =-1.68 \%
\end{aligned}
$$

Option: (D) $\%$ error $=+(\cos \phi \operatorname{Tan} \beta) \times 100$

$$
=0.5 \times 0.00312 \times 100=0.156 \%
$$

19. If $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are $\mathrm{n} \times \mathrm{n}$ matrices and $|\mathrm{A}|=2,|\mathrm{~B}|=3 \&|\mathrm{C}|=5$ then the value of $\left|\mathrm{A}^{2} \mathrm{~B} \mathrm{C}^{-1}\right|=$?
(A) $\frac{6}{5}$
(B) $\frac{12}{5}$
(C) $\frac{18}{5}$
(D) $\frac{24}{5}$

Ans: (B)
Sol: $\left|A^{2} \mathrm{~B} \mathrm{C}^{-1}\right|=\frac{|\mathrm{A}||\mathrm{A}||\mathrm{B}|}{|\mathrm{C}|}=\frac{2 \times 2 \times 3}{5}=\frac{12}{5}$

NEW BATCHES FOR

ESE - 2017 Stage - II (Mains)

BATCH - 1	BATCH - 2
$18^{\text {th }}$ Jan 2017	$9^{\text {th }}$ Feb 2017 (E\&T \& ME)
(E\&T, EE, CE \& ME)	$15^{\text {th }} \mathrm{Feb} 2017$ (EE \& CE)

ESE - 2017 MAINS OFFLINE TEST SERIES

WILL BE CONDUCTED FROM MARCH $7^{\text {sT }}$ WEEK
DETAILED SCHEDULE WILL BE ANNOUNCED SOON
20. In the amplifier circuit shown in figure, the transistor parameters with usual notations are $\mathrm{g}_{\mathrm{m}}=0.015 \mathrm{~S}, \mathrm{r}_{\mathrm{be}}^{1}=1 \mathrm{~K}, \mathrm{r}_{\mathrm{bb}}^{1}=90 \Omega, \mathrm{C}_{\mathrm{be}}^{1}=20 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{bc}}^{1}=3 \mathrm{pF}$. Neglecting the loading effect of biasing resistors, $\mathrm{R}_{1} \& \mathrm{R}_{2}$, the mid-frequency voltage gain of the amplifier is

(A) -13.76
(B) 0
(C) 0.936
(D) 1

Ans: (C)
Sol:

Consider the parameters of BJT
$r_{b e}^{1}=1 \mathrm{~K}, \mathrm{r}_{\mathrm{bb}}^{1}=90 \Omega \& \mathrm{~g}_{\mathrm{m}}=0.015 \mathrm{~S}$,
$\operatorname{Step}(1): h_{i e}=r_{b e}^{1}+r_{b b}^{1}=1090 \Omega$
Consider, $\mathrm{r}_{\mathrm{be}}^{1}=\frac{\mathrm{h}_{\mathrm{fe}}}{\mathrm{g}_{\mathrm{m}}} \Rightarrow \mathrm{h}_{\mathrm{fe}}=\mathrm{r}_{\mathrm{be}}^{1} \times \mathrm{g}_{\mathrm{m}}=1 \mathrm{k} \Omega \times 0.015 \circlearrowright=15$
Step(2): The given circuit is emitter follower (CC Amplifier)
\therefore The mid-frequency voltage gain in a CC amplifier,

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{V}}=\frac{\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{R}_{\mathrm{E}}}{\mathrm{~h}_{\mathrm{ie}}+\left(1+\mathrm{h}_{\mathrm{fe}}\right) \mathrm{R}_{\mathrm{E}}}=\frac{16 \times 1 \mathrm{~K}}{1.09 \mathrm{~K}+16 \times 1 \mathrm{~K}}=\frac{16 \mathrm{~K}}{17.09 \mathrm{~K}} \\
& \mathrm{~A}_{\mathrm{V}}=0.936
\end{aligned}
$$

DISTRACTOR LOGIC

Option: A: If the given circuit is assumed as CE Amplifier, with a load resistance of $R_{L}=1 k$; then, Step (1) : $\mathrm{h}_{\mathrm{ie}}=\mathrm{r}_{\mathrm{be}}^{1}+\mathrm{r}_{\mathrm{bb}}^{1}=1090 \Omega$

$$
\text { Consider, } \mathrm{r}_{\mathrm{be}}^{1}=\frac{\mathrm{h}_{\mathrm{fe}}}{\mathrm{~g}_{\mathrm{m}}} \Rightarrow \mathrm{~h}_{\mathrm{fe}}=\mathrm{r}_{\mathrm{be}}^{1} \times \mathrm{g}_{\mathrm{m}}=1 \mathrm{k} \Omega \times 0.015 \mho=15
$$

Step(2): $\mathrm{A}_{\mathrm{V}}=-\frac{\mathrm{h}_{\mathrm{he}_{\mathrm{e}}} \mathrm{R}_{\mathrm{L}}}{\text { hie }}=-\frac{15 \times 1 \mathrm{k}}{1.09 \mathrm{k}}=-13.76$
Option: B If the given circuit is assumed as CE Amplifier, with load resistance of R_{c};
$\operatorname{Step}(1): \mathrm{h}_{\mathrm{ie}}=\mathrm{r}_{\mathrm{be}}^{1}+\mathrm{r}_{\mathrm{bb}}^{1}=1090 \Omega$

$$
\text { Consider, } \mathrm{r}_{\mathrm{be}}^{1}=\frac{\mathrm{h}_{\mathrm{fe}}}{\mathrm{~g}_{\mathrm{m}}} \Rightarrow \mathrm{~h}_{\mathrm{fe}}=\mathrm{r}_{\mathrm{be}}^{1} \times \mathrm{g}_{\mathrm{m}}=1 \mathrm{k} \Omega \times 0.015 \mho=15
$$

Step (2) : As $\mathrm{R}_{\mathrm{c}}=0$ given in the circuit.

$$
\mathrm{A}_{\mathrm{v}}=-\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{c}}}{\text { hie }}=-\frac{15 \times 0}{1.09 \mathrm{k}}=0
$$

Option : C: CC Amplifier; $\mathrm{Av}=0.936$
Option : D : The voltage gain in a cc amplifier ideally is ' 1 ',
21. The AC source in the circuit shown below has a voltage magnitude of 5 volts, which is divided partly over the $1 \mathrm{k} \Omega$ resistor and the remainder over the rest of the circuit. Compute the magnitude of the voltage over the $1 \mathrm{k} \Omega$.

(A) 0.1 V
(B) 0.89 V
(D) 1.08 V
(D) 3.36 V

Ans: (D)

Sol: First, find the equivalent resistance looking into the primary (left) terminals of the transformer. The resistance on the right side of the transformer is $5 \mathrm{k} \Omega$ since the $2 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ are in series. This is then reflected to the left side by the transformer resistance equation: $\mathrm{R}_{\mathrm{eq}}=\left(\frac{1}{3}\right)^{2} 5 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{eq}}=0.56 \mathrm{k} \Omega \quad$ Now we have the $4 \mathrm{k} \Omega$ and $0.56 \mathrm{k} \Omega$ resistors in parallel, which is $0.488 \mathrm{k} \Omega$. The $0.488 \mathrm{k} \Omega$ is in series with the $1 \mathrm{k} \Omega$, so we can use a voltage divider equation to find the voltage over the $1 \mathrm{k} \Omega$ resistor: $\mathrm{V}=\left(\frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+0.488 \mathrm{k} \Omega}\right) 5 \mathrm{~V}$

$$
\mathrm{V}=3.36 \mathrm{~V}
$$

DISTRACTOR LOGIC

Option A: $\mathrm{R}_{\mathrm{eq}}=(3)^{2} \times 5 \mathrm{k} \Omega=45 \mathrm{k} \Omega$
$4 \mathrm{k} \Omega$ series with $45 \mathrm{k} \Omega$ and is equal to $49 \mathrm{k} \Omega$.

$$
\mathrm{V}=\left(\frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+49 \mathrm{k} \Omega}\right) 5 \mathrm{~V}=0.1 \mathrm{~V}
$$

Option B: $\mathrm{R}_{\mathrm{eq}}=\left(\frac{1}{3}\right)^{2} 5 \mathrm{k} \Omega=0.56 \mathrm{k} \Omega$
$4 \mathrm{k} \Omega$ in series with $0.56 \mathrm{k} \Omega$ and is equal to $4.56 \mathrm{k} \Omega$.

$$
\mathrm{V}=\left(\frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+4.56 \mathrm{k} \Omega}\right) 5 \mathrm{~V}=0.89 \mathrm{~V}
$$

Option C: $\mathrm{R}_{\mathrm{eq}}=(3)^{2} \times 5 \mathrm{k} \Omega=45 \mathrm{k} \Omega$
$4 \mathrm{k} \Omega$ parallel with $45 \mathrm{k} \Omega$ and is equal to $3.6 \mathrm{k} \Omega$.
$\mathrm{V}=\left(\frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+3.6 \mathrm{k} \Omega}\right) 5 \mathrm{~V}=1.08 \mathrm{~V}$
22. A dual slope integrating type DVM is used to measure a voltage signal $\mathrm{V}(\mathrm{t})=$ $(100+100 \sin 100 \pi \mathrm{t}) \mathrm{V}$, in its $(0-200) \mathrm{V}$ range of operation and it has $3 \frac{1}{2}$ - digit display. The accuracy specification of this DVM is 0.5% of reading +1 digit. What is the reading of this DVM and percentage error in reading?
(A) $100 \mathrm{~V}, 0.6 \%$
(B) $100 \mathrm{~V}, 1.5 \%$
(C) $70.7 \mathrm{~V}, 1.5 \%$
(D) $200 \mathrm{~V}, 0.6 \%$

Ans: (A)
Sol: DVM measures average value of input voltage signal.
\therefore DVM reading $=100 \mathrm{~V}$
1 digit $=1$ count

$$
=1 \text { step }
$$

$$
=r \text { (resolution) }
$$

Resolution of DVM in 200 V range is $\frac{200}{2 \times 10^{3}}$

$$
=0.1 \mathrm{~V}
$$

$$
\begin{aligned}
\text { Error } & =\frac{0.5}{100} \times 100+0.1 \\
& =0.6 \mathrm{~V}
\end{aligned}
$$

$\%$ error in reading of $100 \mathrm{~V}=\frac{0.6}{100} \times 100 \%$

$$
=0.6 \%
$$

DISTRACTOR LOGIC

Option: (B) DVM measures average value of input voltage signal.

$$
\begin{aligned}
& \therefore \text { DVM reading }=100 \mathrm{~V} \\
& 1 \text { digit }=1 \text { count } \\
&=1 \% \text { of error } \\
& \% \text { error }=\frac{0.5}{100} \times 100+1=1.5 \%
\end{aligned}
$$

Option: (C) DVM measures RMS value of input voltage signal.
$\therefore \mathrm{DVM}$ reading $=70.7 \mathrm{~V}$

$$
\begin{aligned}
1 \text { digit } & =1 \text { count } \\
& =1 \% \text { of error }
\end{aligned}
$$

$\%$ error $=\frac{0.5}{100} \times 100+1=1.5 \%$
Option: (D) DVM reading $=\mathrm{V}_{\mathrm{dc}}+\mathrm{Vm}_{(\mathrm{ac})}$

$$
\begin{aligned}
& =100+100 \\
& =200 \mathrm{~V}
\end{aligned}
$$

1 digit $=1$ count $=1$ step
= r (resolution)

Resolution of DVM in 200 V range

$$
\begin{aligned}
& =\frac{200}{2 \times 10^{3}} \\
& =0.1 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Error } & =\frac{0.5}{100} \times 100+0.1 \\
& =0.6 \mathrm{~V}
\end{aligned} \\
& \begin{aligned}
\% \text { error in reading of } 100 \mathrm{~V} & =\frac{0.6}{100} \times 100 \% \\
& =0.6 \%
\end{aligned}
\end{aligned}
$$

23. The electric field intensity is given inside a sphere of radius $R \leq b m$ as $\vec{E}=4 R^{2} \hat{r}(N / C)$. If the sphere has permittivity ' ε ', then the total electric displacement leaving the sphere $R=\frac{b}{2} \mathrm{~m}$ will be
(A) $4 \pi \varepsilon b^{4}$ Coulomb
(B) $\pi \varepsilon b^{4}$ Coulomb
(C) πb^{4} Coulomb
(D) $\frac{\pi b^{4}}{4}$ Coulomb

Ans: (B)

Sol: Given: $\vec{E}=4 R^{2} \hat{r}(N / C) ; R \leq b$

$$
\begin{aligned}
\overrightarrow{\mathrm{D}} & =\varepsilon \overrightarrow{\mathrm{E}} \\
& =4 \varepsilon \mathrm{R}^{2} \hat{\mathrm{r}} / \mathrm{m}^{2}
\end{aligned}
$$

From Gauss's Law
$\psi_{\mathrm{net}} \equiv \mathrm{Q}_{\mathrm{enc}}=\oint_{\mathrm{s}} \overrightarrow{\mathrm{D}} . \mathrm{d} \overrightarrow{\mathrm{S}}$
(or)

$$
\begin{aligned}
\Psi_{\text {net }} & =D_{r} \times \text { Area } \\
& =4 \varepsilon R^{2} \times 4 \pi R^{2} \\
& =16 \pi \varepsilon R^{4}
\end{aligned}
$$

The net electric flux leaving the sphere of radius $R=\frac{b}{2}$ is given by
$\psi_{\text {net }}=16 \pi \varepsilon\left(\frac{\mathrm{~b}}{2}\right)^{4}$
$\therefore \psi_{\text {net }}=\pi \varepsilon b^{4} \mathrm{C}$

DISTRACTOR LOGIC

Option A: Simplification mistake

$$
\begin{aligned}
\psi_{\text {net }} & =16 \pi \varepsilon\left(\frac{\mathrm{~b}}{2}\right)^{4} \\
& =16 \pi \varepsilon \times \frac{\mathrm{b}^{4}}{4}=4 \pi \varepsilon \mathrm{~b}^{4}
\end{aligned}
$$

Which is wrong answer
Option C: If we take directly $\overrightarrow{\mathrm{E}}$, while applying
Gauss's law, then $\psi_{\text {net }}=4 R^{2} \times 4 \pi R^{2}$

$$
=16 \pi\left(\frac{b}{2}\right)^{4}=\pi b^{4}
$$

Which is wrong answer
Option D: $\psi_{\text {net }}=D_{\mathrm{r}} \times$ Area

$$
\text { If we take area }=\pi \mathrm{R}^{2} \text { then which results } \psi_{\text {net }}=\frac{\pi \mathrm{b}^{4}}{4} \text {, which is wrong answer. }
$$

24. The general solution of $\frac{d y^{4}}{d x^{4}}-6 \frac{d y^{3}}{d x^{3}}+12 \frac{d y^{2}}{d x^{2}}-8 \frac{d y}{d x}=0$ is
(A) $y=C_{1}+\left(C_{2}+C_{3} x+C_{4} x^{2}\right) e^{2 x}$
(B) $y=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{2 x}$
(C) $y=\left(C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}\right) e^{2 x}$
(D) $y=C_{1}+C_{2} x+C_{3} x^{2}+C_{4} e^{2 x}$

Ans: (A)
Sol: The given equation is $\quad\left(D^{4}-6 D^{3}+12 D^{2}-8 D\right) y=0$

$$
\begin{aligned}
\mathrm{D}\left(\mathrm{D}^{3}-6 \mathrm{D}^{2}+12 \mathrm{D}-8\right) \mathrm{y} & =0 \\
\mathrm{D}(\mathrm{D}-2)^{3} & =0
\end{aligned}
$$

$$
\therefore \mathrm{D}=0,2,2,2
$$

\therefore The required solution is (A)
25. The Decimal equivalent of 2 's complement representation of 8 bit integer is most positive when except \qquad
(A) MSB are zeros
(B) LSB are zeros
(C) MSB are ones
(D) LSB are ones

Ans: (C)

Sol: If MSB of 2's complement representation of integer is zero then it represents the positive number. So option (C) is correct.

DISTRACTOR LOGIC

Option (A): If 'Except' is ignored in the given question, then option (A) is correct option.
Option (B): If LSB is considered as sign bit and 'Except' is ignored in the given question, then option (B) is correct option.
Option (D): If LSB is considered as sign, then option (D) is correct option.
26. $\mathrm{L}^{-1}\left\{\frac{\mathrm{e}^{-1 / \mathrm{s}}}{\mathrm{s}^{1 / 2}}\right\}=\frac{\cos 2 \sqrt{\mathrm{t}}}{\sqrt{\mathrm{t}}}$ then $\mathrm{L}^{-1}\left\{\frac{\mathrm{e}^{-\mathrm{a} / \mathrm{s}}}{\mathrm{s}^{1 / 2}}\right\}=$?
(A) $\frac{\cos 2 \sqrt{\mathrm{at}}}{\sqrt{\mathrm{at}}}$
(B) $\frac{\cos 2 \sqrt{t}}{\sqrt{\mathrm{at}}}$
(C) $\frac{\cos 2 \sqrt{a t}}{\sqrt{t}}$
(D) $\frac{\cos \sqrt{a t}}{\sqrt{t}}$

Ans: (C)
Sol: By using change of scale properly
$L^{-1}\left\{\mathrm{f}\left(\frac{\mathrm{s}}{\mathrm{a}}\right)\right\}=\mathrm{aF}(\mathrm{at})$
$L^{-1}\left\{\frac{e^{\frac{-1}{(s / a)}}}{\left(\frac{s}{a}\right)^{\frac{1}{2}}}\right\}=\frac{a \cos 2 \sqrt{a t}}{\sqrt{a t}}$
$\Rightarrow \mathrm{L}^{-1}\left\{\frac{\mathrm{e}^{-\mathrm{a} / \mathrm{s}}}{\mathrm{s}^{1 / 2}}\right\}=\frac{\cos 2 \sqrt{\mathrm{at}}}{\sqrt{\mathrm{t}}}$
27. A $220 \mathrm{~V}, 3-\phi$ system supplies 363 W to a wye connected balanced load at 0.8 pf lagging. The value of phase current is
(A) $1.2 \angle-36.87^{\circ}$
(B) $1.2 \angle 36.87^{\circ}$
(C) $2 \angle-36.87^{\circ}$
(D) $2 \angle+36.87^{\circ}$

Ans: (A)
Sol:

Phase voltage $=\frac{220}{\sqrt{3}}$
Total real power supplied by source
$\mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi$
$\mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{P}}{3 \mathrm{~V}_{\mathrm{ph}} \cos \phi}=\frac{363}{3\left[\frac{220}{\sqrt{3}}\right][0.8]}=1.2 \mathrm{~A}$
$\because \phi=\cos ^{-1}[0.8]=36.87^{\circ}$
Lagging so, $\mathrm{I}_{\mathrm{ph}}=1.2 \angle-36.87^{\circ} \mathrm{A}$
(option A is correct)

DISTRACTOR LOGIC

Option: B Phase voltage $=\frac{220}{\sqrt{3}}$
Total real power supplied by source

$$
\begin{aligned}
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi \\
& \mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{P}}{3 \mathrm{~V}_{\mathrm{ph}} \cos \phi}=\frac{363}{3\left[\frac{220}{\sqrt{3}}\right][0.8]}=1.2 \mathrm{~A} \\
& \because \phi=\cos ^{-1}[0.8]=36.87^{\circ}
\end{aligned}
$$

Lagging so, $\mathrm{I}_{\mathrm{ph}}=1.2 \angle 36.87^{\circ} \mathrm{A}$
Option: C Phase voltage $=220 \mathrm{~V}$
Total real power supplied by source

$$
\begin{aligned}
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi \\
& \mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{P}}{3 \mathrm{~V}_{\mathrm{ph}} \cos \phi}=\frac{363}{220 \times 0.8}=2 \mathrm{~A} \\
& \because \phi=\cos ^{-1}[0.8]=36.87^{\circ} \\
& \text { Lagging so, } \mathrm{I}_{\mathrm{ph}}=2 \angle-36.87^{\circ} \mathrm{A}
\end{aligned}
$$

Option: D Phase voltage $=220 \mathrm{~V}$
Total real power supplied by source

$$
\begin{aligned}
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi \\
& \mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{P}}{3 \mathrm{~V}_{\mathrm{ph}} \cos \phi}=\frac{363}{220 \times 0.8}=2 \mathrm{~A} \\
& \because \phi=\cos ^{-1}[0.8]=36.87^{\circ}
\end{aligned}
$$

Lagging so, $\mathrm{I}_{\mathrm{ph}}=2 \angle 36.87^{\circ} \mathrm{A}$
28. A synchronous motor is operating on bus bar at no-load condition with normal excitation. If the load on the motor is increased by keeping the field excitation same, for this
(A) the motor operates at lagging pf, absorbs reactive power
(B) the motor operates at leading pf , absorbs reactive power
(C) the motor operates at lagging pf, delivers reactive power
(D) the motor operates at leading pf, delivers reactive power

Ans: (A)
Sol: At normal excitation, no load condition $\delta=0, \mathrm{E}=\mathrm{V}$
As load increases ' δ ' increases then
$\mathrm{E} \cos \delta<\mathrm{V} \Rightarrow$ under excitation
\therefore lagging pf, absorbs reactive power.
29. The controller shows in figure below is

(A) proportional controller
(B) PI controller
(C) PD controller
(D) PID controller

Ans: (A)

Sol: $\frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}=\mathrm{TF}=\mathrm{G}(\mathrm{s})=(-1) \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} ; \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=$ constant
\therefore It is a proportional controller
30. For a lossless transmission line 50% series compensation and 50% shunt compensation is provided. Then surge impedance loading (SIL) and maximum power transfer capacity ($\mathrm{P}_{\max }$) will be
(A) SIL reduced by 1.732 times, $\mathrm{P}_{\text {max }}$ increased by two times
(B) SIL remains same, $\mathrm{P}_{\text {max }}$ increased by two times
(C) SIL increased by 1.732 times , $\mathrm{P}_{\text {max }}$ remains same
(D) Both SIL and $\mathrm{P}_{\max }$ remain same

Ans: (B)

Sol: $\mathrm{SIL}=\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{Co}}} \mathrm{Z}_{\mathrm{Co}}$ is surge impedance with compensation
$\mathrm{Z}_{\mathrm{Co}}=\mathrm{Z}_{\mathrm{C}} \sqrt{\frac{1-\mathrm{K}_{\mathrm{se}}}{1-\mathrm{K}_{\mathrm{sh}}}}$ where Z_{C} is surge impedance of uncompensated line $\mathrm{K}_{\mathrm{se}} \& \mathrm{~K}_{\text {sh }}$ are degree of series and shunt compensations
From data $K_{\text {se }}=0.5, K_{\text {sh }}=0.5$
So, $\mathrm{Z}_{\mathrm{Co}}=\mathrm{Z}_{\mathrm{C}}$ and no change in SIL

$$
\begin{aligned}
P_{\max }=\frac{\left|V_{\mathrm{S}}\right|\left|V_{\mathrm{r}}\right|}{|B|}=\frac{\left|V_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{Z}_{\mathrm{c}} \sin \beta \ell} & =\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{Z}_{\mathrm{c}} \beta \ell} \\
& =\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}}}{\mathrm{X}_{\text {line }}}
\end{aligned}
$$

With 50% series compensation,
$P_{\text {max new }}=\frac{\left|V_{s}\right| V_{r} \mid}{X_{\text {line }}-0.5 X_{\text {line }}}$

$$
=2 \cdot \frac{\left|\mathrm{~V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{X}_{\text {line }}}
$$

$\mathrm{P}_{\text {max }}$ increased by 2 times

DISTRACTOR LOGIC

Option A: $\mathrm{SIL}=\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{C}_{0}}}, \mathrm{Z}_{\mathrm{C}_{0}}$; is surge impedance with compensation $\mathrm{Z}_{\mathrm{C}_{0}}=\sqrt[Z_{\mathrm{c}}]{\frac{1-\mathrm{K}_{\text {se }}}{1+\mathrm{K}_{\text {sh }}}}$; where Z_{c} is surge impedance, and series and shunt compensations from data $\mathrm{K}_{\text {se }}=0.5 ; \mathrm{K}_{\text {sh }}=0.5$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{C}_{0}} & =\sqrt[Z_{\mathrm{c}}]{\frac{1-0.5}{1+0.5}} \\
& =\sqrt[Z_{\mathrm{c}}]{\frac{0.5}{1.5}} \\
& =\frac{1}{\sqrt{3}} \times \mathrm{Z}_{\mathrm{C}}
\end{aligned}
$$

Reduced by 1.732 times

$$
\mathrm{P}_{\max }=\frac{\left|\mathrm{V}_{\mathrm{s}}\right|\left|\mathrm{V}_{\mathrm{r}}\right|}{|\mathrm{B}|}=\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{Z}_{\mathrm{C}} \sin \beta \ell}=\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{Z}_{\mathrm{C}} \beta \ell}=\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{\mathrm{X}_{\text {line }}}
$$

With 50% series compensation, $\mathrm{P}_{\text {max,new }}$

$$
\begin{aligned}
& =\frac{\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\text {line }}-0.5 \mathrm{X}_{\text {line }}} \\
= & 2 \frac{\left|\mathrm{~V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\text {line }}}
\end{aligned}
$$

$\mathrm{P}_{\text {max }}$ increased by 2 times
Option C: $\mathrm{SIL}=\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{C}_{0}}}, \mathrm{Z}_{\mathrm{C}_{0}}$ is surge impedance with compensations
$\mathrm{Z}_{\mathrm{C}_{0}}=\sqrt[\mathrm{Z}_{\mathrm{c}}]{\frac{1+\mathrm{K}_{\text {sh }}}{1-\mathrm{K}_{\mathrm{se}}}}$; Where Z_{C} is surge impedance, and series and shunt compensation
from data $\mathrm{K}_{\mathrm{se}}=0.5 ; \mathrm{K}_{\mathrm{sh}}=0.5$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{C}_{0}}=\sqrt[Z_{\mathrm{C}}]{\frac{1+0.5}{1-0.5}} \\
& =\mathrm{Z}_{\mathrm{C}} \sqrt{3}
\end{aligned}
$$

Increased by 1.732 times

$$
\begin{aligned}
\mathrm{P}_{\max } & =\frac{\left|\mathrm{V}_{\mathrm{s}} \| \mathrm{V}_{\mathrm{r}}\right|}{|\mathrm{B}|}=\frac{\left|\mathrm{V}_{\mathrm{S}}\right|\left|\mathrm{V}_{\mathrm{r}}\right|}{\mathrm{Z}_{\mathrm{C}} \sin \beta \ell} \\
& =\frac{\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{Z}_{\mathrm{C}} \beta \ell} \\
& =\frac{\mid \mathrm{V}_{\mathrm{s}} \| \mathrm{V}_{\mathrm{r}}}{\mathrm{X}_{\text {line }}-\mathrm{K}_{\mathrm{se}} \mathrm{X}_{\text {line }}+\mathrm{K}_{\text {sh }} \mathrm{X}_{\text {line }}} \\
& =\frac{\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\text {line }}-0.5 \mathrm{X}_{\text {line }}+0.5 \mathrm{X}_{\text {line }}}
\end{aligned}
$$

$$
=\frac{\left|\mathrm{V}_{\mathrm{s}}\right|\left|\mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\mathrm{line}}}
$$

$P_{\text {max }}$ remains same
Option D: $\mathrm{SIL}=\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{C}_{0}}}, \mathrm{Z}_{\mathrm{C}_{0}}$ is surge impedance with compensation $\mathrm{Z}_{\mathrm{c}_{0}}=\sqrt[Z_{c}]{\frac{1-\mathrm{K}_{\text {se }}}{1-\mathrm{K}_{\text {sh }}}}$; where Z_{C} is surge impedance of uncompensated line, and $\mathrm{K}_{\text {se }} \& \mathrm{~K}_{\text {sh }}$ are degree of series and shunt compensation from data $\mathrm{K}_{\text {se }}=0.5 ; \mathrm{K}_{\text {sh }}=0.5$
$\sqrt[z_{c}]{\frac{1-0.5}{1-0.5}}=\sqrt[z_{c}]{1}$
So, $\mathrm{Z}_{\mathrm{C}_{0}}=\mathrm{Z}_{\mathrm{C}}$ no change in SIL

$$
\begin{aligned}
\mathrm{P}_{\max } & =\frac{\left|\mathrm{V}_{\mathrm{s}}\right|\left|\mathrm{V}_{\mathrm{r}}\right|}{|\mathrm{B}|}=\frac{\left|\mathrm{V}_{\mathrm{S}}\right|\left|\mathrm{V}_{\mathrm{r}}\right|}{\mathrm{Z}_{\mathrm{C}} \sin \beta \ell} \\
& =\frac{\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{Z}_{\mathrm{C}} \beta \ell} \\
& =\frac{\mid \mathrm{V}_{\mathrm{s}} \| \mathrm{V}_{\mathrm{r}}}{\mathrm{X}_{\text {line }}-\mathrm{K}_{\text {se }} \mathrm{X}_{\text {line }}+\mathrm{K}_{\text {sh }} \mathrm{X}_{\text {line }}} \\
& =\frac{\left|\mathrm{V}_{\mathrm{S}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\text {line }}-0.5 \mathrm{X}_{\text {line }}+0.5 \mathrm{X}_{\text {line }}} \\
& =\frac{\left|\mathrm{V}_{\mathrm{s}} \| \mathrm{V}_{\mathrm{r}}\right|}{\mathrm{X}_{\text {line }}}
\end{aligned}
$$

$\mathrm{P}_{\text {max }}$ remains same
31. In a uniform region of free space, if the electric field intensity is given by $\vec{E}=\hat{x} 4 x+\hat{y} 3 y$ Volt/m, then the potential at $\mathrm{X}(0,2,2) \mathrm{m}$ with respect to $\mathrm{Y}(2,2,2) \mathrm{m}$ is
(A) 8 V
(B) -8 V
(C) -16 V
(D) 16 V

Ans: (A)
Sol: Potential at X w.r.t Y is given by

$$
\begin{aligned}
\mathrm{V}_{\mathrm{XY}} & =-\int_{\mathrm{Y}(2,2,2)}^{\mathrm{X}(0,2,2)} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \vec{\ell} \\
& =-\left[\int_{2}^{0} 4 \mathrm{xdx}+\int_{2}^{2} 3 \mathrm{ydy}\right]
\end{aligned}
$$

$$
\therefore \mathrm{V}_{\mathrm{XY}}=-\left.4 \frac{\mathrm{x}^{2}}{2}\right|_{2} ^{0}=8 \mathrm{~V}
$$

DISTRACTOR LOGIC

Option B: If we take $\mathrm{V}_{\mathrm{xy}}=-\int_{\mathrm{x}}^{\mathrm{Y}} \overrightarrow{\mathrm{E}} . \mathrm{d} \vec{\ell}$
Then $\mathrm{V}_{\mathrm{XY}}=-8 \mathrm{~V}$ which is wrong answer .
Option $C: V_{X Y}=-\left[\int_{0}^{2} 4 x d x+\int_{2}^{2} 3 y d y\right]$
$=-\left.4 \mathrm{x}^{2}\right|_{0} ^{2}=-16 \mathrm{~V}$, which is incorrect answer .
Option $D: V_{X Y}=-\left[\int_{2}^{0} 4 x d x+\int_{2}^{2} 3 y d y\right]$

$$
=-\left.4 \mathrm{x}^{2}\right|_{2} ^{0}=16 \mathrm{~V} \text {, it is a simplification mistake in integration. }
$$

32. A two port network having Z-parameters as $[Z]=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$ is terminated to a load impedance Z_{L} as shown. The input impedance $\mathrm{Z}_{\text {in }}$ of two port network is given by

(A) $Z_{11}-\frac{Z_{12} Z_{21}}{Z_{22}+Z_{L}}$
(B) $\mathrm{Z}_{11}-\frac{\mathrm{Z}_{12}\left(\mathrm{Z}_{21}+\mathrm{Z}_{\mathrm{L}}\right)}{\mathrm{Z}_{22}}$
(C) $\mathrm{Z}_{11}+\mathrm{Z}_{\mathrm{L}}$
(D) $\mathrm{Z}_{22}+\mathrm{Z}_{\mathrm{L}}$

Ans: (A)
Sol: Input impedance, $\mathrm{Z}_{\mathrm{in}}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}$
Z -parameter equations
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$

$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
But, $V_{2}=-\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}}$
So,

$$
\begin{aligned}
& -\mathrm{I}_{2} \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2} \\
& -\mathrm{I}_{2}\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{22}\right)=\mathrm{Z}_{21} \mathrm{I}_{1} \\
& \mathrm{I}_{2}=-\frac{\mathrm{Z}_{21}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{22}} \cdot \mathrm{I}_{1}
\end{aligned}
$$

So, $V_{1}=Z_{11} I_{1}-\frac{Z_{21} Z_{12}}{Z_{L}+Z_{22}} . I_{1}$
So, $Z_{\text {in }}=\frac{V_{1}}{I_{1}}=\left[Z_{11}-\frac{Z_{21} \cdot Z_{12}}{Z_{L}+Z_{22}}\right]$

DISTRACTOR LOGIC

Option: B Input impedance, $\mathrm{Z}_{\text {in }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}$
Z -parameter equations
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
But, $V_{2}=-I_{1} Z_{L}$
So,

$$
\begin{aligned}
& -\mathrm{I}_{1} \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2} \\
& \mathrm{I}_{1}\left(\mathrm{Z}_{21}+\mathrm{Z}_{\mathrm{L}}\right)=\mathrm{Z}_{22} \mathrm{I}_{2} \\
& \mathrm{I}_{2}=\frac{\mathrm{Z}_{21}+\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{22}} \cdot \mathrm{I}_{1}
\end{aligned}
$$

So, $V_{1}=Z_{11} I_{1}-\frac{Z_{12} \times\left(Z_{21}+Z_{L}\right)}{Z_{22}} . I_{1}$
So, $\mathrm{Z}_{\text {in }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}=\left[\mathrm{Z}_{11}-\frac{\mathrm{Z}_{21} \times\left(\mathrm{Z}_{12}+\mathrm{Z}_{\mathrm{L}}\right)}{\mathrm{Z}_{22}}\right]$
Option: C If two networks are in cascade than

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{eq}} & =\left[\mathrm{Z}_{\mathrm{A}}\right]+\left[\mathrm{Z}_{\mathrm{B}}\right] \\
& =\left[\begin{array}{ll}
\mathrm{Z}_{11} & \mathrm{Z}_{12} \\
\mathrm{Z}_{21} & \mathrm{Z}_{22}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{\mathrm{L}} \\
\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{\mathrm{L}}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{Z}_{11}+\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{12}+\mathrm{Z}_{\mathrm{L}} \\
\mathrm{Z}_{21}+\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{22}+\mathrm{Z}_{\mathrm{L}}
\end{array}\right] \quad \mathrm{V}, \mathrm{~V}, \square
\end{aligned}
$$

The input impedance is given by
$\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}=\mathrm{Z}_{11}+\mathrm{Z}_{\mathrm{L}}$

Option: D If two networks are in cascade than

$$
\begin{aligned}
\mathrm{Z}_{\text {eq }} & =\left[\mathrm{Z}_{\mathrm{A}}\right]+\left[\mathrm{Z}_{\mathrm{B}}\right] \\
& =\left[\begin{array}{ll}
\mathrm{Z}_{11} & \mathrm{Z}_{12} \\
\mathrm{Z}_{21} & \mathrm{Z}_{22}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{\mathrm{L}} \\
\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{\mathrm{L}}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{Z}_{11}+\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{12}+\mathrm{Z}_{\mathrm{L}} \\
\mathrm{Z}_{21}+\mathrm{Z}_{\mathrm{L}} & \mathrm{Z}_{22}+\mathrm{Z}_{\mathrm{L}}
\end{array}\right]
\end{aligned}
$$

The input impedance of output port is given by

$$
\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}=\mathrm{Z}_{22}+\mathrm{Z}_{\mathrm{L}}
$$

33. A 4 pole series motor has 944 wave connected armature conductors. At a certain load the flux/pole is 34.6 mWb and the total mechanical torque developed is $209 \mathrm{~N}-\mathrm{m}$. With an applied voltage of 500 V , the speed of the motor will be (The total motor resistance is 1Ω.)
(A) 422 rpm
(B) 440 rpm
(C) 477 rpm
(D) 496 rpm

Ans: (B)

Sol: $T=\frac{1}{2 \pi} \times \frac{\phi \mathrm{ZI}_{\mathrm{a}} \mathrm{P}}{\mathrm{A}}$

$$
\begin{aligned}
& \Rightarrow 209=\frac{1}{2 \pi} \times \frac{34.6 \times 10^{-3} \times 944 \times \mathrm{I}_{\mathrm{a}} \times 4}{2} \\
& \mathrm{I}_{\mathrm{a}}=20.10 \mathrm{~A} \\
& \mathrm{E}_{\mathrm{b}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=500-20.10 \times 1=479.89 \mathrm{~A} \\
& \mathrm{E}_{\mathrm{b}}=\frac{\phi \mathrm{ZNP}}{60 \mathrm{~A}} \Rightarrow 479.89 \\
& \quad=\frac{34.6 \times 10^{-3} \times 944 \times \mathrm{N} \times 4}{60 \times 2} \\
& \Rightarrow \mathrm{~N}=440.77 \mathrm{rpm}
\end{aligned}
$$

DISTRACTOR LOGIC

Distractor logic:

Option: A $\mathrm{T}=\frac{1}{2 \pi} \times \frac{\phi \mathrm{ZI}_{\mathrm{a}} \mathrm{P}}{\mathrm{A}}$

$$
\Rightarrow 209=\frac{1}{2 \pi} \times \frac{34.6 \times 10^{-3} \times 944 \times \mathrm{I}_{\mathrm{a}} \times 4}{4}
$$

$$
\mathrm{I}_{\mathrm{a}}=40.20 \mathrm{~A}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{b}}=\mathrm{V}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=500-40.20 \times 1=459.8 \mathrm{~A} \\
& \mathrm{E}_{\mathrm{b}}=\frac{\phi \mathrm{ZNP}}{60 \mathrm{~A}}=459.8 \\
& 459.8=\frac{34.6 \times 10^{-3} \times 944 \times \mathrm{N} \times 4}{60 \times 2} \\
& \Rightarrow \mathrm{~N}=422.32 \mathrm{rpm}
\end{aligned}
$$

Option: $\mathrm{C} T=\frac{1}{2 \pi} \times \frac{\phi \mathrm{ZI}_{\mathrm{a}} \mathrm{P}}{\mathrm{A}}$

$$
\begin{aligned}
& \Rightarrow 209=\frac{1}{2 \pi} \times \frac{34.6 \times 10^{-3} \times 944 \times \mathrm{I}_{\mathrm{a}} \times 4}{2} \\
& \mathrm{I}_{\mathrm{a}}=20.10 \mathrm{~A} \\
& \mathrm{E}_{\mathrm{b}}=\mathrm{V}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=500+20.10 \times 1=520.1 \mathrm{~A} \\
& \mathrm{E}_{\mathrm{b}}=\frac{\phi \mathrm{ZNP}}{60 \mathrm{~A}}=520 \\
& 520=\frac{34.6 \times 10^{-3} \times 944 \times \mathrm{N} \times 4}{60 \times 2} \\
& \Rightarrow \mathrm{~N}=477.61 \mathrm{rpm}
\end{aligned}
$$

Option: D $\mathrm{T}=\frac{1}{2 \pi} \times \frac{\phi \mathrm{ZI}_{\mathrm{a}} \mathrm{P}}{\mathrm{A}}$

$$
\Rightarrow 209=\frac{1}{2 \pi} \times \frac{34.6 \times 10^{-3} \times 944 \times \mathrm{I}_{\mathrm{a}} \times 4}{4}
$$

$\mathrm{I}_{\mathrm{a}}=40.20 \mathrm{~A}$
$\mathrm{E}_{\mathrm{b}}=\mathrm{V}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=500+40.20 \times 1=540.2 \mathrm{~A}$
$\mathrm{E}_{\mathrm{b}}=\frac{\phi \mathrm{ZNP}}{60 \mathrm{~A}}=540.2$
$540.2=\frac{34.6 \times 10^{-3} \times 944 \times \mathrm{N} \times 4}{60 \times 2}$
$\Rightarrow \mathrm{N}=496.16 \mathrm{rpm}$
34. The below program is executed by 8085 microprocessor

XRA A
MOV L, A
MOV H, L
DCX H
DAD H
MOV M, A
INR M
MOV A, M
After execution, what will be the contents of PSW
(A) FFFEH
(B) 0101 H
(C) 01 FFH
(D) FE01H

Ans: (B)
Sol: $(\mathrm{A})=00 \mathrm{H}[\because(\mathrm{A}) \forall(\mathrm{A})=00 \mathrm{H}]$
$\rightarrow \mathrm{cy}=0, \mathrm{P}=1, \mathrm{AC}=0, \mathrm{Z}=1, \mathrm{~S}=0$
$(\mathrm{L}) \leftarrow(\mathrm{A})=00 \mathrm{H}$
$(\mathrm{H}) \leftarrow(\mathrm{L})=00 \mathrm{H}$
$\mathrm{DCX} \mathrm{H} \Rightarrow 0000 \mathrm{H}-1=\mathrm{FFFFH}$
FFFF $=1111111111111111$
FFFF $=1111111111111111$
$\overline{1111111111111110} \rightarrow$ FFFEH
$(\mathrm{HL})=$ FFFEH with $\mathrm{cy}=1$
Other flags are remains same.
$($ FFFEH $) \leftarrow(\mathrm{A})=00 \mathrm{H}$

$$
\begin{aligned}
00 \mathrm{H}+1 & =01 \mathrm{H} \\
& =(\mathrm{FFFEH})
\end{aligned}
$$

Cy flag not affected for $\mathrm{INR} \Rightarrow$ cy remains 1
Remaining 4 flags are affected based on result
$01 \mathrm{H}=00000001 \Rightarrow \mathrm{P}=0, \mathrm{AC}=0, \mathrm{Z}=0, \mathrm{~S}=0$
$(\mathrm{A}) \leftarrow(\mathrm{FFFEH})=01 \mathrm{H}$

$$
\begin{aligned}
(A)=01 \mathrm{H},(\text { flag reg }) & =00 \times 0 \times 0 \times 1 \\
& =00000001 \\
& =01 \mathrm{H}
\end{aligned}
$$

$(P S W)=0101 \mathrm{H}$
35. The output Z is

(A) $\mathrm{A} \oplus \mathrm{B}$
(B) $\mathrm{A} \odot \mathrm{B}$
(C) 1
(D) 0

Ans: (D)

Sol:

$\mathrm{X}=\mathrm{A} \oplus \mathrm{B}$
$\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$
$\mathrm{Z}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{A} \oplus \mathrm{B}$
$=\mathrm{A} \oplus \mathrm{A} \oplus \mathrm{B} \oplus \mathrm{B}$
$=0 \oplus 0$
$\mathrm{Z}=0$

DISTRACTOR LOGIC
Option (C): If $\overline{\mathrm{A}}$ is takn as A

$$
\begin{aligned}
\mathrm{X} & =\mathrm{A} \oplus \mathrm{~B} \\
\mathrm{Y} & =\mathrm{A} \odot \mathrm{~B} \\
\mathrm{Z} & =\mathrm{A} \oplus \mathrm{~B} \oplus \mathrm{~A} \odot \mathrm{~B} \\
& =\mathrm{A} \oplus \mathrm{~A} \oplus \mathrm{~B} \odot \mathrm{~B} \\
& =0 \oplus 1 \\
\mathrm{Z} & =1
\end{aligned}
$$

Option (A): If XOR gate is taken OR-gate

$$
\begin{aligned}
\mathrm{Z} & =[\mathrm{A} \oplus \mathrm{~B}]+[\mathrm{A} \oplus \mathrm{~B}] \\
& =\mathrm{A} \oplus \mathrm{~B}
\end{aligned}
$$

Optio (B): If $X=A \odot B$

$$
\mathrm{Y}=\mathrm{A} \odot \mathrm{~B}
$$

And output gate considers as OR gate then

$$
\begin{aligned}
\mathrm{Z} & =\mathrm{A} \odot \mathrm{~B} \oplus \mathrm{~A} \odot \mathrm{~B} \\
& =\mathrm{A} \odot \mathrm{~B}
\end{aligned}
$$

OUR ESE 2016 TOP 10 RANKERS IN ALL STREAMS

29 RANKS IN TOP 10 IN ESE-2016

Q. 36 - Q. 65 carry two marks each

36. Consider the system shown in figure below

The approximate 2% settling time of the response to a unit step input is \qquad seconds.

Ans: 8 (Range 7.9 to 8.3)

Sol: $\mathrm{CE}=1+\frac{1}{\mathrm{~s}(\mathrm{~s}+1)}=0$
$\mathrm{s}^{2}+\mathrm{s}+1=0$
$\omega_{\mathrm{n}}=1$ and $2 \zeta \omega_{\mathrm{n}}=1$
$\Rightarrow \zeta \omega_{\mathrm{n}}=0.5$
$\mathrm{t}_{\mathrm{s}}=\frac{4}{\zeta \omega_{\mathrm{n}}}=8 \mathrm{sec}$ for 2% criterion
37. Input voltage to the following DC-DC converter is 20 V and output voltage is 50 V . Duty cycle ratio is 0.5 . RMS value of diode current (in ampere) is \qquad .

Ans: 2 (Range 2 to 2)

Sol:

In continuous conduction mode, $V_{0}=\frac{V_{d c}}{1-D}=\frac{20}{1-0.5}=40 \mathrm{~V}$
But given $\mathrm{V}_{0}>40 \mathrm{~V}$, so it is discontinuous mode of operation.
Power balance equation $\mathrm{P}_{0}=\mathrm{P}_{\text {in }}$
$\Rightarrow V_{d c} \cdot I_{s}=50 \times\left(\frac{50}{50}\right)$
$I_{s}=\frac{50}{20}=2.5 \mathrm{~A}$
$\frac{V_{0}}{V_{d c}}=\frac{\beta}{\beta-D}=\frac{50}{20}=2.5$
$\Rightarrow \beta=2.5 \times \beta-(2.5 \times 0.5)$
$\beta=0.833$
$I_{L}=\frac{\frac{1}{2} \times I_{L \text { Max }} \times \beta T}{T}=2.5$
$\mathrm{I}_{\mathrm{L} \text { Max }}=6 \mathrm{~A}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}, \mathrm{rms}} & =\left[\frac{6^{2}}{3} \times\left(\frac{5}{6}-\frac{1}{2}\right) \times \frac{T}{T}\right]^{\frac{1}{2}} \\
& =\left[\frac{6^{2}}{3} \times \frac{2}{6}\right]^{\frac{1}{2}} \\
\mathrm{I}_{\mathrm{D}, \mathrm{rms}} & =2 \mathrm{~A}
\end{aligned}
$$

38. Region 1, where $\mu_{r 1}=4$, is the side of the plane $y+z=1$ containing the origin (shown in figure). In region $2, \mu_{\mathrm{r} 2}=6$. If the magnetic flux density in region 1 is $\overrightarrow{\mathrm{B}}_{1}=2 \hat{\mathrm{a}}_{\mathrm{x}}+\hat{\mathrm{a}}_{\mathrm{y}}$ (Tesla), then the magnitude of magnetic flux density (in T) in region 2 is \qquad .

$$
\mu_{\mathrm{r} 1}=4
$$

Ans: 3.2 (Range: 3 to 3.5)

Sol: The unit vector normal to the plane $y+z=1$ is given by
$\hat{a}_{n}=\frac{\hat{a}_{y}+\hat{a}_{z}}{\sqrt{2}}$
$B_{n_{1}}=\vec{B}_{1} \cdot \hat{a}_{n}=\left(2 \hat{a}_{x}+\hat{a}_{y}\right) \cdot\left(\frac{\hat{a}_{y}+\hat{a}_{z}}{\sqrt{2}}\right)$
$\mathrm{B}_{\mathrm{n} 1}=\frac{1}{\sqrt{2}}$
$\overrightarrow{\mathrm{B}}_{\mathrm{n}_{1}}=\mathrm{B}_{\mathrm{n}_{1}} \hat{\mathrm{a}}_{\mathrm{n}}=\frac{1}{\sqrt{2}}\left(\frac{\hat{\mathrm{a}}_{\mathrm{y}}+\hat{\mathrm{a}}_{\mathrm{z}}}{\sqrt{2}}\right)$
$\overrightarrow{\mathrm{B}}_{\mathrm{n}_{1}}=0.5 \hat{\mathrm{a}}_{\mathrm{y}}+0.5 \hat{\mathrm{a}}_{\mathrm{z}}$
$\overrightarrow{\mathrm{B}}_{\mathrm{n} 2}=\hat{\mathrm{B}}_{\mathrm{n}_{1}}=0.5 \hat{\mathrm{a}}_{\mathrm{y}}+0.5 \hat{\mathrm{a}}_{\mathrm{z}}$
$\overrightarrow{\mathrm{B}}_{\mathrm{t}_{1}}=\overrightarrow{\mathrm{B}}_{1}-\overrightarrow{\mathrm{B}}_{\mathrm{n}_{1}}$
$=\left(2 \hat{a}_{x}+\hat{a}_{y}\right)-\left(0.5 \hat{a}_{y}+0.5 \hat{a}_{z}\right)$
$\overrightarrow{\mathrm{B}}_{\mathrm{t}_{1}}=2 \hat{\mathrm{a}}_{\mathrm{x}}+0.5 \hat{\mathrm{a}}_{\mathrm{y}}-0.5 \hat{\mathrm{a}}_{\mathrm{z}}$

$$
\begin{aligned}
\frac{\mathrm{B}_{\mathrm{t} 1}}{\mu_{1}} & =\frac{\mathrm{B}_{\mathrm{t} 2}}{\mu_{2}} \Rightarrow \overrightarrow{\mathrm{~B}}_{\mathrm{t} 2}=\left(\frac{\mu_{2}}{\mu_{1}}\right) \overrightarrow{\mathrm{B}}_{\mathrm{t} 1}=\left(\frac{3}{2}\right)\left[2 \hat{\mathrm{a}}_{\mathrm{x}}+0.5 \hat{\mathrm{a}}_{\mathrm{y}}-0.5 \hat{\mathrm{a}}_{\mathrm{z}}\right] \\
\overrightarrow{\mathrm{B}}_{\mathrm{t} 2} & =3 \hat{\mathrm{a}}_{\mathrm{x}}+0.75 \hat{\mathrm{a}}_{\mathrm{y}}-0.75 \hat{\mathrm{a}}_{\mathrm{z}} \\
\overrightarrow{\mathrm{~B}}_{2} & =3 \hat{\mathrm{a}}_{\mathrm{x}}+1.25 \hat{\mathrm{a}}_{\mathrm{y}}-0.25 \hat{\mathrm{a}}_{\mathrm{z}} \quad\left[\because \overrightarrow{\mathrm{~B}}_{2}=\overrightarrow{\mathrm{B}}_{\mathrm{t} 2}+\overrightarrow{\mathrm{B}}_{\mathrm{n} 2}\right] \\
\therefore & \left|\overrightarrow{\mathrm{B}}_{2}\right|=\sqrt{(3)^{2}+(1.25)^{2}+(-0.25)^{2}}=3.259 \text { Tesla }
\end{aligned}
$$

39. The maximum power transferred to R is \qquad (in watts).

Ans: 5
Sol: $\mathrm{R}_{\text {th }}=10 \| 10=5 \Omega$
$\mathrm{V}_{\text {th }}=10 \mathrm{~V}$
$P_{\max }=\frac{\mathrm{V}_{\mathrm{s}}^{2}}{4 . \mathrm{R}_{\mathrm{L}}}=\frac{10^{2}}{4 \times 5}=\frac{100}{20}=5 \mathrm{~W}$
40. The three-winding ideal transformer in the following figure has $N_{1}=N_{2}=2 N_{3}$ and identical load resistors (R) connected across coils 2 and 3. The input impedance Z_{1} as indicated in the figure is
\qquad $\times \mathrm{R} \Omega$.

Ans: 0.8 (Range 0.8 to 0.8)

Sol: MMF balance requires that
$N_{1} \bar{I}_{1}=N_{2} \bar{I}_{2}+N_{3} \bar{I}_{3}$
$N_{1} \bar{I}_{1}=N_{1} \bar{I}_{2}+\frac{1}{2} N_{1} \bar{I}_{3}$
Or
$\overline{\mathrm{I}}_{1}=\overline{\mathrm{I}}_{2}+\frac{1}{2} \overline{\mathrm{I}}_{3}$
Since the value of flux through all three coils is identical, $\bar{V}_{1}=\bar{V}_{2}=2 \bar{V}_{3}$.

By Ohm's law, $\overline{\mathrm{I}}_{2}=\frac{\overline{\mathrm{V}}_{2}}{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{1}}{\mathrm{R}}$.
$\overline{\mathrm{I}}_{3}=\frac{\overline{\mathrm{V}}_{3}}{\mathrm{R}}=\frac{\overline{\mathrm{V}}_{1}}{2 \mathrm{R}}$.
Use (2) and (3) in (1) to find
$\bar{I}_{1}=\frac{\bar{V}_{1}}{R}+\frac{\bar{V}_{1}}{4 R}=\frac{5 \bar{V}_{1}}{4 R}$
Hence,

$$
Z_{1}=\frac{\bar{V}_{1}}{\bar{I}_{1}}=\frac{4}{5} R
$$

41. The current I (in Amp) is \qquad

Ans: 1

Sol: $\frac{\mathrm{V}_{2}^{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{I}_{2}^{1}}{\mathrm{I}_{1}}$

$$
\begin{aligned}
& \frac{5}{10}=\frac{I_{2}^{1}}{4} \\
& I_{2}^{1}=\frac{20}{10}=2 \mathrm{~A}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{th}}=\frac{10}{5}=2 \Omega$
$\mathrm{I}=1 \mathrm{Amp}$
42. Synchronous generator is connected to an infinite bus by a transformer and lossless network. Infinite bus voltage is 1.0 pu and a voltage of generator is 1.2 pu . The transfer admittance is 2.0 pu . The power transfer by the generator is 1.0 pu . A 3-phase fault is taking place in the lossless network so that the power transfer is zero. The fault is cleared by circuit breaker and the original network is restored. The critical clearing angle made by the rotor at the time fault gets cleared by circuit breaker is \qquad (in degrees)

Ans: 87.6 (Range: 86 to 88)

Sol: $\mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{e}}=1.0$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{M}_{1}}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{e}_{\mathrm{eq}}}}=(\mathrm{EV}) \mathrm{y}_{\mathrm{eq}}=2.0(1.2 \times 1.0)=2.4 \\
& \delta_{0}=\sin ^{-1}\left(\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{M}_{1}}}\right) \\
& \quad=\sin ^{-1}\left(\frac{1.0}{2.4}\right) \text { ele. deg ree }=24.62^{\circ} \\
& \delta_{0(\mathrm{rad})}=\delta_{0} \times \frac{\pi}{180}=0.429
\end{aligned}
$$

Fault: $\mathrm{P}_{\mathrm{e}_{2}}=0, \mathrm{P}_{\mathrm{m}_{2}}=0$
$\delta_{m}=180^{\circ}-\sin ^{-1}\left(\frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{m}_{3}}}\right)$
$\mathrm{P}_{\mathrm{m}_{3}}=\mathrm{P}_{\mathrm{m}_{1}}$
$\delta_{\mathrm{m}}=180^{\circ}-\sin ^{-1}\left(\frac{1.0}{2.4}\right)=180^{\circ}-24.62^{\circ}=155.38^{\circ}$
$\delta_{\mathrm{m}(\mathrm{rad})}=\delta_{\mathrm{m}} \times \frac{\pi}{180}=2.711$
$\delta_{\mathrm{c}}=\cos ^{-1}\left[\frac{\mathrm{P}_{\mathrm{S}}\left(\delta_{\mathrm{m}}-\delta_{\mathrm{e}}\right)+\mathrm{P}_{\mathrm{m}_{3}} \cos \delta_{\mathrm{m}}}{\mathrm{P}_{\mathrm{m}_{3}}}\right]$
$\delta_{\mathrm{C}}=\cos ^{-1}\left[\frac{1.0\left(\delta_{\mathrm{m}}-\delta_{\mathrm{o}}\right)+2.4 \cos \delta_{\mathrm{m}}}{2.4}\right]$ ele.deg ree
$\delta_{c}=\cos ^{-1}\left[\frac{1.0(2.711-0.429)+2.4 \cos (155.38)}{2.4}\right]=87.6^{\circ}$
43. A 3-phase synchronous motor has a reactance of 0.8 pu with negligible resistance. When connected to busbar at rated voltage and the excitation adjusted to an emf of 1.2 pu , the machine draws rated input kVA. The mechanical power developed by the motor is \qquad pu.

Ans: 0.992 (Range: 0.8 to 1)

Sol: $\mathrm{X}_{\mathrm{s}}=0.8 \mathrm{pu}, \mathrm{E}=1.2 \mathrm{pu}, \mathrm{V}=1.0 \mathrm{pu}, \mathrm{I}_{\mathrm{a}}=1 \mathrm{pu}$

$$
\begin{aligned}
& \left|\mathrm{I}_{\mathrm{a}} \mathrm{z}_{\mathrm{s}}\right|=\sqrt{\mathrm{E}^{2}+\mathrm{V}^{2}-2 \mathrm{VE} \cos \delta} \\
& \Rightarrow 1 \times 0.8=\sqrt{1.2^{2}+1^{2}-2 \times 1 \times 1.2 \cos \delta} \\
& \Rightarrow \delta=41.4^{\circ} \\
& \mathrm{P}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{s}}} \sin \delta \Rightarrow \frac{1.2 \times 1}{0.8} \sin 41.4^{\circ} \\
& \quad=0.992 \mathrm{pu}
\end{aligned}
$$

44. A 250 V shunt motor has an armature resistance of 0.5Ω and field resistance of 250Ω. When driving a load at 600 rpm , the torque of which is constant, the armature takes 20 A current. If it is desired to raise the speed from 600 to 800 rpm , then the resistance to be inserted in the shunt field circuit is \qquad Ω.

Ans: 88.0 to $\mathbf{8 8 . 5 \Omega}$
Sol: Torque constant $\mathrm{T}_{2}=\mathrm{T}_{1}$

$$
\begin{gathered}
\phi_{2} \mathrm{I}_{\mathrm{a}_{2}}=\phi_{1} \mathrm{I}_{\mathrm{a}_{1}} \\
\Rightarrow \mathrm{I}_{\mathrm{sh}_{2}} \mathrm{I}_{\mathrm{a}_{2}}=\mathrm{I}_{\mathrm{sh}_{1} \mathrm{I}_{\mathrm{a}_{1}}} \\
\mathrm{I}_{\mathrm{sh}_{1}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{sh}}}=\frac{250}{250}=1 \mathrm{~A} \\
\mathrm{I}_{\mathrm{sh}_{2}} \mathrm{I}_{\mathrm{a}_{2}}=1 \times 20 \\
\mathrm{I}_{\mathrm{a}_{2}}=\frac{20}{\mathrm{I}_{\mathrm{sh}_{2}}} \\
\mathrm{E}_{\mathrm{b}_{1}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}_{1}} \mathrm{R}_{\mathrm{a}}=250-20 \times 0.5=240 \mathrm{~A} \\
\mathrm{E}_{\mathrm{b}_{2}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}_{2}} \mathrm{R}_{\mathrm{a}}=250-\frac{20}{\mathrm{I}_{\mathrm{sh} 2}} \times 0.5=250-\frac{10}{\mathrm{I}_{\mathrm{sh}_{2}}}
\end{gathered}
$$

$\frac{\mathrm{E}_{\mathrm{b}_{2}}}{\mathrm{E}_{\mathrm{b}_{1}}}=\frac{\mathrm{I}_{\mathrm{sh}_{2}} \times \mathrm{N}_{2}}{\mathrm{I}_{\mathrm{sh}_{1}} \times \mathrm{N}_{1}} \Rightarrow \frac{250-\frac{10}{\mathrm{I}_{\mathrm{sh}_{2}}}}{240}=\frac{\mathrm{I}_{\mathrm{sh}_{2}} \times 800}{1 \times 600}$
$=250-\frac{10}{\mathrm{I}_{\text {sh }_{2}}}=320 \mathrm{I}_{\mathrm{sh}_{2}}$
$\Rightarrow 32 \mathrm{I}_{\mathrm{sh}_{2}}^{2}-25 \mathrm{I}_{\mathrm{sh}_{2}}+1=0$
$\mathrm{I}_{\text {sh }_{2}}=\frac{25 \pm \sqrt{25^{2}-4 \times 32 \times 1}}{2 \times 32}$
$\mathrm{I}_{\mathrm{sh}_{2}}=0.739 \mathrm{~A}$ or (0.0422 A is too low)
$\mathrm{I}_{\mathrm{sh}_{2}}=0.739 \mathrm{~A}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{sh}_{2}}}=\frac{250}{\mathrm{R}_{\mathrm{sh}_{2}}}$
$\mathrm{R}_{\text {sh }_{2}}=\frac{250}{0.739}=338.29 \Omega$
Resistance to be added

$$
=338.29-250=88.29 \Omega
$$

45. In a power system network Thevenin's impedance and voltage with respect to a bus are given as 0.9 pu and j 0.2 pu respectively. The load kept at that bus consumes constant complex power of $1+$ j 1 pu . A shunt capacitor bank is connected at that bus to increase voltage magnitude to 1 pu . The power factor of load capacitor combination is \qquad (lag)

Ans: $\mathbf{0 . 8 9 4}$ (Range: $\mathbf{0 . 8 5}$ to 0.92)

Sol: From given data $\mathrm{V}_{\mathrm{th}}=0.9 \mathrm{pu} ; \mathrm{Z}_{\mathrm{th}}=\mathrm{j} 0.2 \mathrm{pu}$. To increase voltage magnitude to 1 pu , a shunt capacitor bank was connected.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}} & =1 \mathrm{pu} \\
\mathrm{~V}_{\mathrm{C}} & =\mathrm{V}_{\mathrm{th}} \frac{\mathrm{Z}_{\mathrm{C}}}{\mathrm{Z}_{\mathrm{C}}+\mathrm{Z}_{\mathrm{th}}} \\
1 & =0.9 \frac{\mathrm{Z}_{\mathrm{C}}}{\mathrm{j} 0.2+\mathrm{Z}_{\mathrm{C}}}
\end{aligned}
$$

So, $Z_{C}=-j 2 p u$

Load at that bus is $1+\mathrm{j} 1 \mathrm{pu}$

From this, $\mathrm{Q}_{\text {sh cap }}=\frac{|\mathrm{V}|^{2}}{\mathrm{X}_{\mathrm{c}}}=\frac{1}{2}=0.5 \mathrm{pu}$
So, $\mathrm{P}_{\mathrm{S}}=\mathrm{P}_{\text {load }}=1 \mathrm{pu}$
$\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\text {load }}-\mathrm{Q}_{\text {sh cap }}=0.5 \mathrm{pu}$
Overall power factor

$$
\begin{aligned}
\cos \phi_{\mathrm{s}}= & \frac{\mathrm{P}_{\mathrm{s}}}{\sqrt{\mathrm{P}_{\mathrm{s}}^{2}+\mathrm{Q}_{\mathrm{s}}^{2}}} \\
& =\frac{1}{\sqrt{1+(0.5)^{2}}} \mathrm{lag} \\
& =0.894 \mathrm{lag}
\end{aligned}
$$

46. A three phase voltage source inverter (VSI) as shown in figure is feeding a star connected inductive load of $(0+j 20) \Omega / \mathrm{ph}$. If it is fed from a 650 V battery and operates with 180° conduction mode with fundamental frequency of output as 50 Hz , the peak value of per phase load current in ampere is \qquad .

Ans: 22.69 (Range 22.6 to 22.8)
Sol:

$\Delta \mathrm{ABC}, \frac{2 \mathrm{~V}_{\mathrm{dc}}}{3 \mathrm{~L}}=\frac{\mathrm{BC}}{\mathrm{AC}} \Rightarrow \mathrm{BC}=\frac{2 \mathrm{~V}_{\mathrm{dc}}}{3 \mathrm{~L}} \times \frac{\mathrm{T}}{12}=\frac{\mathrm{V}_{\mathrm{dc}}}{18 \mathrm{Lf}}$
Is $\triangle \mathrm{BDE}, \frac{\mathrm{V}_{\mathrm{dc}}}{3 \mathrm{~L}}=\frac{\mathrm{DE}}{\mathrm{BE}} \Rightarrow \mathrm{DE}=\frac{\mathrm{V}_{\mathrm{dc}}}{3 \mathrm{~L}} \times \frac{\mathrm{T}}{6}=\frac{\mathrm{V}_{\mathrm{dc}}}{18 \mathrm{Lf}}$
$\mathrm{i}_{0 \text { (peak) }}=\mathrm{BC}+\mathrm{DE}=\frac{\mathrm{V}_{\mathrm{dc}}}{18 \mathrm{Lf}}+\frac{\mathrm{V}_{\mathrm{dc}}}{18 \mathrm{Lf}}$

$$
=\frac{\mathrm{V}_{\mathrm{dc}}}{9 \mathrm{Lf}}
$$

But $2 \pi L f=20$

$$
\begin{aligned}
\text { so } \quad L f & =\left(\frac{20}{2 \pi}\right) \\
i_{0, \text { peak }} & =\frac{650 \times 2 \pi}{9 \times 20}=22.69 \mathrm{~A}
\end{aligned}
$$

47. The output voltage V_{0} of op-amp circuit shown in figure assuming op-amp \& diodes as ideal, is
\qquad V.

Ans: $\mathrm{V}_{\mathbf{0}}=10$ (Range: 10 to 10)

Sol: Step (1): For the given input of $5 v$, D1 is off \& D2 is ON

$$
\mathrm{V}_{0}^{1}=\frac{-5 \mathrm{k}}{5 \mathrm{k}} \times 5 \mathrm{v}=-5 \mathrm{v}
$$

Step (2): KCL at the inverting input, V_{2} of op-amp2 $\left(\mathrm{A}_{2}\right)$

Op-amp 2 (A2)

$$
\frac{\mathrm{V}_{0}^{1}}{200 \mathrm{k}}-\frac{10 \mathrm{v}}{400 \mathrm{k}}+\frac{\mathrm{V}_{0}}{200 \mathrm{k}}=0
$$

$$
\mathrm{V}_{0}=200 \mathrm{k}\left[\frac{5 \mathrm{~V}}{200 \mathrm{k}}+\frac{10 \mathrm{~V}}{400 \mathrm{k}}\right]=5 \mathrm{~V}+5 \mathrm{~V}
$$

$$
\therefore \mathrm{V}_{0}=10 \mathrm{~V}
$$

48. By changing the order of interaction $\int_{1}^{4} \int_{\sqrt{y}}^{2}\left(x^{2}+y^{2}\right) d x d y$ becomes
(A) $\int_{1}^{2} \int_{1}^{x^{2}}\left(x^{2}+y^{2}\right) d y d x$
(B) $\int_{1}^{4} \int_{1}^{x^{2}}\left(x^{2}+y^{2}\right) d y d x$
(C) $\int_{1}^{2} \int_{x^{2}}^{1}\left(x^{2}+y^{2}\right) d y d x$
(D) $\int_{1}^{4} \int_{x^{2}}^{1}\left(x^{2}+y^{2}\right) d y d x$

Ans: (A)

Sol: In the given double integral the limits of $x: \sqrt{y} \rightarrow 2$ and $y: 1 \rightarrow 4$
\therefore The required area is shaded below

$\therefore \int_{1}^{4} \int_{\sqrt{y}}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{dxdy}$ becomes $\int_{1}^{2} \int_{1}^{\mathrm{x}^{2}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{dydx}$
49. In the circuit shown in figure, a silicon transistor with $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=100$ is used. The transistor is biased at \qquad ?

Fig.
(A) 9.2 mA
(B) 2.1 mA
(C) 1.86 mA
(D) 0

Ans: (B)

Sol: Step (1): KVL for BE loop of BJT

$$
\begin{align*}
& 0-0.7 \mathrm{~V}-\mathrm{I}_{\mathrm{E}} 1 \mathrm{~K}+10 \mathrm{~V}=0 \ldots \ldots . \text { (1) } \tag{1}\\
& \Rightarrow \mathrm{I}_{\mathrm{E}}=\frac{9.3 \mathrm{~V}}{1 \mathrm{~K}}=9.3 \mathrm{~mA} \ldots \ldots . \text { (2) }\left[\text { i.e } \mathrm{J}_{\mathrm{E}} \text { is } \mathrm{FB}\right] \\
& \Rightarrow \mathrm{I}_{\mathrm{C}}=\left(\frac{\beta}{1+\beta}\right) \mathrm{I}_{\mathrm{E}}=9.2 \mathrm{~mA} \ldots . \text { (3) } \tag{3}
\end{align*}
$$

Step (2): KVL for C-loop
$10 \mathrm{~V}-\mathrm{I}_{\mathrm{C}} \times 5 \mathrm{~K}-\mathrm{V}_{\mathrm{C}}=0$

$\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}-9.2 \mathrm{mf} \times 5 \mathrm{~K}=-36 \mathrm{~V}$
$\Rightarrow V_{C B}=V_{C}-V_{B}=-36 \mathrm{~V}-0=-36 \mathrm{~V}$
NOTE: $\because \mathrm{V}_{\mathrm{CB}}$ is -Ve , collector junctions is $\mathrm{F} . \mathrm{B}$
\therefore BJT is operated in saturation region
Step (3): \because BJT is in saturation, $\mathrm{V}_{\mathrm{CE}_{\text {sta }}}=0.2 \mathrm{~V}$

$$
\begin{equation*}
\Rightarrow \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}_{\mathrm{stt}}}+\mathrm{V}_{\mathrm{E}}=-0.5 \mathrm{~V} \tag{1}
\end{equation*}
$$

KVL for collector -loop:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\frac{10 \mathrm{~V}-(-0.5 \mathrm{~V})}{5 \mathrm{~K}}=2.1 \mathrm{~mA} \ldots \tag{2}
\end{equation*}
$$

DISTRACTOR LOGIC

Option: A: If the device(BJT) is in forward active region, KVL for BE loop of BJT

$$
\begin{aligned}
& 0-0.7 \mathrm{~V}-\mathrm{I}_{\mathrm{E}} 1 \mathrm{~K}+10 \mathrm{~V}=0 \\
& \mathrm{I}_{\mathrm{E}}=\frac{9.3 \mathrm{~V}}{1 \mathrm{~K}}=9.3 \mathrm{~mA} \\
& \therefore \mathrm{I}_{\mathrm{c}}=\left(\frac{\beta}{1+\beta}\right) \mathrm{I}_{\mathrm{E}}=\frac{100}{101} \times 9.3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{c}}=9.2 \mathrm{~mA}
\end{aligned}
$$

Option: $B: \quad I_{c}=2.1 \mathrm{~mA} \ldots \ldots$ (1) (\because Device is actually biased in saturation region $)$
Option:C: If the device is in inverse (or reverse) active region, (i.e) E-B junction is R.B \& C.B junction is F.B Assuming $\mathrm{V}_{\mathrm{CB}}=0.7 \mathrm{~V} \Rightarrow \mathrm{~V}_{\mathrm{c}}=0.7 \mathrm{~V}$
$\left[\because V_{\mathrm{CB}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}\right]$
KVL for collector loop of BJT $10 \mathrm{~V}-\mathrm{I}_{\mathrm{c}} 5 \mathrm{~K}-0.7 \mathrm{~V}=0$
$\mathrm{I}_{\mathrm{c}}=\frac{9.3 \mathrm{~V}}{5 \mathrm{~K}}=1.86 \mathrm{~mA}$

Option: D If the device is in cutoff region

$$
\begin{equation*}
\mathrm{I}_{\mathrm{B}}=0 \Rightarrow \mathrm{I}_{\mathrm{C}}=0 \tag{1}
\end{equation*}
$$

50. The incidence matrix of a graph is given below

$$
A=\left[\begin{array}{cccccc}
-1 & 0 & 1 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & -1 & 1 & 0
\end{array}\right]
$$

The number of possible Trees are
(a) 3
(b) 7
(c) 11
(d) 14

Ans: (b)

Sol: Given is reduced incidence matrix, so, Number of trees $=\operatorname{det}\left|\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}\right|$

$$
\left[A_{r}\right]\left[A_{r}\right]^{\mathrm{T}}=\left[\begin{array}{cccccc}
-1 & 0 & 1 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1 \\
1 & 0 & -1 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
4 & -1 & -3 \\
-1 & 3 & -1 \\
-3 & -1 & 4
\end{array}\right]} \\
& \begin{aligned}
\operatorname{det}\left|\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}\right| & =4[12-1]+1[-4-3]-3[1+9] \\
& =44-7-30=7 \text { trees only }
\end{aligned}
\end{aligned}
$$

CATEI PSUS-2018 MORNING BATCH

HYDERABAD

TIRUPATI
WEEKEND BATCH
ESE / GATE I PSUs-2018
\square

GATE IPSUs-2018

WEEKEND BATCH
VIZAG
Batches Starting From

JAN 2017

ESE I GATE I PSUs-2018
MORNING BATCH
BHOPAL

ESE I GATE I PSUs-2018

MORNING BATCH

 From
WEEKEND BATCH

VIJAYAWADA
51. Input voltage to the following Buck-Boost converter is 20 V . Assume that the capacitor is large to treat output voltage is constant of 60 V . The switch is operating at 50 kHz with a duty ratio of 0.6 . Average value of inductor current is \qquad .

(A) 12 A
(B) 7.2 A
(C) 4.8 A
(D) insufficient data

Ans: (C)

Sol:

In CCM Buck Boost, $V_{0}=V_{d c}\left[\frac{D}{1-D}\right]=20 \times \frac{0.6}{0.4}=30 \mathrm{~V}$
But given $\mathrm{V}_{0}>30 \mathrm{~V}$, so it is discontinuous mode of operation.

From i_{L} waveform

$$
\begin{aligned}
& \frac{20}{L} D T=\frac{60}{L}(\beta T-D T) \\
& \Rightarrow 4 D T=3 \beta T \Rightarrow \beta=\frac{4}{3} \times D=0.8 \\
& \therefore I_{L \max }=\frac{V_{d c}}{L} \times D T=\frac{20}{20 \mu} \times 0.6 \times 20 \mu=12 \mathrm{~A}
\end{aligned}
$$

$$
I_{L(a v g)}=\frac{\frac{1}{2} \times 12 \times 0.8 \times 20 \mu}{20 \mu}=4.8 \mathrm{~A}
$$

DISTRACTOR LOGIC

Opton (A) : $V_{0}=V_{d c}\left[\frac{D}{1-D}\right]=20 \times \frac{0.6}{0.4}=30 \mathrm{~V}$

$$
\frac{20}{L} D T=\frac{30}{L}(\beta T-D T)
$$

$\beta=1$ so it is continuous conduction mode

$$
\begin{aligned}
i_{L \text { peak }} & =\frac{V_{d c}}{L} \times D T \\
& =\frac{20}{20 \mu} \times 0.6 \times 20 \mu \\
& =12 \mathrm{~A}
\end{aligned}
$$

$$
\therefore \mathrm{i}_{\mathrm{L}(\text { avg })}=12 \mathrm{~A}
$$

Option B: $\quad V_{0}=V_{d c}\left[\frac{D}{1-D}\right]=20 \times \frac{0.6}{0.4}=30 \mathrm{~V}$

From wave form

$$
\begin{aligned}
& \frac{20}{L} D T=\frac{60}{L}(\beta T-D T) \\
& \Rightarrow 4 D T=3 \beta T \Rightarrow \beta=\frac{4}{3} \times D=0.8
\end{aligned}
$$

$$
\begin{aligned}
& \therefore I_{L \max }=\frac{V_{o}}{L} \times D T=\frac{30}{20 \mu} \times 0.6 \times 20 \mu=18 \mathrm{~A} \\
& I_{L(\text { avg })}=\frac{\frac{1}{2} \times 18 \times 0.8 \times 20 \mu}{20 \mu}=7.2 \mathrm{~A}
\end{aligned}
$$

Option D: To check whether it is continuous or discontinuous condition, R value is required. But it is not given in the problem, so it is insufficient data.
52. The solution of $\frac{d^{2} y}{d x^{2}}=y$ which passes through the origin and $\left(\ln 2, \frac{3}{4}\right)$ is \qquad
(A) $y=\frac{e^{x}}{2}-e^{-x}$
(B) $\frac{3}{8}\left(e^{x}+e^{-x}\right)$
(C) $\mathrm{y}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)$
(D) $\frac{e^{x}}{2}+e^{-x}$

Ans: (C)
Sol: The given equation is $\left(D^{2}-1\right) y=0$
i.e., $\mathrm{D}= \pm 1$ are the roots of A . E

$$
\therefore \mathrm{y}=\left(\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}\right)
$$

If it passes through the origin i.e. $x=0, y=0$

$$
\begin{equation*}
\text { then } \mathrm{C}_{1}+\mathrm{C}_{2}=0 \tag{1}
\end{equation*}
$$

Similarly if passes through $\left(\ln 2, \frac{3}{4}\right)$

$$
\begin{equation*}
\text { then } \frac{3}{4}=\left(2 \mathrm{C}_{1}+0.5 \mathrm{C}_{2}\right) \tag{2}
\end{equation*}
$$

By solving (1) \& (2) for $\mathrm{C}_{1} ; \mathrm{C}_{2}$
We get $C_{1}=\frac{1}{2} \& C_{2}=\frac{-1}{2}$
$\therefore \mathrm{y}=\frac{1\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)}{2}$ is the required solution.
53. The four arms of a wheatstone bridge are as follows: $\operatorname{Arm} \mathrm{AB}=100 \Omega, \mathrm{BC}=10 \Omega, \mathrm{CD}=4 \Omega$ and $\mathrm{DA}=50 \Omega$. The galvanometer has a resistance of 20Ω and is connected across BD. A source of 10 V DC is connected across AC, then the current through the galvanometer is
(A) zero
(B) 13.3 mA
(C) 5.18 mA
(D) 39 mA

Ans: (C)
Sol: $\mathrm{V}_{\mathrm{th}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}$

$$
\begin{aligned}
& =\left(10 \times \frac{10}{10+100}-10 \times \frac{4}{4+50}\right) \\
& =0.9091-0.7407 \\
& =0.17 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{th}}=\frac{100 \times 10}{100+10}+\frac{50 \times 4}{50+4}
$$

$$
=9.09091+3.7037
$$

10 V

$$
=12.7946 \Omega
$$

$$
\mathrm{I}_{\mathrm{g}}=\frac{\mathrm{V}_{\mathrm{th}}}{\mathrm{R}_{\mathrm{th}}+20}=\frac{0.17}{12.7946+20}=5.18 \mathrm{~mA}
$$

DISTRACTOR LOGIC

Option: (A) if bridge is balanced, $\mathrm{i}_{\mathrm{g}}=0$
Option: (B) if galvanometer resistance is neglected

$$
\mathrm{i}_{\mathrm{g}}=\frac{0.17}{12.179}=0.01329 \mathrm{~A}=13.3 \mathrm{~mA}
$$

Option: (D) if $\mathrm{AB} \& \mathrm{AD}$ branches are interchanged

$$
\begin{aligned}
\mathrm{V}_{\mathrm{th}} & =\frac{10 \times 10}{10+50}-\frac{10 \times 4}{4+100} \\
& =1.28 \text { Volts } \\
\mathrm{R}_{\text {th }} & =\frac{10 \times 50}{10+50}+\frac{4 \times 100}{104}
\end{aligned}
$$

$$
\begin{aligned}
& =12.18 \Omega \\
\mathrm{i}_{\mathrm{g}}= & \frac{1.28}{20+12.18} \\
= & 0.03977 \mathrm{~A} \\
= & 39 \mathrm{~mA}
\end{aligned}
$$

54. The Loop transfer function of the unity feedback system is $\frac{10}{(s+2)}$ then gain margin of the system is
(A) 0
(B) 0.2
(C) 5
(D) ∞

Ans: (D)

Sol: The Nyquist plot (from $\omega=0$ to $\omega=\infty$) is shown in figure below

Nyquist plot does not intersection the negative real axis
\therefore Gain margin is infinite

DISTRACTOR LOGIC:

Option A: Point of intersection is ' ∞ ', then $\mathrm{GM}=\frac{1}{\infty}=0$
Option B: $\quad \angle\left(\frac{10}{j \omega+2}\right)=-\tan ^{-1} \frac{\omega}{2}=-\left.180\right|_{\omega=\omega_{\mathrm{p}}} \Rightarrow \omega_{\mathrm{pc}}=0$

$$
\begin{aligned}
& \left|\frac{10}{j \omega_{\mathrm{pc}}+2}\right|=\frac{10}{2}=5 \\
& \mathrm{GM}=\frac{1}{5}=0.2
\end{aligned}
$$

Option C: $\left|\frac{10}{\mathrm{j} \omega_{\mathrm{pc}}+2}\right|_{\omega_{\mathrm{pc}}}=5$
$\therefore \mathrm{GM}=5$
55. The synchronous speed of an induction motor is 900 rpm . Under a blocked rotor condition, the input power to the motor is 45 kW at 193.6A. The stator resistance per phase is 0.2Ω and the transformation ratio is $\mathrm{a}=2$. The ohmic value of the rotor resistance per phase is
(A) 0.05Ω
(B) 0.1Ω
(C) 0.25Ω
(D) 0.8Ω

Ans: (A)

Sol: $P_{B R}=3 I_{B R}^{2}\left(R_{1}+R_{2}^{1}\right)$

$$
=3 \mathrm{I}_{\mathrm{BR}}^{2}\left(\mathrm{R}_{1}+\mathrm{a}^{2} \mathrm{R}_{2}\right)
$$

$0.2+4 \times \mathrm{R}_{2}=\frac{45 \times 10^{3}}{3 \times 193.6^{2}}$

$$
\mathrm{R}_{2}=0.05 \Omega
$$

DISTRACTOR LOGIC

Option: $B \quad P_{B R}=3 I_{B R}^{2}\left(R_{1}+R_{2}^{1}\right)$

$$
=3 \mathrm{I}_{\mathrm{BR}}^{2}\left(\mathrm{R}_{1}+\mathrm{aR}_{2}\right)
$$

$$
0.2+2 \times \mathrm{R}_{2}=\frac{45 \times 10^{3}}{3 \times 193.6^{2}}
$$

$$
\mathrm{R}_{2}=0.1 \Omega
$$

Option:C

$$
\begin{aligned}
\mathrm{P}_{\mathrm{BR}} & =\mathrm{I}_{\mathrm{BR}}^{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}^{1}\right) \\
& =\mathrm{I}_{\mathrm{BR}}^{2}\left(\mathrm{R}_{1}+\mathrm{a}^{2} \mathrm{R}_{2}\right) \\
0.2 & +4 \times \mathrm{R}_{2}=\frac{45 \times 10^{3}}{193.6^{2}}
\end{aligned}
$$

$$
\mathrm{R}_{2}=0.25 \Omega
$$

Option: $D \quad P_{B R}=3 I_{B R}^{2}\left(R_{1}+R_{2}^{1}\right)$

$$
=3 \mathrm{I}_{\mathrm{BR}}^{2}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{a}^{2}}\right)
$$

$$
0.2+\frac{\mathrm{R}_{2}}{4}=\frac{45 \times 10^{3}}{3 \times 193.6^{2}}
$$

$$
\mathrm{R}_{2}=0.8 \Omega
$$

56. A protection system is installed with $1 \frac{1}{2}$ cycle circuit breaker. If the relay issued TRIP signal to breaker at voltage zero instant, the breaker operating time is
(A) 30 ms
(B) 35 ms
(C) 25 ms
(D) 40 ms

Ans (B)

Sol: Voltage zero means current is peak
For 50 Hz ,
Time period $(T)=\frac{1}{50} \mathrm{msec}=20 \mathrm{msec}$

$1 \frac{1}{2}$ cycle circuit breaker \Rightarrow circuit breaker opening time $=20+10=30 \mathrm{~ms}$
Arcing time $=5 \mathrm{~ms}$
Circuit breaker operating time

$$
\begin{aligned}
& =\text { opening time }+ \text { arcing time } \\
& =30+5=35 \mathrm{~ms}
\end{aligned}
$$

DISTRACTOR LOGIC

Option-A: Voltage zero means current is peak for 50 Hz ,
Time period $(T)=\frac{1}{50} \mathrm{msec}=20 \mathrm{msec}$

$1 \frac{1}{2}$ cycle circuit breaker \Rightarrow circuit breaker opening time $=20+10=30 \mathrm{~ms}$

Option-C: Voltage zero means current is peak For 50Hz,
Time period $(T)=\frac{1}{50} \mathrm{msec}=20 \mathrm{msec}$

$1 \frac{1}{2}$ cycle circuit breaker \Rightarrow circuit breaker opening time $=20+10=30 \mathrm{~ms}$
Arcing time $=5 \mathrm{~ms}$
Circuit breaker operating time

$$
\begin{aligned}
& =\text { opening time }- \text { arcing time } \\
& =30-5=25 \mathrm{~ms}=R / N
\end{aligned}
$$

Option-D: Voltage zero means current is peak
For 50Hz,
Time period $(T)=\frac{1}{50} \mathrm{msec}=20 \mathrm{msec}$

$1 \frac{1}{2}$ Cycle circuit breaker \Rightarrow circuit breaker opening time $=20+10=30 \mathrm{~ms}$
Arcing time $=10 \mathrm{~ms}$
Circuit breaker operating time

$$
\begin{aligned}
& =\text { opening time }- \text { arcing time } \\
& =30+10=40 \mathrm{~ms}
\end{aligned}
$$

57. The input signal $x(t)=4+\cos (4 \pi t)-\sin (8 \pi t)$ is passed though a filter with impulse response $h(t)=\operatorname{Sinc}^{2}(t) \cos (16 \pi t)$. Then the output is \qquad
(A) $\frac{1}{4} \cos (4 \pi t)$
(B) $-0.5 \sin (8 \pi t)$
(C) 0
(D) $4+\cos (4 \pi t)-\sin (8 \pi t)$

Ans: (C)

Sol: The input frequencies are $f_{1}=0, f_{2}=2 H z, f_{3}=4 H z$
$\operatorname{Sinc}^{2}(\mathrm{t}) \leftrightarrow \operatorname{Tri}(\mathrm{f})$
$\mathrm{H}(\mathrm{f})=\frac{\operatorname{Tri}(\mathrm{f}-8)+\operatorname{Tri}(\mathrm{f}+8)}{2}$
So no input frequencies are passed through the filter

Distractor Logic:
Option A: If you feel filter spectrum covers the frequency range from $1-3 \mathrm{~Hz}$ misinterpretation of Ans(A)
Option B: If you feel filter spectrum covers the frequency range from $3-5 \mathrm{~Hz}$ misinterpretation of Ans(B)
Option C: Correct option
Option D: If you feel that $h(t)$ is ideal all pass filter with pass band gain of 1 , that passes all frequencies. misinterpretation of $\operatorname{Ans}(\mathrm{D})$
58. The root loci diagram of a unity feedback system is given below. The closed loop transfer function for $K=2$, is

(A) $\frac{2}{s^{3}+3 s^{2}+3 s+1}$
(B) $\frac{1}{s^{3}+3 s^{2}+3 s+1}$
(C) $\frac{1}{s^{3}+3 s^{2}+3 s+2}$
(D) $\frac{2}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+3}$

Ans: (D)
Sol: $\tan 60^{\circ}=\frac{\sqrt{3}}{x} \Rightarrow x=1$
Pole is at $\mathrm{s}=-1$
Open loop TF G(s) $=\frac{\mathrm{K}}{(\mathrm{s}+1)^{3}}$
Closed loop TF $=\frac{G(s)}{1+G(s) H(s)}$

$H(s)=1, K=2$
$\mathrm{CLTF}=\frac{\frac{2}{(\mathrm{~s}+1)^{3}}}{1+\frac{2}{(\mathrm{~s}+1)^{3}}}=\frac{2}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+3}$

DISTRACTOR LOGIC:

Option A: Three poles are at $\mathrm{s}=-1$

$$
\therefore \mathrm{TF}=\frac{\mathrm{K}}{(\mathrm{~s}+1)^{3}}=\frac{2}{(\mathrm{~s}+1)^{3}}=\frac{2}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+1}
$$

Option B: Three poles are at $\mathrm{s}=-1$

$$
\mathrm{TF}=\frac{1}{(\mathrm{~s}+1)^{3}}=\frac{1}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+1}
$$

Option C: Three poles at $\mathrm{s}=-1$

$$
\begin{aligned}
& \mathrm{OLTF}=\frac{1}{(\mathrm{~s}+1)^{3}} \\
& \mathrm{CLTF}=\frac{\frac{1}{(\mathrm{~s}+1)^{3}}}{1+\frac{1}{(\mathrm{~s}+1)^{3}}}=\frac{1}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+3 \mathrm{~s}+2}
\end{aligned}
$$

59. The following counter is a

(A) up counter when $x=0$
(B) down counter when $x=0$
(C) up counter when $x=1$
(D) always up counter

Ans: (A)
Sol: If $\mathrm{x}=0 \Rightarrow \mathrm{~T}_{1}=\mathrm{Q}_{0}$

Present state		T_{1}		$\mathrm{~T}_{0}$	Next state	
Q_{1}	Q_{0}			Q_{0}		
0	0	0	1	0	1	
0	1	1	1	1	0	
1	0	0	1	1	1	
1	1	1	1	0	0	

\therefore If $\mathrm{x}=0$ given counter is up counter
If $\mathrm{x}=1 \Rightarrow \mathrm{~T}_{1}=\overline{\mathrm{Q}}_{0}$

Present state		T_{1}	$\mathrm{~T}_{0}$	Next state	
Q_{1}	Q_{0}			Q_{0}	
0	0	1	1	1	1
0	1	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0

\therefore If $\mathrm{x}=1$ given counter is down counter.
60. Two identical generators are connected in parallel to a common bus. Sequence reactances of each generator are $\mathrm{X}_{1}=\mathrm{X}_{2}=\mathrm{j} 0.2$ pu and $\mathrm{X}_{0}=\mathrm{j} 0.05 \mathrm{pu}$. The neutral of one of the generator is connected to ground by reactance of j 0.05 pu and other generator neutral is isolated from ground. A most common short circuit fault is taking place at the common busbar with a fault reactance of j 0.05 pu . If the operating voltage of busbar is 13.2 kV , then the voltage of zero sequence network in kV is
(A) 2.77
(B) 3.54
(C) 6.66
(D) 4.42

Ans: (A)
Sol: $X_{\text {leq }}=\frac{\mathrm{j} 0.2}{2}=\mathrm{j} 0.1$

$$
\begin{aligned}
& X_{2 e q}=\frac{j 0.2}{2}=j 0.1 \\
& \mathrm{X}_{0 \mathrm{eq}}=\mathrm{X}_{0}+3 \mathrm{X}_{\mathrm{n}}+3 \mathrm{X}_{\mathrm{F}} \\
& =0.05+3 \times 0.05+3 \times 0.05 \\
& =0.35 \\
& I_{R_{0}}=I_{R_{1}}=\frac{E_{R_{1}}}{Z_{1_{\text {eq }}}+Z_{2_{\text {eq }}}+Z_{0_{\text {eq }}}} \\
& =\frac{1.0}{\mathrm{j} 0.1+\mathrm{j} 0.1+\mathrm{j} 0.35} \\
& I_{R_{0}}=I_{R_{1}}=\frac{1.0}{j 0.55}=1.82 \angle-90^{\circ} \\
& \mathrm{V}_{\mathrm{R}_{0}}=-\mathrm{I}_{\mathrm{R}_{0}} \mathrm{X}_{\text {oeq }}=-1.82 \angle-90^{\circ} \times 0.2 \angle 90^{\circ} \\
& \mathrm{V}_{\mathrm{R}_{0}}=-0.364=0.364 \mathrm{pu} \\
& \mathrm{~V}_{\mathrm{R}_{0}}=0.364 \times \frac{13.2}{\sqrt{3}}=2.77 \mathrm{kV}
\end{aligned}
$$

DISTRACTOR LOGIC

Option B: $\quad X_{\text {leq }}=j 0.2$

$$
\begin{aligned}
\mathrm{X}_{2 \mathrm{eq}} & =\mathrm{j} 0.2 \\
\mathrm{X}_{0 \mathrm{eq}} & =\mathrm{X}_{0}+3 \mathrm{X}_{\mathrm{n}}+3 \mathrm{X}_{\mathrm{F}} \\
& =0.05+3 \times 0.05+3 \times 0.05 \\
& =0.35
\end{aligned}
$$

$$
I_{R_{0}}=I_{R_{1}}=\frac{E_{R_{1}}}{Z_{1_{\mathrm{eq}}}+Z_{2_{\mathrm{eq}}}+Z_{0_{\mathrm{eq}}}}=\frac{1.0}{j 0.2+j 0.2+j 0.35}
$$

$$
I_{R_{0}}=I_{R_{1}}=\frac{1.0}{j 0.75}=1.33 \angle-90^{\circ}
$$

$\mathrm{V}_{\mathrm{R}_{0}}=-\mathrm{I}_{\mathrm{R}_{0}} \mathrm{X}_{\text {oeq }}=-1.33 \angle-90^{\circ} \times 0.35 \angle 90^{\circ}$
$\mathrm{V}_{\mathrm{R}_{0}}=-0.465=0.465 \mathrm{pu}$
$\mathrm{V}_{\mathrm{R}_{0}}=0.465 \times \frac{13.2}{\sqrt{3}}=3.54 \mathrm{kV}$

Option C: $\quad X_{\text {leq }}=\frac{\mathrm{j} 0.2}{2}=\mathrm{j} 0.1$

$$
\begin{aligned}
X_{2 e q} & =\frac{j 0.2}{2}=j 0.1 \\
X_{0 \mathrm{eq}} & =X_{0}+3 X_{n}+3 X_{f} \\
& =0.05+3 \times 0.05+3(0.05) \\
& =0.35
\end{aligned}
$$

$I_{R_{0}}=I_{R_{1}}=\frac{E_{R_{1}}}{Z_{1_{\text {eq }}}+Z_{2_{\text {eq }}}+Z_{0_{\text {eq }}}}=\frac{1.0}{j 0.1+j 0.1+j 0.2}$
$I_{R_{0}}=I_{R_{1}}=\frac{1.0}{j 0.4}=2.5 \angle-90^{\circ}$

$\mathrm{V}_{\mathrm{R}_{0}}=-\mathrm{I}_{\mathrm{R}_{0}} \mathrm{X}_{\text {oeq }}=-2.5 \angle-90^{\circ} \times 0.35 \angle 90^{\circ}$
$\mathrm{V}_{\mathrm{R}_{0}}=-0.875=0.875 \mathrm{pu}$
$\mathrm{V}_{\mathrm{R}_{0}}=0.875 \times \frac{13.2}{\sqrt{3}}=6.66 \mathrm{kV}$

Option D: $\quad X_{\text {leq }}=j 0.2$

$$
\begin{aligned}
& \mathrm{X}_{2 \mathrm{eq}}=\mathrm{j} 0.2 \\
& \begin{aligned}
\mathrm{X}_{0 \mathrm{eq}} & =\mathrm{X}_{0}+3 \mathrm{X}_{\mathrm{n}}+3 \mathrm{X}_{\mathrm{f}} \\
& =0.05+3 \times 0.05+3 \times 0.05 \\
& =0.35
\end{aligned}
\end{aligned}
$$

$$
I_{R_{0}}=I_{R_{1}}=\frac{E_{R_{1}}}{Z_{1_{\mathrm{eq}}}+Z_{2_{\mathrm{eq}}}+Z_{0_{\mathrm{eq}}}}=\frac{1.0}{j 0.2+j 0.2+j 0.2}
$$

$$
I_{R_{0}}=I_{R_{1}}=\frac{1.0}{j 0.6}=1.66 \angle-90^{\circ}
$$

$$
\mathrm{V}_{\mathrm{R}_{0}}=-\mathrm{I}_{\mathrm{R}_{0}} \mathrm{X}_{\text {oeq }}=-1.66 \angle-90^{\circ} \times 0.35 \angle 90^{\circ}
$$

$$
\mathrm{V}_{\mathrm{R}_{0}}=-0.581=0.581 \mathrm{pu}
$$

$$
\mathrm{V}_{\mathrm{R}_{0}}=0.581 \times \frac{13.2}{\sqrt{3}}=4.42 \mathrm{kV}
$$

61. $\int_{\mathrm{C}} \frac{\mathrm{z} \cos \mathrm{z}}{\left(\mathrm{z}-\frac{\pi}{2}\right)^{2}} \mathrm{dz}=$? where ' C ' is $|\mathrm{z}-1|=1$
(A) $i \pi$
(B) $-\mathrm{i} \pi$
(C) $i \pi^{2}$
(D) $-i \pi^{2}$

Ans: (D)

Sol: $\mathrm{z}=\frac{\pi}{2}=\frac{3.14}{2}=1.57$ is a pole of order ' 2 ' lies inside ' C '

$$
\begin{aligned}
\therefore \int_{\mathrm{C}} \frac{\mathrm{z} \cos \mathrm{z}}{\left(\mathrm{z}-\frac{\pi}{\mathrm{z}}\right)^{2}} \mathrm{dz} & =2 \pi \mathrm{if}^{1}\left(\frac{\pi}{2}\right)(\text { where } \mathrm{f}(\mathrm{z})=\mathrm{z} \cos \mathrm{z}) \\
& =2 \pi \mathrm{i}\left(\frac{-\pi}{2}\right) \\
& =-\pi^{2} \mathrm{i}
\end{aligned}
$$

62. $f(x, y)=\left(x^{2}+y^{2}+6 x+12\right)$ has
(A) maximum value at $(-3,0)$
(B) minimum value at $(-3,0)$
(C) maximum value at $(0,-3)$
(D) minimum value at $(0,-3)$

Ans: (B)

Sol: $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=(2 \mathrm{x}+6)=0$
$\frac{\partial f}{d y}=2 y=0$
By solving $(1) \&(2)$ for $(x, y)=(-3,0)$ is the stationary point
$r=\frac{\partial^{2} f}{\partial x^{2}}=2, s=\frac{\partial^{2} f}{\partial x \partial y}=0, t=\frac{\partial^{2} f}{\partial y^{2}}=2$
$\therefore \operatorname{At}(-3,0) ;\left(\mathrm{rt}-\mathrm{s}^{2}\right)=4 \& \mathrm{r}=2$
\therefore we get minimum value of $\mathrm{f}(\mathrm{x}, \mathrm{y})$
63. An ideal residential distribution transformer is connected as shown in the Fig. Assume that the two series-connected secondary windings are identical. Determine the primary current and minimum kVA rating of a $2400: 240 / 120 \mathrm{~V}$ transformer required to sustain this load without risk of winding over-temperature.

(A) $1.8 \mathrm{~A}, 5.76 \mathrm{kVA}$
(B) $1.03 \mathrm{~A}, 4.07 \mathrm{kVA}$
(C) $1.8 \mathrm{~A}, 2.88 \mathrm{kVA}$
(D) $1.03 \mathrm{~A}, 2.03 \mathrm{kVA}$

Ans: (A)

Sol: $\bar{I}_{2}=\frac{240 \angle 0^{\circ}}{20}=12 \angle 0^{\circ} \mathrm{A}$
$\bar{I}_{3}=\frac{120 \angle 0^{\circ}}{10}+\bar{I}_{2}=12 \angle 0^{\circ}+12 \angle 0^{\circ}=24 \angle 0^{\circ} \mathrm{A}$
$\bar{I}_{1}=\frac{120}{2400} \bar{I}_{2}+\frac{120}{2400} \bar{I}_{3}=\frac{120}{2400}\left(36 \angle 0^{\circ}\right)=1.8 \angle 0^{\circ} \mathrm{A}$

Since \bar{I}_{3} is the larger secondary current, the rating is dictated by the lower secondary winding; thus,

$$
S_{R}=2 V_{3} I_{3}=2(120)(24)=5.76 \mathrm{kVA}
$$

DISTRACTOR LOGIC

Option B: $\quad \overline{\mathrm{I}_{2}}=\frac{240 \angle 0^{\circ}}{20}=12 \angle 0^{\circ} \mathrm{A}$

$$
\begin{aligned}
& \bar{I}_{3}=\frac{120 \angle 0^{\circ}}{10}+\bar{I}_{2}=12 \angle 0^{\circ}+12 \angle 0^{\circ}=16.97 \angle 0^{\circ} \mathrm{A} \\
& \bar{I}_{1}=\frac{120}{2400} \bar{I}_{2}+\frac{120}{2400} \bar{I}_{3}=\frac{120}{2400}\left(36 \angle 0^{\circ}\right)=1.03 \angle 0^{\circ} \mathrm{A} \\
& S_{R}=2 V_{3} I_{3}=2(120)(16.97)=4.072 \mathrm{kVA}
\end{aligned}
$$

Option C: $\overline{\mathrm{I}_{2}}=\frac{240 \angle 0^{\circ}}{20}=12 \angle 0^{\circ} \mathrm{A}$

$$
\begin{aligned}
& \bar{I}_{3}=\frac{120 \angle 0^{\circ}}{10}+\bar{I}_{2}=12 \angle 0^{\circ}+12 \angle 0^{\circ}=24 \angle 0^{\circ} \mathrm{A} \\
& \bar{I}_{1}=\frac{120}{2400} \bar{I}_{2}+\frac{120}{2400} \bar{I}_{3}=\frac{120}{2400}\left(36 \angle 0^{\circ}\right)=1.8 \angle 0^{\circ} \mathrm{A} \\
& S_{R}=2 V_{3} I_{3}=(120)(24)=2.88 \mathrm{kVA}
\end{aligned}
$$

Option D: $\overline{\mathrm{I}_{2}}=\frac{240 \angle 0^{\circ}}{20}=12 \angle 0^{\circ} \mathrm{A}$

$$
\begin{aligned}
& \bar{I}_{3}=\frac{120 \angle 0^{\circ}}{10}+\bar{I}_{2}=12 \angle 0^{\circ}+12 \angle 0^{\circ}=16.97 \angle 0^{\circ} \mathrm{A} \\
& \bar{I}_{1}=\frac{120}{2400} \bar{I}_{2}+\frac{120}{2400} \bar{I}_{3}=\frac{120}{2400}\left(36 \angle 0^{\circ}\right)=1.03 \angle 0^{\circ} \mathrm{A} \\
& S_{R}=2 V_{3} I_{3}=(120)(16.97)=2.036 \mathrm{kVA}
\end{aligned}
$$

64. If the probability that a man aged ' X ' years will die within a year be ' P ' then the chance that out of 5 men A, B, C, D and E each aged ' X ' years, ' A ' will die during the year and be the first person to die is \qquad
(A) $\frac{\mathrm{P}(1-\mathrm{P})^{4}}{5}$
(B) $\frac{1-(1-\mathrm{P})^{5}}{5}$
(C) $1-(1-\mathrm{P})^{5}$
(D) $\mathrm{P}(1-\mathrm{P})^{4}$

Ans: (B)

Sol: The probability that a man aged ' X ' year will not die within a year is $(1-\mathrm{P})$
\therefore The chance that none of the five persons die within a year is $(1-\mathrm{P})^{5}$
$\therefore 1-(1-\mathrm{P})^{5}$ gives atleast one of the five dies within a year
\therefore Anyone has the same chance of being dead first, hence the required probability $=\frac{1-(1-\mathrm{P})^{5}}{5}$.

NO-DISTRACTOR LOGIC

65. An RC low pass filter has the impulse response $h(t)=e^{-t} u(t)$. The response of the system due to the input $x(t)=e^{2 t} u(-t)$ is \qquad
(A) $\frac{1}{3} \mathrm{e}^{2 \mathrm{t}} \mathrm{u}(-\mathrm{t})+\frac{1}{3} \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
(B) $\frac{-1}{3} e^{2 t} u(t)-\frac{1}{3} e^{-t} u(-t)$
(C) $-\frac{1}{3} \mathrm{e}^{2 \mathrm{t}} \mathrm{u}(-\mathrm{t})-\frac{1}{3} \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
(D) $e^{2 t} u(-t)+e^{-t} u(t)$

Ans: (A)
Sol: $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}+1} ; \sigma>-1$

$$
X(s)=\frac{-1}{s-2} ; \sigma<2
$$

Output ROC $=(\sigma>-1) \cap(\sigma<2)=-1<\sigma<2$
$\mathrm{Y}(\mathrm{s})=\mathrm{X}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{-1}{(\mathrm{~s}-2)(\mathrm{s}+1)}=\frac{-1 / 3}{\mathrm{~s}-2}+\frac{1 / 3}{\mathrm{~s}+1}$
Based on the output ROC, take inverse Laplace transform

$$
\mathrm{y}(\mathrm{t})=\frac{1}{3} \mathrm{e}^{2 \mathrm{t}} \mathrm{u}(-\mathrm{t})+\frac{1}{3} \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})
$$

Distractor Logic:
Option A: Correct Answer
Option B: In the partial fraction if we feel pole ' 2 ' is right sided \& pole ' -1 ' is left sided
Option C: In the partial fraction expansion if we take negative sign of $\mathrm{Y}(\mathrm{s})$ as it is
Option D: In the partial fraction expansion if we miss $\frac{1}{3}$ multipliers

