

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kolkata

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us : 040 - 23234418, 19, 20

Section: Civil Engineering

01. The figure shows a two –hinged parabolic arch of span L subjected to a uniformly distributed load of intensity q per unit length.

:2:

COAL INDIA LIMITED (CIL) Management Trainee & Other PSUs

Classroom coaching

(General Knowledge / Awareness, Reasoning, Numerical Ability & General English)

Starts on

☑ 15th Feb 2017 @ Delhi

Online Test Series (EE | ME | CE)

Total Tests : 20

Starts from 17th Feb 2017

ESE – 2017 Mains (Stage - II)

Classroom Coaching Starts from 15th Feb 2017

at Hyderabad, Delhi & Pune

Offline Test Series : Starts from - 18th March 2017

Number of Tests : 16

Will Conduct at all Our centers

	ACE Engineering Academy	:4:	CE_GATE-2017 SOLUTIONS			
02.	A strip footing is resting on the ground s	urface of a pure clay	bed having an undrained cohesion			
	C_u . The ultimate bearing capacity of the fo	ooting is equal to				
	(A) $2\pi C_u$ (B) πC_u	(C) (π +1) C_u	(D) $(\pi + 2)C_u$			
02.	Ans: (D)					
Sol:	For pure clays, the ultimate bearing ca	pacity of strip foot	ing resting on the ground surface,			
	$q_n = CN_C$					
	$N_C = 5.7$, as per Terzaghi					
	N_{C} = 5.14 as per Meyerhof Hansen, skempton vesic and I.S. code bearing capacity theories.					
	In the present case $q_u = 5.14 \text{ C}$					
	(or) $q_u = (\pi + 2) C_{c_1} N E_{c_2}$	ERINGA				
	ENC	A CA				
03.	The reaction rate involving reactants A	and B is given by	$(-k[A] \alpha [B]^{\beta}$. Which one of the			
	following statements is valid for the reacti	on to be a first –orde	r reaction?			
	(A) $\alpha = 0$ and $\beta = 0$	(B) $\alpha = 1$ and β	= 0			
	(C) $\alpha = 1$ and $\beta = 1$	(D) $\alpha = 1$ and β	= 2			

03. Ans: (B)

Sol: Since it is 1st order reaction the sum of the powers must be 1. (i.e $\alpha + \beta = 1$)

04.
$$\lim_{x \to 0} \left(\frac{\tan x}{x^2 - x} \right)$$
 is equal to _____ Since 1995

04. Ans: -1

Sol:

$$\lim_{x \to 0} \left(\frac{\tan x}{x^2 - x} \right) \qquad \left(\frac{0}{0} \text{ form} \right)$$

Applying L Hospital rule

$$= \lim_{x \to 0} \left(\frac{\sec^2 x}{2x - 1} \right) = \frac{\sec^2 0}{-1} = -1$$

ACE Engineering Academy

05. An elastic bar of length *L*, uniform cross sectional area *A*, coefficient of thermal expansion α , and Young's modulus *E* is is fixed at the two ends. The temperature of the bar is increased by *T*, resulting in an axial stress σ . Keeping all other parameters unchanged, if the length of the bar is doubled, the axial stress would be

(A) σ (B) 2σ (C) 0.5σ (D) $0.25 \alpha\sigma$

05. Ans: (A)

Sol: Temperature stress, $\sigma = (\alpha t)E$

Temperature stress is independent of length. If length is doubled the stress due to temperature remains unchanged.

06. A 3 m thick clay layer is subjected to an initial uniform pore pressure of 145 kPa as shown in the figure.

For the given ground conditions, the time (in days, rounded to the nearest integer) required for 90% consolidation would be

Since 1995

06. Ans: 1771

Sol: For the given clay, drainage path, d = H (single drainage)

= 3 m = 3000 mm

$$c_v = 3 \text{ mm}^2/\text{min}$$

 $T_{V(90)} = 0.85$
 $T_v = \frac{c_v \cdot t}{d^2}$
 $0.85 = \frac{3 \times t}{(3000)^2}$
∴ t = 2.55 × 10⁶ min = 1770.83 days
Say 1771 days

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM

HYDERABAD

29th APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM

HYDERABAD & DELHI

1st week of July 2017

07. Which one of the following is NOT present in the acid rain?

(A) HNO₃

(B) H_2SO_4 (C) H_2CO_3

(D) CH₃COOH

07. Ans: (D)

Sol:

Acid rains are mainly caused by HNO_3 , H_2SO_4 , H_2CO_3 but not by CH_3 COOH as it is a weak acid.

08. The accuracy of an Electronic Distance Measuring Instrument (EDMI) is specified as $\pm (a \text{ mm} + b \text{ ppm})$. Which one of the following statements is correct?

Since 1995

- (A) Both a and b remain constant, irrespective of the distance begin measured
- (B) *a* remains constant and *b* varies in proportion to the distance being measured.
- (C) a varies in proportion to the distance being measured and b remains constant.
- (D) Both *a* and *b* vary in proportion to the distance being measured.
- 08. Ans: (B)

Sol: Inorder to increase the accuracy of geodetic measurements, the effect of instrument errors is reduced by a suitable procedure of the measurements and measurement configuration or calculation corrections can be applied on the measured values. Constant corrections or corrections depending on measured distance can be used to correct distance measurement by the EDM's of the total stations base lines are used to determine the distance meters errors. The standard deviation of the measured distance.

 $\sigma = A + B . D$

Engineering Academy

Where A is 'mm' includes phase solution of EMD maximum amplitude of short periodic error or phase distance meters, maximum effect of non linear distance errors and accuracy or an additive constant. (ppm)

'B' in 'PPM' includes the range of the typical frequency drift of the main oscillator within the specified temperature range and the maximum error which may be caused by the limited step interval of the 'ppm dial'.

D = Distance measured by EDMI

- 09. A simply supported beam is subjected to a uniformly distributed load. Which one of the following statements is true?
 - (A) Maximum or minimum shear force occurs where the curvature is zero
 - (B) Maximum or minimum bending moment occurs where the shear force is zero
 - (C) Maximum or minimum bending moment occurs where the curvature is zero
 - (D) Maximum bending moment and maximum shear force occur at the same section.

09. Ans: (B)

- 10. For a steady incompressible laminar flow between two infinite parallel stationary plates, the shear stress variation is
 - (A) linear with zero value at the plates
- (B) linear with zero value at the center
- (C) quadratic with zero value at the plates
- (D) quadratic with zero value at the center

10. Ans: (B)

	ACE Engineering Academy		:8:	CE_GATE-2017 SOLUTIONS
11.	A runway is being const	ructed in a new airp	ort as per the I	nternational Civil Aviation Organization
	(ICAO) recommendatio	ns. The elevation a	nd the airport r	eference temperature of this airport are
	535 m above the mean	sea level and 22.6	65°C, respectiv	ely. Consider the effective gradient of
	runway as 1%. The leng	th of runway require	ed for a design-	aircraft under the standard conditions is
	2000 m Within the	framework of a	nnlving seque	ntial corrections as per the ICAO
	recommendations the le	angth of runway corr	rected for the te	mperature is
	(A) 2223 m	(B) 2250 m	(C) 2500 m	(D) 2750 m
11	Ans: (C)	(D) 22 00 m	(0) 2000 m	(E) 2700 m
Sol:	Elevation of airport =	535 m		
	Airport reference temp	perature,	RINC	
	ART = 22.6	5°C	$\sim A_{\rm C}$	
	Effective gradient = 1°	2/0 2		Or.
	Standard length of run	way = 2000 m		3
	Correction for elevat	ion:		
		300 m – 7%		
		$535 \text{ m} \rightarrow ?$	$=\frac{7\times535}{300}=12.4$	18%
	Length after elevation	correction		
			= 200	$0 \times 1.1248 = 2249.6 \text{ m}$
	Temperature correct	ion:		
	$ART = 22.65^{\circ}C$	Sinc	ce 1995	
	Standard airport tempe	erature, SAT at	1500	
	Temperature gradient	IIISI - 1000 m elevation	- 15 C	
	Temperature gradient		$= 6.5^{\circ}$ C rec	luction
		1	6.5×535	2,400,6
	For 535 m elevation re	eduction of temperat	$ure = \frac{1000}{1000}$	$= 3.48^{\circ} \text{C}$
	\therefore SAT at airport site = 1	$5 - 3.48 = 11.52^{\circ}C$		
	For 1°C difference of AR	T and $SAT = 1\%$ in	crease in length	is recommended by ICAO
	For $(22.65 - 11.52) = 11$.	13°C of difference		
	Increase in length of runy	vay is 11.13%		
	∴ Final length of runway	after temperature c	orrection = 224	$9.6 \times 1.113 = 2499.98 \text{ m} \simeq 2500 \text{ m}$
ACE	E Engineering Academy Hyderabad	Delhi Bhopal Pune Bhubanesw	var Lucknow Patna Beng	galuru Chennai Vijayawada Vizag Tirupati Kukatpally Kolkata

:9: CE_GATE-2017_Forenoon Sessions

- 12. The matrix P is the inverse of a matrix Q. If I denotes the identity matrix, which one of the following options is correct?
 - (A) PQ = I but $QP \neq I$ (B) QP = I but $PQ \neq I$
 - (C) PQ = I and QP = I (D) PQ QP = I
- 12. Ans: (C)
- **Sol:** $Q^{-1} = P$ (1)

ACE

Engineering Academy

Premultiplying both sides of (1) by Q

$$QQ^{-1} = QP$$

 $I = OP$

Post multiplying both sides of (1) by Q

$$Q^{-1}Q = PQ$$
$$I = PO$$

- \therefore Option (C) is correct.
- A uniformly distributed line load of 500 kN/m is acting on the ground surface. Based on Boussinesq's theory, the ratio of vertical stress at a depth 2 m to that at 4 m, right below the line of loading, is

(A) 0.25 (B) 0.5 (C) 2.0 (D) 4.0

13. Ans: (c)

Sol: Extending Boussinesq's equation for point load, the vertical stress directly below the line load,

Since 1995

$$\sigma_{z} = \frac{2q'}{\pi z}$$
$$\therefore \sigma_{z} \alpha \frac{1}{z}$$
$$\frac{\sigma_{z} \text{at } 2\text{m depth}}{\sigma_{z} \text{at } 4\text{m depth}} = \left[\frac{4}{2}\right] = 2$$

ACE Engineering Academy

14. Consider the following partial differential equation:

$$3\frac{\partial^2 \phi}{\partial x^2} + \mathbf{B}\frac{\partial^2 \phi}{\partial x \partial y} + 3\frac{\partial^2 \phi}{\partial y^2} + 4\phi = 0$$

For this equation to be classified as parabolic, the value of B² must be _____

14. Ans: 36

Sol:

$$3\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + 3\frac{\partial^2 \phi}{\partial y^2} + 4\phi = 0$$

Here A = 3, C = 3

The above PDE is said to be parabolic

$$B^{2} - 4AC = 0$$
$$B^{2} - 36 = 0$$
$$B^{2} = 36$$

15. The number of spectral bands in the Enhanced Thematic Mapper sensor on the remote sensing satellite Landsat-7 is

(A) 64 (B) 10 (C) 8 (D) 15

15. Ans: (C)

Sol: The landsat enhanced thematic mapper plus (ETM +) sensor is carried on Land sat-7 and images consist of 8 spectral bands with a spatial resolution of 30 m for bands 1 to 7. The resolution for band 8. (Panchromatic is 15 m).

HEARTY CONGRATULATIONS TO OUR ESE 2016 RANK ERS

CF

EE

CE

Adarsh Rishi Srivastav

Mufeed Khan

Amrit Anand

E&T

E&T

Vinit Ranjan

Akash Chhikara

Ashish Verma

Vivek Jain

Varsha Shukla

CE

0

ME

Nitish Garg

JGMV Pramod

E&T

E&T

EE

EE

E&T

Gaurav Tyagi

16. A triangular pipe network is shown in the figure.

ACE

Engineering Academy

:12:

The head loss in each pipe is given by $h_f = rQ^{1.8}$, with the variables expressed in a consistent set of units. The value of *r* for the pipe AB is 1 and for the pipe *BC* is 2. If the discharge supplied at the point *A*(i.e. 100) is equally divided between the pipes *AB* and *AC*, the value of *r* (up to two decimal places) for the pipe *AC* should be _____

- 17. A soil sample is subjected to a hydrostatic pressure, σ . The Mohr circle for any point in the soil sample would be
 - (A) a circle of radius σ and center at the origin
 - (B) a circle of radius σ and center at a distance σ from the origin
 - (C) a point at a distance σ from the origin
 - (D) a circle of diameter σ and center at the origin

ACE Engineering Academy

17. Ans: (C)

Sol: For hydrostatic pressure ($\sigma_1 = \sigma_2 = \sigma_3$), the Mohr's circle will be a point at a distance σ from the origin

- 18. The number of parameters in the univariate exponential and Gaussian distributions, respectively, are
 - (A) 2 and 2 (B) 1 and 2 (C) 2 and 1 (D) 1 and 1
- 18. Ans: (B)
- 19. The wastewater from a city, containing a high concentration of biodegradable organics, is being steadily discharged into a flowing river at a location S. If the rate of aeration of the river water is lower than the rate of degradation of the organics, then the dissolved oxygen of the river water

1995

- (A) is lowest at the location S.
- (B) is lowest at a point upstream of the location S
- (C) remains constant all along the length of the river
- (D) is lowest at a point downstream of the location S.
- 19. Ans: (D)

Sol:

Since

 $Distance = velocity \times time$

DO is lowest point downstream of the location 'S'.

20. Group I lists the type of gain or loss of strength in soils. Group II lists the property or process responsible for the loss or gain of strength in soils.

:14:

Group I

- P. Regain of strength with time
- Q. Loss of strength due to cyclic loading
- R. Loss of strength due to upward seepage
- S. Loss of strength due to remolding

Group –II

- 1. Boiling
- 3. Thixotropy 4. Sensitivity

The correct match between Group I and Group II is

2. Liquefaction

- (A) P-4, Q-1, R-2, S-3
- (C) P-3,Q-2,R-1,S-4

(B) P-3, Q-1, R-2, S-4 (D) P-4, Q-2, R-1, S-3

- 20. Ans: (C)
- Sol: P -3, Q-2, R-1, S-4
- 21. Let x be a continuous variable defined over the interval $(-\infty, \infty)$, and $f(x) = e^{-x-e^{-x}}$ The integral g (x) = $\int f(x) dx$ is equal to
 - (A) $e^{e^{-x}}$ (B) $e^{-e^{-x}}$ (C) $e^{-e^{x}}$ (D) e^{-x}

21. Ans: (B)

Sol: $f(x) = e^{-x-e^{-x}}$

 $g(x) = \int f(x) dx$ = $\int e^{-x-e^{-x}} dx$ put $e^{-x} = t$ = $\int e^{-x}e^{-e^{-x}} dx$ $-e^{-x}dx = dt$ $\int e^{-t}(-dt)$ $e^{-x}dx = -dt$ $= e^{-t}$ $= e^{-e^{-t}}$

ACE Engineering Academy

22. Vehicles arriving at an intersection from one of the approach roads follows the Poisson distribution. The mean rate of arrival is 900 vehicles per hour. If a gap is defined as the time difference between two successive vehicle arrivals (with vehicles assumed to be points), the probability (up to four decimal places) that the gap is greater than 8 seconds is _____

22. Ans: 0.1353

- Sol: Time, $T = 8 \sec \theta$
 - Mean rate of arrival,

q = 900 veh/hr

$$=\frac{900}{60\times60}=0.25$$
 veh/sec

Probability that the gap is greater than 8 sec $P(t \ge T = 8 \text{ sec}) = e^{-qt}$

$$= e^{-(0.25 \times 8)}$$

= 0 1353

23. A super-elevation *e* is provided on a circular horizontal curve such that a vehicle can be stopped on the curve without sliding. Assuming a design speed *v* and maximum coefficient of side friction f_{max} which one of the following criteria should be satisfied?

(A)
$$e \leq f_{max}$$

(B) $e > f_{max}$
(C) no limit on e can be set
(D) $e = \frac{1 - (f_{max})}{f_{max}}$

23. Ans: (A)

- **Sol:** For a stopped vehicle to avoid sliding inwards $e \le f_{max}$
- 24. The ordinates of a 2-hour unit hydrograph for a catchment are given as

Time(h)	0	1	2	3	4
Ordinate (m^3/s)	0	5	12	25	41

The ordinate (in m^3/s) of a 4-hour unit hydrograph for this catchement at the time of 3 h would be_____

24. Ans: 15

Sol:

Time	2hr UHG Ord.	2hr delayed 2hr UHG ord	4hr DRH ord	4hr UHG ord= 4hr DRH/2
0	0	-		
1	5	-		
2	12	0		
3	25	5	30	15

Ord of 4hr UHG at 3rd hr time interval

 $= 15 \text{ m}^3/\text{sec}$

- 25. According to IS 456- 2000, which one of the following statements about the depth of neutral axis $x_{u, bal}$ for a balanced reinforced concrete section is correct?
 - (A) $x_{u, bal}$ depends on the grade of concrete only
 - (B) $x_{u, bal}$ depends on the grade of steel only
 - (C) $x_{u, bal}$ depends on both the grade of concrete and grade of steel.
 - (D) $x_{u, bal}$ does not depend on the grade of concrete and grade of steel.

25. Ans: (B) Sol:

Where $f_v \rightarrow$ yield stress of steel

 $E_s \rightarrow$ modulus of elasticity of steel

$$\left(\mathrm{E_s} = 2 \times 10^5 \, \frac{\mathrm{N}}{\mathrm{mm}^2}\right)$$

From the above formula $x_{u max}$ depends on only grade of steel

 $x_{u bal} = 0.53d \rightarrow Fe-250$ $x_{u bal} = 0.48d \rightarrow Fe-415$ $x_{u bal} = 0.46d \rightarrow Fe-500$

26. Group –I contains three broad classes of irrigation supply canal outlets. Group II presents hydraulic performance attributes.

Group I	Group II
V V	1. Outelet discharge depends on the
D. Maximum data south t	water levels in both the supply
P. Non-modular outlet	canal as well as the receiving
	water course.
	2. Outlet discharge is fixed and is
Q. Semi-modular outlet	independent of the water levels in
	both the supply canal as well as
Since	19 the receiving water course
	3. Outlet discharge depends only on the
R. Modular outlet	water level in the supply canal

The correct match of the items in Group I with the items in Group II is

(A) $P - 1$; $Q - 2$; $R - 3$	(B) $P - 3; Q - 1; R - 2$
(C) $P - 2; Q - 3; R - 1$	(D) $P - 1$; $Q - 3$; $R - 2$

26. Ans: (D)

Sol: Modular outlet
$$Q_{\text{module}} = f[\Delta Q_{\text{Parent}}^{\circ}]$$

= $f[\Delta Q_{\text{daughter}}^{\circ}]$

Semi-modular

$$\begin{split} Q_{module} &= f \left[\Delta \, Q_{parent} \right] \\ &= f [\Delta Q^o_{daughter}] \end{split}$$

Non modular

$$Q_{\text{module}} = f[\Delta Q_{\text{parent}}]$$
$$= f[\Delta Q_{\text{daughter}}]$$

27. A pre-tensioned rectangular concrete beam 150 mm wide and 300 mm depth is prestressed with three straight tendons, each having a cross-sectional area of 50 mm², to an initial stress of 1200 N/mm². The tendons are located at 100 mm from the soffit of the beam. If the modular ratio is 6, the loss of prestressing force (in kN, up to one decimal place) due to the elastic deformation of concrete only is _____

27. Ans: 4.8

Sol: Given:

ven:

$$b = 150 \text{ mm}$$

$$D = 300 \text{ mm}$$

$$A_s = 3 - 50 \text{ mm}^2$$

$$\sigma_o = 1200 \text{ N/mm}^2$$

$$m = 6$$

$$\Delta P = ? \text{ Loss of prestressing force}$$

$$b = 150 \text{ mm}^2$$

$$150 \text{ mm}^2$$

$$150 \text{ mm}^2$$

$$150 \text{ mm}^2$$

$$150 \text{ mm}^2$$

Loss of prestress due to elastic deformation in pretensioning $\Delta \sigma = m f_c$

$$f_{c} = \frac{P}{A} + \frac{Pe}{I}.e$$

$$P = \sigma_{o}A_{s} = 1200 \times 50 \times 3 = 180 \text{ kN}$$

$$f_{c} = \frac{P}{A} + \frac{Pe}{I}.e$$

$$= \frac{180 \times 10^{3}}{150 \times 300} + \frac{180 \times 10^{3} \times 50}{12} \times 50$$
$$= 4 + 1.3 = 5.3 \text{ N/mm}^{2}$$
$$\Delta \sigma = 6 \times 5.3 = 31.8 \text{ N/mm}^{2}$$
$$\Delta P = 4.8 \text{ kN}$$

28. The wastewater having an organic concentration of 54 mg/l is flowing at a steady rate of 0.8 m³/day through a detention tank of dimensions 2 m \times 4 m \times 2 m. If the contents of the tank are well mixed and the decay constant is 0.1 Per day, the outlet concentration (in mg/l, up to one decimal place) is _____

ACE Engineering Academy

Sol:
$$\frac{dC}{dt} \propto C$$
$$\frac{dC}{dt} = -kC$$
$$\int_{\ell_0}^{\ell_1} \frac{dC}{C} = \int_{0}^{t} - kdt$$
$$Log_{10} \left[\frac{C_t}{C_0} \right] = -kE$$
$$\frac{C_t}{C_0} = 10^{-kf}$$
$$C_t = C_0 \ 10^{-kt} = C_0 \ 10^{-k \times \frac{V}{Q}}$$
$$C_t = 5410^{-0.1 \times \frac{(2 \times 4 \times 2)}{0.8}}$$
$$C_t = 0.54 \ mg/l$$

29. The queue length (in number of vehicles) versus time (in seconds) plot for an approach to a signalized intersection with the cycle length of 96 seconds is shown in the figure (not drawn to scale)

At time t = 0, the light has just turned red. The effective green time is 36 seconds, during which vehicles discharge at the saturation flow rate, *s* (in vph). Vehicles arrive at a uniform rate, *v* (in vph), throughout the cycle. Which one of the following statements is TRUE? (A) v = 600 vph, and for this cycle, the average stopped delay per vehicle = 30 seconds (B) s = 1800 vph, and for this cycle, the average stopped delay per vehicle = 28.125 seocnds (C) v = 600 vph, and for this cycle, the average stopped delay per vehicle = 45 seconds (D) s = 1200 vph, and for this cycle, the average stopped delay per vehicle = 28.125 seconds

29. Ans: (A)

ACE

Engineering Academy

Sol:

Average delay
$$=\frac{\text{Red time}}{2} = \frac{60}{2} = 30 \text{ sec}$$

30. A particle of mass 2 kg is travelling at a velocity of 1.5 m/s. A force $f(t) = 3t^2(\text{in N})$ is applied to it in the direction of motion for a duration of 2 seconds, where *t* denotes time in seconds. The velocity (in m/s, up to one decimal place) of the particle immediately after the removal of the force is

30. Ans: 5.5

Sol: m = 2kg; velocity = 1.5 m/s = Initial $f(t) = 3t^2$

$$f(t) = m \frac{dv}{dt} \Rightarrow f(t)dt = mdV$$

:20:

$$\int_{0}^{2} 3t^{2} dt = m \int_{1.5}^{V} dV$$

$$\left[\frac{3t^{3}}{3}\right]_{0}^{2} = m [V]_{1.5}^{V} \Longrightarrow 2^{3} = 2 \times [V-1.5]$$

$$\Rightarrow 8 = 2V - 3$$

$$V = \frac{8+3}{2} = 5.5 \text{ m/s}$$

- 31. A consolidated undrained (\overline{CU}) triaxial compression test is conducted on a normally consolidated clay at a confining pressure of 100kPa. The deviator stress at failure is 80 kPa, and the pore –water pressure measured at failure is 50 kPa. The effective angle of internal friction (in degrees, up to one decimal place) of the soil is _____
- 31. Ans: 26.4
- **Sol:** For NC clay in an CU test, both $C_u \& C' = 0$

Given $\sigma_3 = 100$ kPa, $\sigma_d = 80$ kPa, u = 50 kPa To find ϕ'

$$\sigma'_{1} = \sigma'_{3} \tan^{2} \left(45 + \frac{\phi'}{2} \right) \qquad (\because C' = 0)$$

$$(\sigma_{1} - u) = (\sigma_{3} - u) \tan^{2} \left(45 + \frac{\phi'}{2} \right)$$

$$(100 + 80 - 50) = (100 - 50) \tan^{2} \left(45 + \frac{\phi'}{2} \right)$$

$$130 = 50 \tan^{2} \left(45 + \frac{\phi'}{2} \right)$$

$$\therefore \phi' = 26.39^{\circ}$$
Say 26.4°

32. Consider the stepped bar made with a linear elastic material and subjected to an axial load of 1 kN, as shown in the figure

ACE Engineering Academy

Segments 1 and 2 have cross-sectional area of 100 mm² and 600 mm², Young's modulus of 2×10^5 MPa and 3×10^5 MPa, and length of 400 mm and 900 mm, respectively. The strain energy (in N-mm, up to one decimal place) in the bar due to the axial load is_____

32. Ans:35

Sol:

$$U = U_{1} + U_{2} = \frac{P_{1}^{2}\ell_{1}}{2A_{1}E_{1}} + \frac{P_{2}^{2}\ell_{2}}{2A_{2}E_{2}}$$
$$= \frac{(1000)^{2}(400)}{(2)(100)(2 \times 10^{5})} + \frac{(1000)^{2}(900)}{2(60)(3 \times 10^{5})}$$
$$= 10 + 25 = 35 \text{ N-mm}$$

33. An effective rainfall of 2-hour duration produced a flood hydrograph peak of 200 m³/s. The flood hydrograph has a base flow of 20 m³/s. If the spatial average rainfall in the watershed for the duration of storm is 2 cm and the average loss rate is 0.4 cm/hour, the peak of 2-hour unit hydrograph (in m³/s-cm, up to one decimal place) is_____

33. Ans: 150

Sol: Peak ord of 2 hr FHG = $200 \text{ m}^3/\text{sec}$ Base flow = $20 \text{ m}^3/\text{sec}$ Peak ord of 2hr DRH = [peak ord of 2hr FHG]–Base flow = $200 - 20 = 180 \text{ m}^3/\text{sec}$ P_e = 2 cm

ACE Engineering Academy

 $t_e = 2hr$

 ϕ -Index = 0.4 cm/hr

$$\phi - \text{index} = \frac{P_e - R}{t_e}$$
$$0.4 = \frac{2 - R}{2}$$
$$R = 1.2 \text{ cm}$$

Peak ord of 2 hr UHG = $\frac{\text{Peak ord of 2hr DRH}}{R}$

$$=\frac{180}{1.2}=150 \text{ m}^3/\text{sec}$$

- 34. The spherical grit particles, having a radius of 0.01 mm and specific gravity of 3.0 need to be separated in a settling chamber. It is given that
 - $g = 9.81 \text{ m/s}^2$
 - The density of the liquid in the settling chamber = 1000 kg/m^3
 - the kinematic viscosity of the liquid in the settling chamber = 10^{-6} m²/s

Assuming laminar conditions, the settilling velocity (in mm/s, up to one decimal place) is_____

Since

34. Ans: 0.436

Sol:

$$d = 0.01 \text{ mm} = 0.01 \times 10^{-3} \text{ m}$$

$$S = 3$$

$$g = 9.81 \text{ m/s}^2$$

$$\rho_w = 1000 \text{ kg/m}^3$$

$$v = 10^{-6} \text{ m}^2/\text{sec}$$

$$v_s = \frac{g[S-1]d^2}{18v} = \frac{9.81[3-1](0.02 \times 10^{-3})^2}{18 \times 10^{-6}}$$

$$= 4.36 \times 10^{-4} \text{ m/sec}$$

$$= 0.436 \text{ mm/sec}$$

ESE - 2017 MAINS (STAGE - II)

Exclusive Postal Coaching Offer for Prelims Qualified Students for CE / ME / EE / E&T

Live Video Sessions

FREE DOUBT CLEARING SESSIONS THROUGH

* Fee of Rs : 2600/-

35. The radius of a horizontal circular curve on a highway is 120 m. The design speed is 60 km/hour, and the design coefficient of lateral friction between the tyre and the road surface is 0.15. The estimated value of superelevation required (if full lateral friction is assumed to develop), and the value of coefficient of friction needed (if no superelevation is provided) will, respectively, be

(A)
$$\frac{1}{11.6}$$
 and 0.10 (B) $\frac{1}{10.5}$ and 0.37 (C) $\frac{1}{11.6}$ and 0.24 (D) $\frac{1}{12.9}$ and 0.24

35. Ans: (C)

Sol:

Design speed, R = 120 mDesign speed, V = 60 km/hr (16.67 m/s)Coefficient of lateral friction, f = 0.15

(i) Superelevation for the development of full friction

ACE

Engineering Academy

$$e + f = \frac{v^2}{gR} \rightarrow e + 0.15 = \frac{16.67^2}{9.87 \times 120}$$

 $e = 0.086 = \frac{1}{11.63} \simeq \frac{1}{11.6}$

(ii) For no superelevation coefficient of friction required is

$$e + f = \frac{v^2}{gR}$$

 $0 + f = \frac{16.67^2}{9.81 \times 120}$
 $f = 0.236 = 0.24$

36. A planar tower structure is shown in the figure:

Consider the following statements about the external and internal determinacies of the truss.

- P. Externally Determine
- Q. External static Indeterminacy = 1
- R. External Static Indeterminacy = 2
- S. Internally Determinate
- T. Internal Static Indeterminacy = 1
- U. Internal Static Indeterminacy = 2

:26:

Which one of the following options is correct?

- (A) P-False; Q- True; R-False ; S-False ; T-False; U-True
- (B) P-False; Q- True; R-False ; S-False ; T-True; U-False
- (C) P-False; Q- False; R-True ; S-False ; T-False; U-True
- (D) P-True; Q- True; R-False ; S-True ; T-False; U-True

36. Ans: (A)

ACE

Engineering Academy

Sol: Number of support reactions, r = 4

Number of joints, j = 6

Number of members; m = 11

 $D_{se} = (r-3) = 1;$ $D_{si} = m - (2j - 3)$ $= 11 - (2 \times 6 - 3)$

- = 11 -9 = 2
- 37. It is proposed to drive H –piles up to a depth of 7 m at a construction site. The average surface area of the H-pile is 3 m² per meter length. The soil at the site is homogenous sand, having an effective friction angle of 32° . The ground water table (GWT) is at a depth of 2 m below the ground surface. The unit weights of the soil above and below the GWT are 16 kN/m³ and 19 kN/m³, respectively. Assume the earth pressure coefficient, K = 1.0, and the angle of wall friction, $\delta = 23^{\circ}$. The total axial frictional resistance (in kN, up to one decimal place) mobilized on the pile against the driving is ______

37. Ans: 390.8

Sol:

Dividing the pile length into two convenient parts of 2 m length and 5 m length as shown, the total ultimate frictional resistance is:

- $Q_s = As. K. \sigma'_{Va}. \tan \delta$ $= (3 \times 2) \times 1 \times \left(\frac{0+32}{2}\right) \tan 23^{\circ} + (3 \times 5) \times 1 \times \left(\frac{32+77.95}{2}\right) \tan 23^{\circ}$ =40.75+350.03= 390.78 say 390.8 kN
- 38.
- The solution of the equation $\frac{dQ}{dt} + Q = 1$ with Q = 0 at t = 0 is (A) $Q(t) = e^{-t} 1$ (B) $Q(t) = 1 + e^{-t}$ (C) $O(t) = 1 e^{t}$ (D) $Q(t) = 1 e^{-t}$ (C) $Q(t) = 1 - e^{t}$
- Ans: (D) 38.

Sol:

$$\frac{dQ}{dt} + Q = 1 \text{ with } Q = 0 \text{ at } t = 0$$

$$\Rightarrow \frac{dQ}{dt} = 1 - Q$$

$$\Rightarrow \frac{dQ}{1 - Q} = dt$$

$$\Rightarrow \int \frac{dQ}{1 - Q} = \int dt$$

$$\Rightarrow \int n(Q - 1) = -t + lnc$$

$$\Rightarrow (Q - 1) = e^{-t} + C$$

$$\Rightarrow Q = 1 + e^{-t} \cdot e^{C} - ----(1)$$
Applying initial condition we get

$$0 = 1 + e^{C}$$

$$\Rightarrow e^{C} = -1$$

substituting in (1), we get

$$Q = 1 - e^{-t}$$

39. The laboratory tests on a soil sample yields the following results; natural moisture content = 18% liquid limit = 60%, plastic limit = 25%, percentage of clay sized fraction = 25%. The liquidity index and activity (as per the expression proposed by Skempton) of the soil, respectively, are

:28:

(A) -0.2 and 1.4 (C) -1.2 and 0.714 (B) 0.2 and 1.4 (E) 0.2 and 1.4 (C) -1.2 and 0.714

39. Ans: (A)

Sol: Given

w = 18%, w_L = 60%, w_P = 25%, C = 25% Liquidity index, I_L = $\frac{W - W_P}{W_L - W_P} = \frac{18 - 25}{60 - 25} = -0.2$

$$I_P = w_L - w_P = 60 - 25 = 35$$

Activity, $A = \frac{I_{P}}{C} = \frac{35}{25} = 1.4$

Since

1005

HEARTY CONGRATULATIONS TO OUR GATE 2016 RANKERS

40. Consider the beam ABCD shown in figure

ACE

Engineering Academy

For a moving concentrated load of 50 kN on the beam, the magnitude of the maximum bending moment (in kN-m) obtained at the support C will be equal to _____

:30:

40. Ans: 200 Sol: So, place the load at B for obtaining move BM at C $(M_C)_{Maximum} = 50 \times 4$ = 200 kN-mILD for B.M at C

41. Consider two axially loaded columns, namely. 1 and 2, made of a linear elastic material with Young's modulus 2×10^5 MPa, square cross-section with side 10 mm, and length 1 m. For Column 1, one end is fixed and the other end is free. For column 2, one end is fixed and the other end is pinned. Based on the Euler's theory, the ratio (up to one decimal place) of the buckling load of Column 2 to the buckling load of column is ______

41. Ans: 8

Sol:

Column 1	Column 2
Fix and free	Fix-hinged $\ell - \frac{1}{2}$
l = 2L	The image $v = \sqrt{2}$

$$\frac{P_2}{P_1} = \frac{\ell_1^2}{\ell_2^2} = \frac{(2L)^2}{\left(\frac{L}{\sqrt{2}}\right)^2} = 4 \times 2 = 8$$

42. Consider the matrix $\begin{bmatrix} 5 & -1 \\ 4 & 1 \end{bmatrix}$. Which one of the following statements is TRUE for the eigenvalues

and eigenvectors of this matrix?

- (A) Eigenvalue 3 has a multiplicity of 2, and only one independent eigenvector exists.
- (B) Eigenvalue 3 has a multiplicity of 2, and two independent eign vectors exist.
- (C) Eigenvalue 3 has a multiplicity of 2, and no independent eigen vector exists

(D) Eigenvalues are 3 and -3, and two independent eigenvectors exist

42. Ans: (A)

Sol:

Let $A = \begin{bmatrix} 5 & -1 \\ 4 & 1 \end{bmatrix}$ $\lambda^2 - \lambda(6) + (5+4) = 0$ $\lambda - 6\lambda + 9 = 0$ $(\lambda - 3)^2 = 0$ $\therefore \lambda = 3, 3$ are eigen values of A Algebraic multiplicity of eigen value 3 is 2 For $\lambda = 3, A - \lambda I = A - 3I = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$ $R_2 \rightarrow R_2 - 2 R_1$ $A - 3I = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$ Ran of (A - 3I) = 1 \therefore No. of LI eigen vectors = n - r = 2 - 1= 1

Option A

43. For the function f(x) = a + bx, $0 \le x \le 1$, to be a valid probability density function, which one of the following statements is correct?

(A) a = 1. b = 4 (B) a = 0.5, b = 1 (C) a = 0, b = 1 (D) a = 1, b = -1

43. Ans: (B)

Sol:

 $f(x) = a + bx, 0 \le x \le 1$ $\int_{-\infty}^{\infty} f(x)dx = 1 \quad (\because \text{ total probability} = 1)$ $\int_{0}^{1} (a + bx)dx = 1$ $\Rightarrow \left(ax + \frac{bx^{2}}{2}\right)_{0}^{1} = 1$ $\Rightarrow a + \frac{b}{2} = 1$ $\Rightarrow 2a + b = 2 \dots \dots (1)$

Only option B, a = 0.5, b = 1, satisfying equation (2)

44. A column is subjected to a load through a bracket as shown in figure

The resultant force (in kN, up to one decimal place) in the bolt 1 is

 $F_a = 2.5$

 $\Theta_1 = 135$ Bolt

C.

 $F_{R1}=5.99$ kN

 $F_{m1} = 7.$

44. Ans: 5.9

Sol: An eccentric load P may be replaced by set of one direct concentric load (P) and twisting moment (M)

P = 10kN;

 $M = P \times e. = 10 \times 15 = 150 \text{ kN-cm}$

Radial distance $r_1 = r_2 = r_3 = r_4 = 10/2 = 5$ cm

Force in each bolt due to direct concentric load (F_a)

$$F_a = \frac{P}{n} = \frac{10}{4} = 2.5 \, kN$$

Force in bolt No.1 due to twisting moment (Fm)

$$F_{m1} = \frac{Mr_1}{\Sigma r^2} = \frac{150 \times 5}{4 \times 5^2} = 7.5 \ kN$$

The resultant force in the bolt 1

$$F_{R1} = \sqrt{F_a^2 + F_{m1}^2 + 2 F_a F_{m1} \cdot \cos \theta}_1$$

$$=\sqrt{2.5^2 + 7.5^2 + 2 \times 2.5 \times 7.5 \times \cos 135^0} = 5.99 \text{ kN}$$

The resultant force (F_{R1}) in the bolt 1 (in kN)= 5.99kN= <u>5.9</u>(Answer)

45. Water flows through a 90° bend in a horizontal plane as depicted in the figure

A pressure of 140 kPa is measured at section 1-1. The inlet diameter marked at a section 1 - 1 is

 $\frac{27}{\sqrt{\pi}}$ cm. While the nozzle diameter marked at section 2-2 is $\frac{14}{\sqrt{\pi}}$ cm. Assume the following.

(i) Acceleration due to gravity = 10 m/s^2 .

(ii) Weights of both the bent pipe segment as well as water are negligible.

(iii) Friction across the bend is negligible

The magnitude of the force (in kN, up to two decimal places) that would be required to hold the pipe section is _____

45. Ans: 397.31

Sol: The pressure at the exit of the nozzle is atmosphere pressure it will be zero

$$P_1 = 140 \text{ kPa}, \ d_1 = \frac{27}{\sqrt{\pi}} \text{ cm}$$

$$P_2 = 0, d_2 = \frac{14}{\sqrt{\pi}} cm$$

Apply bernoulie's equation between section (1) and (2)

$$\frac{P_1}{\gamma_w} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\gamma_w} + \frac{V_2^2}{2g} + z_2$$

$$\frac{140 \times 10^3}{9.81 \times 10^3} + \frac{V_1^2}{2g} + 0 = 0 + \frac{V_2^2}{2g} + 0$$

$$\frac{V_2^2 - V_1^2}{2g} = \frac{140 \times 10^3}{9.81 \times 10^3}$$

$$V_2^2 - V_1^2 = 280$$

$$\frac{4}{(0.14)^2} Q^2 - \frac{4}{(0.27)^2} Q^2 = 280$$

$$4Q^2 (51.02 - 13.7174) = 280$$

$$Q = 1.3698 \text{ m}^3/\text{sec}$$
Apply momentum equation in x-direction
$$P_1A_1 - F_x = \rho Q(V_2 - V_1)$$

$$\therefore V_2 = 0$$

: 35 : CE_GATE-2017_Forenoon Sessions

$$140 \times 10^{3} \times \frac{\pi}{4} \frac{(0.27)^{2}}{\pi} - F_{x} = 1000 \times 1.3698 \times \left(0 - \frac{1.3698}{A}\right)$$

2.5515- F_x = -1369.8 × $\frac{1.3698}{\frac{\pi}{4} \times \frac{0.27^{2}}{\pi}}$
F_x = 2.5515 + 102.9548
= 105.506 kN
In y-direction apply momentum
F_y = ρQV_{2}
= $1000 \times 1.3698 \times \frac{1.3698}{\frac{\pi}{4} \times \frac{(0.14)^{2}}{\pi}}$
F_y = 382.9289 kN
∴ Resultant force F_R = $\sqrt{F_{x}^{2} + F_{y}^{2}}$
= $\sqrt{105.506^{2} + 382.9289^{2}}$
= 397.1978 kN

Engineering Academy

46. A 1 m wide rectangular channel has a bed slope of 0.0016 and the Manning's roughness coefficient is 0.04. Uniform flow takes place in the channel at a flow depth of 0.5 m. At a particular section, gradually varied flow (GVF) is observed and the flow depth is measured as 0.6 m. The GVF profile at that section is classified as

(A)
$$S_1$$
 (B) S_2 (C) M_1 (D) M_2
46. Ans: (C)
Sol: $y = 0.6 \text{ m}$
 $y_n = 0.5 \text{ m}$
 $B = 1 \text{ m}$
 $S = 0.0016$
 $n = 0.04$

 $y_{c} = \left(\frac{q^{2}}{g}\right)^{1/3}$ $q = \frac{Q}{B} = \frac{B.y_{n}.V}{B} = y_{n}^{v}$ $= y_{n} \times \frac{1}{n} \times R^{2/3} s^{1/2}$ $q = y_{n} \times \frac{1}{n} \left(\frac{y_{n}}{2}\right)^{2/3} s^{1/2}$ $= 0.5 \times \frac{1}{0.04} \left(\frac{0.5}{2}\right)^{2/3} 0.0016^{1/2}$ $q = 0.1984 \text{ m}^{3}/\text{s/m}$ $y_{c} = \left(\frac{0.1984^{2}}{9.81}\right)^{1/3}$ $y_{c} = 0.1589 \text{ m}$ $\therefore y > y_{n} > y_{c}$

The GVF profile at section of flow depth 0.6 is M_1

47. The activity details of a project are given below:

	011100	
Activity	Depends on	Duration (in days)
Р		6
Q	Р	15
R	Q.T	12
S	R	16
Т	Р	10
U	Q.T	14
V	U	16

Since 1995

The estimated minimum time (in days) for the completion of the project will be _____

47. Ans: 51

Sol:

Path

P-Q-U-V

P-T-Dummy-U-V

6+15+14+16 = 51 6+10+0+14+16=46

P-T-Dummy-R-S 6+10+0+12+16=44

Minimum time for the completion of the project = 51 days

Duration

- 48. The following observations are made while testing aggregate for its suitability in pavement construction:
 - i. Mass of oven-dry aggregate in air = 1000 g
 - ii. Mass of saturated surface-dry aggregate in air = 1025 g
 - iii. Mass of saturated surface-dry aggregate under water = 625 g

Since 1995

Based on the above observations, the correct statement is

- (A) bulk specific gravity of aggregate = 2.5 and water absorption = 2.5%
- (B) bulk specific gravity of aggregate = 2.5 and water absorption = 2.4%
- (C) apparent specific gravity of aggregate = 2.5 and water absorption = 2.5%
- (D) apparent specific gravity of aggregate = 2.5 and water absorption = 2.4%

48. Ans: (A)

Sol: Bulk specific gravity; G

oven dry weight

 $G = \frac{6 \text{ Vertury weight}}{\text{Saturated surface dry weight} - \text{weight in water}}$

$$=\frac{1000}{1025-625}$$
$$= 2.5$$

Water absorption; w

$$w = \frac{\text{saturated surface dry weight} - \text{oven dry weight}}{\text{oven dry weight} \times 100}$$

$$= \frac{1025 - 1000}{1000} \times 100$$
$$= 2.5\%$$

49. The value of M in the beam ABC shown in the figure is such that the joint B does not rotate.

The value of support reaction (in kN) at B should be equal to _

- 49. Ans: 60 kN
- Sol: If joint B is not allowed to rotate the AB portion behaves like a fixed beam

50. Two wastewater streams A and B, having an identical ultimate BOD are getting mixed to form the stream C. The temperature of the stream A to 20°C and the temperature of the stream C is 10°C. It is given that.

- i. The 5-day BOD of the stream A measured at 20° C = 50 mg/l
- ii. BOD rate constant (base 10) at 20° C = 0.115 per day
- iii. Temperature coefficient = 1.135

The 5-day BOD (in mg/l up to one decimal place) of the stream C, calculated at 10° C is _____

51. The equivalent sound power level (in dB) of the four sources with the noise levels of 60 dB, 69 dB, 70 dB and 79 dB is _____

51. Ans: 80

ACE Engineering Academy

Sol: $L_{equ} = 10 \log_{10} \Sigma \left| 10^{\frac{L_i}{10}} \times T_i \right|$

$$10 \log_{10} \left[10^{\frac{60}{10}} + 10^{\frac{69}{10}} + 10^{\frac{70}{10}} + 10^{\frac{79}{10}} \right] = 79.92 \text{ dB} \simeq 80 \text{ dB}$$

$$\begin{array}{c} 60 \\ 69 \\ 70 \\ 79 \end{array}$$

52. A sluice gate used to control the flow in a horizontal channel of unit-width is shown in figure

$$d_1 = 1.0 \text{ m}$$

$$d_2 = \frac{1}{2} 0.2 \text{ m}$$

It is observed that the depth of flow is 1.0 m upstream of the gate, while the depth is 0.2 mm downstream of the gate. Assuming a smooth flow transition across the sluice gate, i.e., without any energy loss, and the acceleration due to gravity as 10 m/s², the discharge (in m³/s, up to two decimal places) passing under the sluice gate is _____

52. Ans: 0.816

Sol: Since it is horizontal surface the specific energy is same at both upstream and downstream sections.

Equating specific energy's

$$E_1 = E_2$$
$$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g}$$

Let y_1 , y_2 and V_1 , V_2 are the depths and velocitys of upstream and downstream sections respectively.

q = discharge per meter width

ACE

Engineering Academy

$$q = y_1 V_1 \implies V_1 = \frac{q}{y_1}$$

$$q = y_2 V_2 \implies V_2 = \frac{q}{y_2}$$

$$\therefore y_1 + \frac{q^2}{2gy_1^2} = y_2 + \frac{q^2}{2gy_2^2}$$

$$1 + \frac{q^2}{2 \times 10 \times 1^2} = 0.2 + \frac{q^2}{2 \times 10(0.2)^2}$$

$$1 + 0.05 q^2 = 0.2 + 1.25q^2$$

$$0.8 = 1.2 q^2$$

$$q = 0.816 \text{ m}^3/\text{sec/m}$$

- \therefore Discharge Q =0.816 m³/sec ≈ 0.82
- 53. Consider the equation $\frac{du}{dt} = 3t^2 + 1$ with u = 0 at t = 0. This is numerically solved by using the

forward Euler method with a step size. $\Delta t = 2$. The absolute error in the solution at the end of the Since 1995 first time step is _____

53. Ans: 8

Sol:

$$\frac{du}{dt} = 3t^2 + 1, u(0)=0, h = \Delta t = 2$$

$$\Rightarrow du = (3t^2 + 1) dt$$

$$\Rightarrow \int du = \int (3t^2 + 1) dt$$

$$\Rightarrow u = t^3 + t + c \dots (1)$$

$$u(0) = 0: (1) \Rightarrow 0 = C$$

$$(1) \Rightarrow u = t^3 + t$$

Now, at t = 2, $u = 2^3 + 2 = 10$ is the exact solution

The first approximation is

 $u_1 = u_0 + hf(t_0, u_0)$, where $f(t, u) = 3t^2 + 1$ = 0 + 2 f(0, 0)= 2(1) $u_1 = 2$ is the numeral solution on

:42:

(or) approximate solution

Error = |exact solution – approximate solution|

```
= |10 - 2|
= 8
```

54. The observed bearings of a traverse are given below

	Line	Bearing	A	Line	Bearing	
2	PQ	46° 15′	•	QP	226° 15′	
	QR	108° 15′		RQ	286° 15′	
	RS	201° 30′		SR	20° 30′	
٩	ST	321° 45′		TS	141° 45′	2

The station(s) most likely to be affected by the local attraction is /are

(A) Only R

R (B) Only S

(C) R and S

(D) P and Q

54. Ans: (a)

Sol: Difference between FB & BB & PQ = 180°

Difference between FB & BB of TS = 180°

Hence stations P,Q,T & S are free from local attraction

But station 'R' is affected by local attraction.

55. The infinite sand slope shown in the figure is on the verge of sliding failure. The ground water table coincides with the ground surface. Unit weight of water $\gamma_w = 9.81 \text{ kN/m}^3$.

The value of the effective angle of internal friction (in degrees, up to one decimal place) of the sand is _____

Ans: 34.3 55.

Sol: For an infinite slope with seepage parallel to slope the F.O safety against sliding,

$$F = \frac{\gamma'}{\gamma_{sat}} \frac{\tan \varphi'}{\tan i}$$
 (For pure sands)

If F = 1, the slope will be at verge of failure $\therefore 1 = \frac{\gamma'}{\gamma_{\text{sat}}} \frac{\tan \varphi'}{\tan i}$ $1 = \frac{\gamma_{\text{sat}} \cdot \gamma_{\text{w}}}{\gamma_{\text{sat}}} \frac{\tan \varphi'}{\tan i}$ $1 = \frac{21 - 9.81}{21} \frac{\tan \phi'}{\tan 20^\circ}$ $\phi = 34.34^{\circ}$ Say = 34.3' Since 1005

HEARTY CONGRATULATIONS TO OUR ESE 2016 RA ERS

CE

EE

CE

Mufeed Khan

Amrit Anand

ME

E&T

E&T

Naveen Bhushan Sharma

Aswathy Sivanandan

Sinha

ME

EE

E&T

EE

Ashish Verma

Vivek Jain

Section: General Aptitude

01. Consider the following sentences. All benches are beds. No bed is a bulb. Some bulbs are lamps. Which of the following can be inferred? some beds are lamps i. ii. some lamps are beds Only ii Both i and ii (A) Only i **(B)** (C) (D) Neither i nor ii

01. Ans: (D)

Sol: From the given statements, the following venn diagrams are possible

Given conclusions (i) and (ii) are not possible from the above diagrams, so option (D) is correct.

Nieulan \Rightarrow As number of terms are odd (i.e) 9 so, median will be middle of the sequence = Mode = Number showing maximum frequency of repetition = x (three times) From the given condition

x = 4, y = 8

By solving equation (i) and (ii), we get

 \therefore The value of y is 8

03. If the radius of a right circular cone is increased by 50% its volume increases by

(A) 75%	(B)	100%	(C) 12:	5% (D)	237.5%
---------	-----	------	---------	--------	--------

03. Ans: (C)

Sol: Volume of a right circular cone

$$V = \frac{1}{3}\pi R^2 H$$

- R = radius of a cone
- H = height of the cone

$$V \propto R^2$$

 $V_1 = R^2$

 $V_2 = (1.5)^2 R^2$ with increasing

$$V_2 = 2.25 R^2 = 2.25 V_1$$

$$\therefore$$
 Volume increases = $\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{V}} \times 100$

$$= \frac{2.25V_1 - V_1}{V_1} \times 100$$
$$= \frac{V_1(1.25)}{V_1} \times 100$$
$$= 1.25 \times 100 = 125\%$$

04. _____ with someone else's email account is now a very serious offence

(A) Involving (B) Assisting (C) Tampering (D) Incubating

04. Ans: (C)

- **Sol:** Tampering means to carry on under hand or improper negotiations/ to interfere so as to weaken/ change for the worse.
- 05. The bacteria in milk are destroyed when it _____ heated to 80 degree Celsius. (A) would be (B) will be (C) is (D) was

05. Ans: (C)

Sol: Habitual action/automatic results.

06. Students applying for hostel rooms are allotted rooms in order of seniority. Students already staying in a room will move if they get a room in their preferred list. Preferences of lower ranked applicants are ignored during allocation.

Given the data below, which room will Ajit stay in?

Names	Student seniority	Current Room	Room preference list
Amar	1 GIN	EKIPGA	R.S.Q
Akbar	2	None	R.S
Anthony	3	Q	P
Ajit	4	S	Q.P.R
Р	(B) Q	(C) R	(D) S

06. Ans: (B)

(A)

Sol: From given table, According to their preferences Room 'R' is preferred by Amar, Akbar and Ajit but Amar is senior so, Room 'R' is for Amar and from the preference list Akbar is compulsory stay in Room 'S' only, Anthony is preferred only one room 'P' only so, P is for Anthony.

Since

 \therefore The room for Ajit is 'Q'

Persons	Rooms to be allotted
Amar	R
Akabr	S
Anthony	Р
Ajit	Q

ACE Engineering Academy

07.	Two mae	chines M1 and	d M2 are	able to execute an	ny of four jol	bs P,Q,R and	l S. The m	achines can
	perform	one job on or	ne object	at a time. Jobs P,C),R and S tak	ke 30 minute	s, 20 minu	ites, 60 minutes
	and 15 m	ninutes each r	espective	ely. There are 10 c	bjects each 1	requiring exa	ctly 1 job	Job P is to be
	performe	ed on 2 object	s. Job Q	on 3 objects. Job	R on 1 objec	t and Job S a	nd 4 objec	ets. What is the
	minimur	n time needed	l to comp	lete all the jobs?				
	(A)	2 hours	(B)	2.5 hours	(C)	3 hours	(D)	3.5 hours
07.	Ans: (A)							
Sol	: If Machi	ine M ₁ is able	to execu	te jobs P and Q				
	If Machir	ne M_2 is able	to execut	e jobs R and S \mathbb{R}	NGA			
	For Job '	P' time taken	30 minut	es with 2 objects		9		
				$= 2 \times 30 = 60 \text{ m}$	in			
	For Job '	Q' is taken 20) minutes	with 3 objects				
				$= 20 \times 3 = 60 \text{ m}$	nin			
	∴ Total t	ime taken by	Machine	(M_1) for jobs P and	nd Q			
				$= 60 \min + 60 r$	nin = 2 hrs			
	For Job 'I	R' is taken 60	min with	h 1 object				
				$= 60 \times 1 = 60 \text{ m}$	nin			
	For Job '	S' is taken 15	min with	4 objects = 4 × 15 = 60 m	1995			
	∴ Total t	ime taken by	machine	(M_2) for Jobs R a	nd S = $60 + 6$	60 = 2 hrs		
08.	The last	digit of (2171)' + (217	$(2)^{9} + (2173)^{11} + (2173)^{11}$	$(2174)^{13}$ is			
	(A)	2	(B)	4	(C)	6	(D)	8

08. Ans: (B)

Sol: Given equation

 $(2171)^7 + (2172)^9 + (2173)^{11} + (2174)^{13}$

All power values are divide with 4 then the possible remainders are 3, 1, 3 and 1

 $(1)^3 + (2)^1 + (3)^3 + (4)^1$

1+2+27+4 = 34

- .:. The last digit is '4'
- 09. The bar graph below shows the output of five carpenters over one month, each of whom made different items of furniture : chairs, tables, and beds

Consider the following statements

i. The number of beds made by carpenter C2 is exactly the same as the number of tables made by carpenter C3.

ii. The total number of chairs made by all carpenters is less than the total number of tables Which one of the following is true?

(A) Only i (B) Only ii (C) Both i and ii (D) Neither i nor ii

09. Ans: (C)

- Sol: From the given bar graph,
 - (i) The number of beds made by carpenter C_2 = The number tables made by carpenter C_3 8 Nos = 8 Nos
 - : Statement (i) is true
 - (ii) The total number of chairs made by all carpenters = $C_1 + C_2 + C_3 + C_4 + C_5$

= 2+10+5+2+4 = 23 Nos

The total numbers of tables made by all carpenters = $C_1 + C_2 + C_3 + C_4 + C_5$

= 7+2+8+3+9 = 29 Nos

23 Nos < 29 Nos

- : Statement (ii) is also true
- : Both the statements (i) and (ii) are true
- 10. The old concert hall was demolished because of fears that the foundation would be affected by the construction of the new metro line in the area. Modern technology for underground metro construction tried to mitigate the impact of pressurized air pockets created by the excavation of large amounts of soil. But even with these safeguards, it was feared that the soil below the concert hall would not be stable.

From this, one can infer that

- (A) The foundation of old buildings create pressurized air pockets underground, which are difficult to handle during metro construction
- (B) Metro construction has to be done carefully considering its impact on the foundations of existing buildings
- (C) Old buildings in an area form an impossible hurdle to metro construction in that area
- (D) Pressurized air can be used to excavate large amounts of soil from underground areas.
- 10. Ans: (B)

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions & Solutions) Electronics & Communication Engineering Electrical Engineering Mechanical Engineering	IES (Previous Questions & Solutions)			
Electronics & Communication Engineering	Electronics & Telecommunication Engineering (Volume-I Obj)	Civil Engineering (Volume-I Obj)		
Electrical Engineering	Electronics & Telecommunication Engineering (Volume-II Obj)	Civil Engineering (Volume-II Obj)		
Mechanical Engineering	Electronics & Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-I Conv)		
Civil Engineering	Electronics & Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)		
Computer Science & Information Engineering	Electrical Engineering (Volume-I Obj)	Mechanical Engineering (Volume-I Obj)		
Instrumentation Engineering	Electrical Engineering (Volume-II Obj)	Mechanical Engineering (Volume-II Obj)		
General Aptitude (Numerical & Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-I Conv)		
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-II Conv)		
Engineering Mathematics Solutions	General Studies & Ena	ineering Aptiude		

Special Books For ISRO / PSUs (Previous Years Questions With Solutions & Useful for BARC, SAIL, BEL, NPCIL, AAI & OTHER PSUs)

Special Books For GENCO TRANSCO & DISCOMS (Previous Questions & Solutions of Various Exams Useful for SSC JE, SAIL, AEE, STEEL PLANT, ISRO, BARC and Other PSUs)

- * GATE Solutions for more than 30 years
- * IES Solutions for more than 32years
- * Solutions, Chapterwise and Subjectwise
- * You can Buy Online also

No. Of Tests (Online)

+91 93976 99966

	SERIES
IES (Prelims & Mains)	GATE

Streams : EC, EE, ME, CE

Test Type	Prelims		Mains	
	Online	Offline	Offline	
Chapter-wise Tests	43	-	-	
Subject-wise Grand Tests	31	20	08	
Revision Tests	-	-	04	
Full Lenth Mock Tests	08	04	04	

Pre-GATE Exam (Center Based Test) ACE uses technology powered by TCS iON for conduting Pre-GATE 2018

Center based MOCK Test) on PAN India basis with Analytics.

Chapter-wise Tests20Subject-wise Grand Tests40Full Lenth Mock Tests12

Streams : EC, EE, ME, CE, CS, IN, PI

Test Type

Video Solutuions are available for Selected Objective Questions for Online Exams

aceengineeringpublications