$A C D$Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vifayawada | Vizag | Tirupathi | Kolkata

$$
\text { (CATH } 405 \square
$$

Questions with Detailed Solutions

FORENOON SESSION

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418, 19, 20

Section: Civil Engineering

1. The figure shows a two -hinged parabolic arch of span L subjected to a uniformly distributed load of intensity q per unit length.

The maximum bending moment in the arch is equal to
(A) $\frac{\mathrm{qL}^{2}}{8}$
(B) $\frac{\mathrm{qL}^{2}}{12}$
(C) Zero
(D) $\frac{\mathrm{qL}^{2}}{10}$

1. Ans: (C)

Sol

For a 2-hinged parabolic arch

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\frac{\mathrm{q} \ell}{2} \text { and } \mathrm{H}=\frac{\mathrm{q} \ell^{2}}{8 \mathrm{~h}}
$$

Taking any point $\mathrm{D} ; \mathrm{y}=\frac{4 \mathrm{~h}}{\ell^{2}} \mathrm{x}(\ell-\mathrm{x})$

$$
M_{D}=V_{A} x-H \times y-q \frac{x^{2}}{2}=\frac{q \ell}{2} x-\frac{q \ell^{2}}{8 h} \times \frac{4 h}{\ell^{2}} x(\ell-x)-\frac{q x^{2}}{2}=0
$$

COAL INDIA LIMITED (CIL)

 Management Trainee \& Other PSUsClassroom coaching
(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

Starts on

『 $15^{\text {th }}$ Feb 2017 @ Delhi

Online Test Series (EE | ME | CE)

Total Tests : 20
\boxtimes starts from 17 $^{\text {th }}$ Feb 2017

$$
\text { ESE } \underset{\text { Mains Stage }-11)}{ }=2017
$$

Classroom Coaching Starts from $15^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests : 16
$\boxed{\square}$ Will Conduct at all Our centers
02. A strip footing is resting on the ground surface of a pure clay bed having an undrained cohesion C_{u}. The ultimate bearing capacity of the footing is equal to
(A) $2 \pi C_{u}$
(B) πC_{u}
(C) $(\pi+1) C_{u}$
(D) $(\pi+2) C_{u}$
02. Ans: (D)

Sol: For pure clays, the ultimate bearing capacity of strip footing resting on the ground surface,
$\mathrm{q}_{\mathrm{n}}=\mathrm{CN}_{\mathrm{C}}$
$\mathrm{N}_{\mathrm{C}}=5.7$, as per Terzaghi
$\mathrm{N}_{\mathrm{C}}=5.14$ as per Meyerhof Hansen, skempton vesic and I.S. code bearing capacity theories.
In the present case $q_{u}=5.14 \mathrm{C}$

$$
\begin{equation*}
\mathrm{q}_{\mathrm{u}}=(\pi+2) \mathrm{C} \tag{or}
\end{equation*}
$$

3. The reaction rate involving reactants A and B is given by $-k[A]^{\alpha}[B]^{\beta}$. Which one of the following statements is valid for the reaction to be a first -order reaction?
(A) $\alpha=0$ and $\beta=0$
(B) $\alpha=1$ and $\beta=0$
(C) $\alpha=1$ and $\beta=1$
(D) $\alpha=1$ and $\beta=2$
4. Ans: (B)

Sol: Since it is $1^{\text {st }}$ order reaction the sum of the powers must be 1. (i.e $\alpha+\beta=1$)
04. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\tan x}{x^{2}-x}\right)$ is equal to \qquad
04. Ans:-1

Sol:

$$
\lim _{x \rightarrow 0}\left(\frac{\tan x}{x^{2}-x}\right) \quad\left(\frac{0}{0} \text { form }\right)
$$

Applying L Hospital rule

$$
=\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} x}{2 x-1}\right)=\frac{\sec ^{2} 0}{-1}=-1
$$

5. An elastic bar of length L, uniform cross sectional area A, coefficient of thermal expansion α, and Young's modulus E is is fixed at the two ends. The temperature of the bar is increased by T, resulting in an axial stress σ. Keeping all other parameters unchanged, if the length of the bar is doubled, the axial stress would be
(A) σ
(B) 2σ
(C) 0.5σ
(D) $0.25 \alpha \sigma$
6. Ans: (A)

Sol: Temperature stress, $\sigma=(\alpha t) E$
Temperature stress is independent of length. If length is doubled the stress due to temperature remains unchanged.
06. A 3 m thick clay layer is subjected to an initial uniform pore pressure of 145 kPa as shown in the figure.

For the given ground conditions, the time (in days, rounded to the nearest integer) required for 90% consolidation would be \qquad
06. Ans: 1771

Sol: For the given clay, drainage path, $\mathrm{d}=\mathrm{H}$ (single drainage)

$$
\begin{aligned}
&=3 \mathrm{~m}=3000 \mathrm{~mm} \\
& \mathrm{c}_{\mathrm{v}}=3 \mathrm{~mm}^{2} / \mathrm{min} \\
& \mathrm{~T}_{\mathrm{V}(90)}=0.85 \\
& \mathrm{~T}_{\mathrm{V}}=\frac{\mathrm{c}_{\mathrm{v}} \mathrm{t}}{\mathrm{~d}^{2}} \\
& 0.85=\frac{3 \times \mathrm{t}}{(3000)^{2}} \\
& \therefore \mathrm{t}=2.55 \times 10^{6} \min =1770.83 \text { days } \\
& \text { Say } 1771 \text { days }
\end{aligned}
$$

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM

HYDERABAD
29 ${ }^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM

HYDERABAD \& DELHI
$1^{\text {st }}$ week of July 2017
07. Which one of the following is NOT present in the acid rain?
(A) HNO_{3}
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$
07. Ans: (D)

Sol:

Acid rains are mainly caused by $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}$ but not by $\mathrm{CH}_{3} \mathrm{COOH}$ as it is a weak acid.
08. The accuracy of an Electronic Distance Measuring Instrument (EDMI) is specified as $\pm(a \mathrm{~mm}+b$ ppm). Which one of the following statements is correct?
(A) Both a and b remain constant, irrespective of the distance begin measured
(B) a remains constant and b varies in proportion to the distance being measured.
(C) a varies in proportion to the distance being measured and b remains constant.
(D) Both a and b vary in proportion to the distance being measured.
08. Ans: (B)

Sol: Inorder to increase the accuracy of geodetic measurements, the effect of instrument errors is reduced by a suitable procedure of the measurements and measurement configuration or calculation corrections can be applied on the measured values. Constant corrections or corrections depending on measured distance can be used to correct distance measurement by the EDM's of the total stations base lines are used to determine the distance meters errors. The standard deviation of the measured distance.
$\sigma=\mathrm{A}+\mathrm{B} . \mathrm{D}$
Where A is ' mm ' includes phase solution of EMD maximum amplitude of short periodic error or phase distance meters, maximum effect of non linear distance errors and accuracy or an additive constant. (ppm)
' B ' in 'PPM' includes the range of the typical frequency drift of the main oscillator within the specified temperature range and the maximum error which may be caused by the limited step interval of the 'ppm dial'.
$\mathrm{D}=$ Distance measured by EDMI
09. A simply supported beam is subjected to a uniformly distributed load. Which one of the following statements is true?
(A) Maximum or minimum shear force occurs where the curvature is zero
(B) Maximum or minimum bending moment occurs where the shear force is zero
(C) Maximum or minimum bending moment occurs where the curvature is zero
(D) Maximum bending moment and maximum shear force occur at the same section.
09. Ans: (B)
10. For a steady incompressible laminar flow between two infinite parallel stationary plates, the shear stress variation is
(A) linear with zero value at the plates
(B) linear with zero value at the center
(C) quadratic with zero value at the plates
(D) quadratic with zero value at the center
10. Ans: (B)
11. A runway is being constructed in a new airport as per the International Civil Aviation Organization (ICAO) recommendations. The elevation and the airport reference temperature of this airport are 535 m above the mean sea level and $22.65^{\circ} \mathrm{C}$, respectively. Consider the effective gradient of runway as 1%. The length of runway required for a design-aircraft under the standard conditions is 2000 m . Within the framework of applying sequential corrections as per the ICAO recommendations, the length of runway corrected for the temperature is
(A) 2223 m
(B) 2250 m
(C) 2500 m
(D) 2750 m
11. Ans: (C)

Sol: \quad Elevation of airport $=535 \mathrm{~m}$
Airport reference temperature,

$$
\mathrm{ART}=22.65^{\circ} \mathrm{C}
$$

Effective gradient $=1 \%$
Standard length of runway $=2000 \mathrm{~m}$

Correction for elevation:

$$
\begin{aligned}
& 300 \mathrm{~m}-7 \% \\
& 535 \mathrm{~m} \rightarrow ?=\frac{7 \times 535}{300}=12.48 \%
\end{aligned}
$$

Length after elevation correction

$$
=2000 \times 1.1248=2249.6 \mathrm{~m}
$$

Temperature correction:

$\mathrm{ART}=22.65^{\circ} \mathrm{C}$
Standard airport temperature, SAT at

$$
\mathrm{msl}=15^{\circ} \mathrm{C}
$$

Temperature gradient 1000 m elevation

$$
=6.5^{\circ} \mathrm{C} \text { reduction }
$$

For 535 m elevation reduction of temperature $=\frac{6.5 \times 535}{1000}=3.48^{\circ} \mathrm{C}$
\therefore SAT at airport site $=15-3.48=11.52^{\circ} \mathrm{C}$
For $1^{\circ} \mathrm{C}$ difference of ART and SAT $=1 \%$ increase in length is recommended by ICAO
For $(22.65-11.52)=11.13^{\circ} \mathrm{C}$ of difference
Increase in length of runway is 11.13%
\therefore Final length of runway after temperature correction $=2249.6 \times 1.113=2499.98 \mathrm{~m} \simeq 2500 \mathrm{~m}$
12. The matrix P is the inverse of a matrix Q. If I denotes the identity matrix, which one of the following options is correct?
(A) $\mathrm{PQ}=\mathrm{I}$ but $\mathrm{QP} \neq \mathrm{I}$
(B) $\mathrm{QP}=\mathrm{I}$ but $\mathrm{PQ} \neq \mathrm{I}$
(C) $\mathrm{PQ}=\mathrm{I}$ and $\mathrm{QP}=\mathrm{I}$
(D) $\mathrm{PQ}-\mathrm{QP}=\mathrm{I}$
12. Ans: (C)

Sol: $\quad Q^{-1}=P$
Premultiplying both sides of (1) by Q

$$
\begin{gathered}
\mathrm{QQ}^{-1}=\mathrm{QP} \\
\mathrm{I}=\mathrm{QP}
\end{gathered}
$$

Post multiplying both sides of (1) by Q

$$
\begin{aligned}
\mathrm{Q}^{-1} \mathrm{Q} & =\mathrm{PQ} \\
\mathrm{I} & =\mathrm{PQ}
\end{aligned}
$$

\therefore Option (C) is correct.
13. A uniformly distributed line load of $500 \mathrm{kN} / \mathrm{m}$ is acting on the ground surface. Based on Boussinesq's theory, the ratio of vertical stress at a depth 2 m to that at 4 m , right below the line of loading, is
(A) 0.25
(B) 0.5
(C) 2.0
(D) 4.0

13. Ans: (c)

Sol: Extending Boussinesq's equation for point load, the vertical stress directly below the line load,

$$
\begin{gathered}
\sigma_{z}=\frac{2 q^{\prime}}{\pi z} \\
\therefore \sigma_{z} \alpha \frac{1}{z} \\
\frac{\sigma_{z} \text { at } 2 \mathrm{mdepth}}{\sigma_{z} \text { at } 4 \mathrm{~m} \operatorname{depth}}=\left[\frac{4}{2}\right]=2
\end{gathered}
$$

14. Consider the following partial differential equation:

$$
3 \frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\mathrm{B} \frac{\partial^{2} \phi}{\partial \mathrm{x} \partial \mathrm{y}}+3 \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}+4 \phi=0
$$

For this equation to be classified as parabolic, the value of B^{2} must be \qquad
14. Ans: 36

Sol:

$$
3 \frac{\partial^{2} \phi}{\partial x^{2}}+B \frac{\partial^{2} \phi}{\partial \mathrm{x} \partial \mathrm{y}}+3 \frac{\partial^{2} \phi}{\partial \mathrm{y}^{2}}+4 \phi=0
$$

Here $\mathrm{A}=3, \mathrm{C}=3$
The above PDE is said to be parabolic

$$
\text { If } \begin{aligned}
B^{2}-4 A C & =0 \\
B^{2}-36 & =0 \\
B^{2} & =36
\end{aligned}
$$

15. The number of spectral bands in the Enhanced Thematic Mapper sensor on the remote sensing satellite Landsat-7 is
(A) 64
(B) 10
(C) 8
(D) 15

15. Ans: (C)

Sol: The landsat enhanced thematic mapper plus $(\mathrm{ETM}+)$ sensor is carried on Land sat-7 and images consist of 8 spectral bands with a spatial resolution of 30 m for bands 1 to 7 . The resolution for band 8. (Panchromatic is 15 m).

HEARTY CONGRATULATIONS TO OUR

ESE 2016 RANKERS

16. A triangular pipe network is shown in the figure.

The head loss in each pipe is given by $h_{f}=r Q^{1.8}$, with the variables expressed in a consistent set of units. The value of r for the pipe $A B$ is 1 and for the pipe $B C$ is 2 . If the discharge supplied at the point $A($ i.e. 100) is equally divided between the pipes $A B$ and $A C$, the value of r (up to two decimal places) for the pipe $A C$ should be \qquad
16. Ans: 0.62

Sol:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{f}}=\mathrm{rQ} \mathrm{Q}^{1.8} \\
& \sum \mathrm{~h}_{\mathrm{f}}=0 \\
& +1(50)^{1.8}-2(20)^{1.8}-\mathrm{r}(50)^{1.8}=0 \\
& \mathrm{r}=0.62
\end{aligned}
$$

17. A soil sample is subjected to a hydrostatic pressure, σ. The Mohr circle for any point in the soil sample would be
(A) a circle of radius σ and center at the origin
(B) a circle of radius σ and center at a distance σ from the origin
(C) a point at a distance σ from the origin
(D) a circle of diameter σ and center at the origin
18. Ans: (C)

Sol: For hydrostatic pressure $\left(\sigma_{1}=\sigma_{2}=\sigma_{3}\right)$, the Mohr's circle will be a point at a distance σ from the origin

18. The number of parameters in the univariate exponential and Gaussian distributions, respectively, are
(A) 2 and 2
(B) 1 and 2
(C) 2 and 1
(D) 1 and 1
18. Ans: (B)
19. The wastewater from a city, containing a high concentration of biodegradable organics, is being steadily discharged into a flowing river at a location S. If the rate of aeration of the river water is lower than the rate of degradation of the organics, then the dissolved oxygen of the river water
(A) is lowest at the location S .
(B) is lowest at a point upstream of the location S
(C) remains constant all along the length of the river
(D) is lowest at a point downstream of the location S.
19. Ans: (D)

Sol:

Distance $=$ velocity \times time
DO is lowest point downstream of the location ' S '.
20. Group I lists the type of gain or loss of strength in soils. Group II lists the property or process responsible for the loss or gain of strength in soils.

Group I

P. Regain of strength with time
Q. Loss of strength due to cyclic loading
R. Loss of strength due to upward seepage
S. Loss of strength due to remolding

Group -II

1. Boiling

2. Liquefaction

3. Thixotropy
4. Sensitivity

The correct match between Group I and Group II is
(A) P-4, Q-1, R-2, S-3
(B) P-3, Q-1, R-2, S-4
(C) P-3,Q-2,R-1,S-4
(D) P-4, Q-2, R-1, S-3
20. Ans: (C)

Sol: P-3, Q-2, R-1, S-4
21. Let x be a continuous variable defined over the interval $(-\infty, \infty)$, and $f(x)=e^{-x-e^{-x}}$ The integral $g(x)=\int f(x) d x$ is equal to
(A) e^{e-x}
(B) $\mathrm{e}^{-\mathrm{e}^{-\mathrm{x}}}$
(C) $e^{-e^{x}}$
(D) $\mathrm{e}^{-\mathrm{x}}$
21. Ans: (B)

Sol: $\quad f(x)=e^{-x-e^{-x}}$

$$
g(x)=\int f(x) d x
$$

$$
=\int e^{-x-e^{-x}} d x
$$

$$
\text { put } \mathrm{e}^{-\mathrm{x}}=\mathrm{t}
$$

$$
=\int e^{-x} e^{-e^{-x}} d x
$$

$$
-\mathrm{e}^{-\mathrm{x}} \mathrm{dx}=\mathrm{dt}
$$

$$
\int \mathrm{e}^{-\mathrm{t}}(-\mathrm{dt})
$$

$$
\mathrm{e}^{-\mathrm{x}} \mathrm{dx}=-\mathrm{dt}
$$

$$
=\mathrm{e}^{-\mathrm{t}}
$$

$$
=\mathrm{e}^{-\mathrm{e}^{-x}}
$$

22. Vehicles arriving at an intersection from one of the approach roads follows the Poisson distribution. The mean rate of arrival is 900 vehicles per hour. If a gap is defined as the time difference between two successive vehicle arrivals (with vehicles assumed to be points), the probability (up to four decimal places) that the gap is greater than 8 seconds is \qquad
23. Ans: 0.1353

Sol: \quad Time, $\mathrm{T}=8 \mathrm{sec}$
Mean rate of arrival,
$\mathrm{q}=900 \mathrm{veh} / \mathrm{hr}$

$$
=\frac{900}{60 \times 60}=0.25 \mathrm{veh} / \mathrm{sec}
$$

Probability that the gap is greater than 8 sec
$\mathrm{P}(\mathrm{t} \geq \mathrm{T}=8 \mathrm{sec})=\mathrm{e}^{-\mathrm{qt}}$

$$
\begin{aligned}
& =\mathrm{e}^{-(0.25 \times 8)} \\
& =0.1353
\end{aligned}
$$

23. A super-elevation e is provided on a circular horizontal curve such that a vehicle can be stopped on the curve without sliding. Assuming a design speed v and maximum coefficient of side friction $f_{\max }$, which one of the following criteria should be satisfied?
(A) $e \leq f_{\max }$
(B) $e>f_{\max }$
(C) no limit on e can be set
(D) $\mathrm{e}=\frac{1-\left(\mathrm{f}_{\max }\right)^{2}}{\mathrm{f}_{\max }}$

23. Ans: (A)

Sol: For a stopped vehicle to avoid sliding inwards $e \leq f_{\max }$
24. The ordinates of a 2-hour unit hydrograph for a catchment are given as

Time(h)	0	1	2	3	4
Ordinate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	0	5	12	25	41

The ordinate (in $\mathrm{m}^{3} / \mathrm{s}$) of a 4-hour unit hydrograph for this catchement at the time of 3 h would be \qquad

24. Ans: 15

Sol:

Time	2hr UHG Ord.	2hr delayed 2hr UHG ord	4hr DRH ord	4hr UHG ord= 4hr DRH/2
0	0	-		
1	5	-		
2	12	0		
3	25	5	30	15

Ord of 4 hr UHG at $3^{\text {rd }} \mathrm{hr}$ time interval

$$
=15 \mathrm{~m}^{3} / \mathrm{sec}
$$

25. According to IS 456-2000, which one of the following statements about the depth of neutral axis $x_{u, \text { bal }}$ for a balanced reinforced concrete section is correct?
(A) $x_{u, \text { bal }}$ depends on the grade of concrete only
(B) $x_{u, \text { bal }}$ depends on the grade of steel only
(C) $x_{u, \text { bal }}$ depends on both the grade of concrete and grade of steel.
(D) $x_{u, \text { bal }}$ does not depend on the grade of concrete and grade of steel.
26. Ans: (B)

Sol:

Strain Diagram

Max depth of N.A,

$$
\mathrm{x}_{\mathrm{u} \text { bal }}=\left[\frac{0.0035}{0.0055+\frac{0.87 \mathrm{f}_{\mathrm{y}}}{\mathrm{E}_{\mathrm{s}}}}\right] \mathrm{d}
$$

Where $\mathrm{f}_{\mathrm{y}} \rightarrow$ yield stress of steel
$\mathrm{E}_{\mathrm{s}} \rightarrow$ modulus of elasticity of steel

$$
\left(\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}\right)
$$

From the above formula $\mathrm{x}_{\mathrm{u} \text { max }}$ depends on only grade of steel

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{u} \text { bal }}=0.53 \mathrm{~d} \rightarrow \mathrm{Fe}-250 \\
& \mathrm{x}_{\mathrm{u} \text { bal }}=0.48 \mathrm{~d} \rightarrow \mathrm{Fe}-415 \\
& \mathrm{x}_{\mathrm{u} \text { bal }}=0.46 \mathrm{~d} \rightarrow \mathrm{Fe}-500
\end{aligned}
$$

26. Group -I contains three broad classes of irrigation supply canal outlets. Group II presents hydraulic performance attributes.

Group I	Group II P. Non-modular outlet
1. Outelet discharge depends on the water levels in both the supply canal as well as the receiving water course.	
R. Semi-modular outlet	2. Outlet discharge is fixed and is independent of the water levels in both the supply canal as well as
R. Modular outlet	3. Outlet discharge depends only on the water level in the supply canal

The correct match of the items in Group I with the items in Group II is
(A) $\mathrm{P}-1 ; \mathrm{Q}-2 ; \mathrm{R}-3$
(B) $\mathrm{P}-3 ; \mathrm{Q}-1 ; \mathrm{R}-2$
(C) $\mathrm{P}-2 ; \mathrm{Q}-3 ; \mathrm{R}-1$
(D) $\mathrm{P}-1 ; \mathrm{Q}-3 ; \mathrm{R}-2$
26. Ans: (D)

Sol: \quad Modular outlet $\mathrm{Q}_{\text {module }}=\mathrm{f}\left[\Delta \mathrm{Q}_{\text {Parent }}^{\mathrm{o}}\right]$

$$
=\mathrm{f}\left[\Delta \mathrm{Q}_{\text {daughter }}^{\mathrm{o}}\right]
$$

Semi-modular

$$
\begin{aligned}
\mathrm{Q}_{\text {module }} & =\mathrm{f}\left[\Delta \mathrm{Q}_{\text {parent }}\right] \\
& =\mathrm{f}\left[\Delta \mathrm{Q}^{\mathrm{o}}{ }_{\text {daughter }}\right]
\end{aligned}
$$

Non modular

$$
\begin{aligned}
\mathrm{Q}_{\text {module }} & =\mathrm{f}\left[\Delta \mathrm{Q}_{\text {parent }}\right] \\
& =\mathrm{f}\left[\Delta Q_{\text {daughter }}\right]
\end{aligned}
$$

27. A pre-tensioned rectangular concrete beam 150 mm wide and 300 mm depth is prestressed with three straight tendons, each having a cross-sectional area of $50 \mathrm{~mm}^{2}$, to an initial stress of 1200 $\mathrm{N} / \mathrm{mm}^{2}$. The tendons are located at 100 mm from the soffit of the beam. If the modular ratio is 6 , the loss of prestressing force (in kN , up to one decimal place) due to the elastic deformation of concrete only is \qquad
28. Ans: 4.8

Sol: Given:

$$
\begin{aligned}
& \mathrm{b}=150 \mathrm{~mm} \\
& \mathrm{D}=300 \mathrm{~mm} \\
& \mathrm{~A}_{\mathrm{s}}=3-50 \mathrm{~mm}^{2} \\
& \sigma_{\mathrm{o}}=1200 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~m}=6
\end{aligned}
$$

$\Delta \mathrm{P}=$? Loss of prestressing force

Loss of prestress due to elastic deformation in pretensioning
$\Delta \sigma=m f_{c}$

$$
\begin{aligned}
f_{c} & =\frac{P}{A}+\frac{P e}{I} . \mathrm{e} \\
P=\sigma_{0} A_{s} & =1200 \times 50 \times 3=180 \mathrm{kN} \\
f_{c} & =\frac{P}{A}+\frac{P e}{I} . e
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{180 \times 10^{3}}{150 \times 300}+\frac{180 \times 10^{3} \times 50}{\frac{150 \times 300^{3}}{12}} \times 50 \\
= & 4+1.3=5.3 \mathrm{~N} / \mathrm{mm}^{2} \\
\Delta \sigma= & 6 \times 5.3=31.8 \mathrm{~N} / \mathrm{mm}^{2} \\
\Delta \mathrm{P}= & 4.8 \mathrm{kN}
\end{aligned}
$$

28. The wastewater having an organic concentration of $54 \mathrm{mg} / l$ is flowing at a steady rate of 0.8 $\mathrm{m}^{3} /$ day through a detention tank of dimensions $2 \mathrm{~m} \times 4 \mathrm{~m} \times 2 \mathrm{~m}$. If the contents of the tank are well mixed and the decay constant is 0.1 Per day, the outlet concentration (in mg / l, up to one decimal place) is \qquad
Ans: 0.54
Sol: $\frac{\mathrm{dC}}{\mathrm{dt}} \propto \mathrm{C}$
$\frac{\mathrm{dC}}{\mathrm{dt}}=-\mathrm{kC}$
$\int_{\ell_{0}}^{\ell t} \frac{\mathrm{dC}}{\mathrm{C}}=\int_{0}^{\mathrm{t}}-\mathrm{kdt}$
$\log _{10}\left[\frac{C_{t}}{C_{o}}\right]=-k E$
$\frac{\mathrm{C}_{\mathrm{t}}}{\mathrm{C}_{\mathrm{o}}}=10^{-\mathrm{kf}}$
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{o}} 10^{-\mathrm{kt}}=\mathrm{C}_{\mathrm{o}} 10^{-\mathrm{k} \times \frac{\mathrm{V}}{\mathrm{Q}}}$
$\mathrm{C}_{\mathrm{t}}=5410^{-0.1 \times \frac{(2 \times 4 \times 2)}{0.8}}$
$\mathrm{C}_{\mathrm{t}}=0.54 \mathrm{mg} / \mathrm{l}$
29. The queue length (in number of vehicles) versus time (in seconds) plot for an approach to a signalized intersection with the cycle length of 96 seconds is shown in the figure (not drawn to scale)

At time $t=0$, the light has just turned red. The effective green time is 36 seconds, during which vehicles discharge at the saturation flow rate, s (in vph). Vehicles arrive at a uniform rate, v (in vph), throughout the cycle. Which one of the following statements is TRUE?
(A) $v=600 \mathrm{vph}$, and for this cycle, the average stopped delay per vehicle $=30$ seconds
(B) $s=1800 \mathrm{vph}$, and for this cycle, the average stopped delay per vehicle $=28.125$ seocnds
(C) $v=600 \mathrm{vph}$, and for this cycle, the average stopped delay per vehicle $=45$ seconds
(D) $s=1200 \mathrm{vph}$, and for this cycle, the average stopped delay per vehicle $=28.125$ seconds
29. Ans: (A)

Sol:
Average delay $=\frac{\text { Red time }}{2}=\frac{60}{2}=30 \mathrm{sec}$
30. A particle of mass 2 kg is travelling at a velocity of $1.5 \mathrm{~m} / \mathrm{s}$. A force $f(t)=3 t^{2}(\mathrm{in} \mathrm{N})$ is applied to it in the direction of motion for a duration of 2 seconds, where t denotes time in seconds. The velocity (in m / s, up to one decimal place) of the particle immediately after the removal of the force is \qquad
30. Ans: 5.5

Sol: $\quad \mathrm{m}=2 \mathrm{~kg}$; velocity $=1.5 \mathrm{~m} / \mathrm{s}=$ Initial $\mathrm{f}(\mathrm{t})=3 \mathrm{t}^{2}$

$$
\mathrm{f}(\mathrm{t})=\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}} \Rightarrow \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{mdV}
$$

$$
\begin{aligned}
& \int_{0}^{2} 3 \mathrm{t}^{2} \mathrm{dt}=\mathrm{m} \int_{1.5}^{\mathrm{V}} \mathrm{dV} \\
& {\left[\frac{3 \mathrm{t}^{3}}{3}\right]_{0}^{2}=\mathrm{m}[\mathrm{~V}]_{1.5}^{\mathrm{V}} \Rightarrow 2^{3}=2 \times[\mathrm{V}-1.5]} \\
& \Rightarrow 8=2 \mathrm{~V}-3 \\
& \mathrm{~V}=\frac{8+3}{2}=5.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

31. A consolidated undrained $(\overline{\mathrm{CU}})$ triaxial compression test is conducted on a normally consolidated clay at a confining pressure of 100 kPa . The deviator stress at failure is 80 kPa , and the pore -water pressure measured at failure is 50 kPa . The effective angle of internal friction (in degrees, up to one decimal place) of the soil is

31. Ans: 26.4

Sol: For NC clay in an CU test, both $\mathrm{C}_{\mathrm{u}} \& \mathrm{C}^{\prime}=0$
Given $\sigma_{3}=100 \mathrm{kPa}, \sigma_{\mathrm{d}}=80 \mathrm{kPa}, \mathrm{u}=50 \mathrm{kPa}$
To find ϕ^{\prime}

$$
\begin{aligned}
& \sigma_{1}^{\prime}=\sigma_{3}^{\prime} \tan ^{2}\left(45+\frac{\phi^{\prime}}{2}\right) \\
& \left(\sigma_{1}-\mathrm{u}\right)=\left(\sigma_{3}-\mathrm{u}\right) \tan ^{2}\left(45+\frac{\phi^{\prime}}{2}\right) 995 \\
& (100+80-50)=(100-50) \tan ^{2}\left(45+\frac{\phi^{\prime}}{2}\right) \\
& 130=50 \tan ^{2}\left(45+\frac{\phi^{\prime}}{2}\right) \\
& \therefore{\phi^{\prime}}^{\prime}=26.39^{\circ}
\end{aligned}
$$

Say 26.4°
32. Consider the stepped bar made with a linear elastic material and subjected to an axial load of 1 kN , as shown in the figure

Segments 1 and 2 have cross-sectional area of $100 \mathrm{~mm}^{2}$ and $600 \mathrm{~mm}^{2}$, Young's modulus of 2×10^{5} MPa and $3 \times 10^{5} \mathrm{MPa}$, and length of 400 mm and 900 mm , respectively. The strain energy (in Nmm , up to one decimal place) in the bar due to the axial load is \qquad
32. Ans:35

Sol:

$$
\begin{aligned}
U & =U_{1}+U_{2}=\frac{P_{1}^{2} \ell_{1}}{2 \mathrm{~A}_{1} \mathrm{E}_{1}}+\frac{\mathrm{P}_{2}^{2} \ell_{2}}{2 \mathrm{~A}_{2} \mathrm{E}_{2}} \\
& =\frac{(1000)^{2}(400)}{(2)(100)\left(2 \times 10^{5}\right)}+\frac{(1000)^{2}(900)}{2(60)\left(3 \times 10^{5}\right)} \\
& =10+25=35 \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

33. An effective rainfall of 2-hour duration produced a flood hydrograph peak of $200 \mathrm{~m}^{3} / \mathrm{s}$. The flood hydrograph has a base flow of $20 \mathrm{~m}^{3} / \mathrm{s}$. If the spatial average rainfall in the watershed for the duration of storm is 2 cm and the average loss rate is $0.4 \mathrm{~cm} /$ hour, the peak of 2-hour unit hydrograph (in $\mathrm{m}^{3} / \mathrm{s}-\mathrm{cm}$, up to one decimal place) is \qquad
34. Ans: 150

Sol: Peak ord of 2 hr FHG $=200 \mathrm{~m}^{3} / \mathrm{sec}$
Base flow $=20 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ord of 2 hr DRH $=$ [peak ord of 2 hr FHG]-Base flow

$$
=200-20=180 \mathrm{~m}^{3} / \mathrm{sec}
$$

$$
\mathrm{P}_{\mathrm{e}}=2 \mathrm{~cm}
$$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{e}}=2 \mathrm{hr} \\
& \phi \text {-Index }=0.4 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
\phi-\text { inde } x & =\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \\
0.4 & =\frac{2-\mathrm{R}}{2} \\
\mathrm{R} & =1.2 \mathrm{~cm}
\end{aligned}
$$

Peak ord of $2 \mathrm{hr} \mathrm{UHG}=\frac{\text { Peak ord of } 2 \mathrm{hr} \text { DRH }}{\mathrm{R}}$

$$
=\frac{180}{1.2}=150 \mathrm{~m}^{3} / \mathrm{sec}
$$

34. The spherical grit particles, having a radius of 0.01 mm and specific gravity of 3.0 need to be separated in a settling chamber. It is given that

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- The density of the liquid in the settling chamber $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- the kinematic viscosity of the liquid in the settling chamber $=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$

Assuming laminar conditions, the settilling velocity (in mm / s, up to one decimal place) is \qquad
34. Ans: $\mathbf{0 . 4 3 6}$

Sol:

$$
\begin{aligned}
\mathrm{d} & =0.01 \mathrm{~mm}=0.01 \times 10^{-3} \mathrm{~m} \\
\mathrm{~S} & =3 \\
\mathrm{~g} & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\rho_{\mathrm{w}} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\nu & =10^{-6} \mathrm{~m}^{2} / \mathrm{sec} \\
\mathrm{v}_{\mathrm{S}} & =\frac{\mathrm{g}[\mathrm{~S}-1] \mathrm{d}^{2}}{18 \mathrm{v}}=\frac{9.81[3-1]\left(0.02 \times 10^{-3}\right)^{2}}{18 \times 10^{-6}} \\
& =4.36 \times 10^{-4} \mathrm{~m} / \mathrm{sec} \\
& =0.436 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

ESE

FREE DOUBT CLEARING SESSIONS THROUGH

Live Video Sessions

$\boxed{\square}$ This offer is for Prelims Quolified Students Only

* Fee of Rs : 2600/-

35. The radius of a horizontal circular curve on a highway is 120 m . The design speed is $60 \mathrm{~km} / \mathrm{hour}$, and the design coefficient of lateral friction between the tyre and the road surface is 0.15 . The estimated value of superelevation required (if full lateral friction is assumed to develop), and the value of coefficient of friction needed (if no superelevation is provided) will, respectively, be
(A) $\frac{1}{11.6}$ and 0.10
(B) $\frac{1}{10.5}$ and 0.37
(C) $\frac{1}{11.6}$ and 0.24
(D) $\frac{1}{12.9}$ and 0.24
36. Ans: (C)

Sol:
Design speed, $\mathrm{R}=120 \mathrm{~m}$
Design speed, $\mathrm{V}=60 \mathrm{~km} / \mathrm{hr}(16.67 \mathrm{~m} / \mathrm{s})$
Coefficient of lateral friction, $\mathrm{f}=0.15$
(i) Superelevation for the development of full friction

$$
\begin{aligned}
& e+f=\frac{v^{2}}{g R} \rightarrow e+0.15=\frac{16.67^{2}}{9.87 \times 120} \\
& e=0.086=\frac{1}{11.63} \simeq \frac{1}{11.6}
\end{aligned}
$$

(ii) For no superelevation coefficient of friction required is

$$
\begin{gathered}
\mathrm{e}+\mathrm{f}=\frac{\mathrm{v}^{2}}{\mathrm{gR}} \\
0+\mathrm{f}=\frac{16.67^{2}}{9.81 \times 120} \\
\mathrm{f}=0.236=0.24
\end{gathered}
$$

36. A planar tower structure is shown in the figure:

Consider the following statements about the external and internal determinacies of the truss.
P. Externally Determine
Q. External static Indeterminacy $=1$
R. External Static Indeterminacy $=2$
S. Internally Determinate
T. Internal Static Indeterminacy $=1$
U. Internal Static Indeterminacy $=2$

Which one of the following options is correct?
(A) P-False; Q-True; R-False ; S-False ; T-False; U-True
(B) P-False; Q- True; R-False ; S-False ; T-True; U-False
(C) P-False; Q-False; R-True ; S-False ; T-False; U-True
(D) P-True; Q- True; R-False ; S-True ; T-False; U-True
36. Ans: (A)

Sol: Number of support reactions, $r=4$
Number of joints, $\mathrm{j}=6$
Number of members; $m=11$

$$
\begin{aligned}
D_{\mathrm{se}} & =(r-3)=1 \\
\mathrm{D}_{\mathrm{si}} & =\mathrm{m}-(2 \mathrm{j}-3) \\
& =11-(2 \times 6-3) \\
& =11-9=2
\end{aligned}
$$

37. It is proposed to drive H -piles up to a depth of 7 m at a construction site. The average surface area of the H-pile is $3 \mathrm{~m}^{2}$ per meter length. The soil at the site is homogenous sand, having an effective friction angle of 32°. The ground water table (GWT) is at a depth of 2 m below the ground surface. The unit weights of the soil above and below the GWT are $16 \mathrm{kN} / \mathrm{m}^{3}$ and $19 \mathrm{kN} / \mathrm{m}^{3}$, respectively. Assume the earth pressure coefficient, $\mathrm{K}=1.0$, and the angle of wall friction, $\delta=23^{\circ}$. The total axial frictional resistance (in kN , up to one decimal place) mobilized on the pile against the driving is \qquad
38. Ans: $\mathbf{3 9 0 . 8}$

Sol:

Dividing the pile length into two convenient parts of 2 m length and 5 m length as shown, the total ultimate frictional resistance is:

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{s}} & =\text { As. K. } \sigma_{\mathrm{Va}}^{\prime} \cdot \tan \delta \\
& =(3 \times 2) \times 1 \times\left(\frac{0+32}{2}\right) \tan 23^{\circ}+(3 \times 5) \times 1 \times\left(\frac{32+77.95}{2}\right) \tan 23^{\circ} \\
= & 40.75+350.03 \\
= & 390.78 \text { say } 390.8 \mathrm{kN}
\end{aligned}
$$

38. The solution of the equation $\frac{\mathrm{dQ}}{\mathrm{dt}}+\mathrm{Q}=1$ with $\mathrm{Q}=0$ at $\mathrm{t}=0$ is
(A) $\mathrm{Q}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}-1$
(B) $\mathrm{Q}(\mathrm{t})=1+\mathrm{e}^{-\mathrm{t}}$
(C) $\quad \mathrm{Q}(\mathrm{t})=1-\mathrm{e}^{\mathrm{t}}$
(D) $\quad \mathrm{Q}(\mathrm{t})=1-\mathrm{e}^{-\mathrm{t}}$
39. Ans: (D)

Sol:

$$
\begin{align*}
& \frac{\mathrm{dQ}}{\mathrm{dt}}+\mathrm{Q}=1 \text { with } \mathrm{Q}=0 \text { at } \mathrm{t}=0 \\
& \Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}}=1-\mathrm{Q} \\
& \Rightarrow \frac{\mathrm{dQ}}{1-\mathrm{Q}}=\mathrm{dt} \text { Since } 1995 \\
& \Rightarrow \int \frac{\mathrm{dQ}}{1-\mathrm{Q}}=\int \mathrm{dt} \\
& \Rightarrow \ln (\mathrm{Q}-1)=-\mathrm{t}+\ln \mathrm{c} \\
& \Rightarrow(\mathrm{Q}-1)=\mathrm{e}^{-\mathrm{t}}+\mathrm{C} \\
& \Rightarrow \mathrm{Q}=1+\mathrm{e}^{-\mathrm{t}} \cdot \mathrm{e}^{\mathrm{C}}------(1) \tag{1}
\end{align*}
$$

Applying initial condition we get
$0=1+e^{C}$

$$
\Rightarrow e^{C}=-1
$$

substituting in (1), we get

$$
\mathrm{Q}=1-\mathrm{e}^{-\mathrm{t}}
$$

39. The laboratory tests on a soil sample yields the following results; natural moisture content $=18 \%$ liquid limit $=60 \%$, plastic limit $=25 \%$, percentage of clay sized fraction $=25 \%$. The liquidity index and activity (as per the expression proposed by Skempton) of the soil, respectively, are
(A) -0.2 and 1.4
(B) 0.2 and 1.4
(C) -1.2 and 0.714
(D) 1.2 and 0.714
40. Ans: (A)

Sol: Given
$\mathrm{w}=18 \%, \mathrm{w}_{\mathrm{L}}=60 \%, \mathrm{w}_{\mathrm{P}}=25 \%, \mathrm{C}=25 \%$
Liquidity index, $\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{w}-\mathrm{w}_{\mathrm{P}}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{P}}}=\frac{18-25}{60-25}=-0.2$
$\mathrm{I}_{\mathrm{P}}=\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{P}}=60-25=35$
Activity, $A=\frac{I_{P}}{C}=\frac{35}{25}=1.4$

40. Consider the beam ABCD shown in figure

For a moving concentrated load of 50 kN on the beam, the magnitude of the maximum bending moment (in $\mathrm{kN}-\mathrm{m}$) obtained at the support C will be equal to \qquad
40.

Ans: 200

Sol:
So, place the load at B for obtaining move BM at C $\left(\mathrm{M}_{\mathrm{C}}\right)_{\text {Maximum }}=50 \times 4$

$$
=200 \mathrm{kN}-\mathrm{m}
$$

41. Consider two axially loaded columns, namely. 1 and 2 , made of a linear elastic material with Young's modulus $2 \times 10^{5} \mathrm{MPa}$, square cross-section with side 10 mm , and length 1 m . For Column 1 , one end is fixed and the other end is free. For column 2 , one end is fixed and the other end is pinned. Based on the Euler's theory, the ratio (up to one decimal place) of the buckling load of Column 2 to the buckling load of column is \qquad
41. Ans: 8

Sol:

Column 1	Column 2
Fix and free $l=2 \mathrm{~L}$	Fix-hinged $\ell=\frac{1}{\sqrt{2}}$

$$
\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\ell_{1}^{2}}{\ell_{2}^{2}}=\frac{(2 \mathrm{~L})^{2}}{\left(\frac{\mathrm{~L}}{\sqrt{2}}\right)^{2}}=4 \times 2=8
$$

42. Consider the matrix $\left[\begin{array}{cc}5 & -1 \\ 4 & 1\end{array}\right]$. Which one of the following statements is TRUE for the eigenvalues and eigenvectors of this matrix?
(A) Eigenvalue 3 has a multiplicity of 2, and only one independent eigenvector exists.
(B) Eigenvalue 3 has a multiplicity of 2, and two independent eign vectors exist.
(C) Eigenvalue 3 has a multiplicity of 2, and no independent eigen vector exists
(D) Eigenvalues are 3 and -3 , and two independent eigenvectors exist
43. Ans: (A)

Sol:

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{cc}
5 & -1 \\
4 & 1
\end{array}\right] \\
& \lambda^{2}-\lambda(6)+(5+4)=0 \\
& \lambda-6 \lambda+9=0 \\
&(\lambda-3)^{2}=0
\end{aligned}
$$

$\therefore \lambda=3,3$ are eigen values of A
Algebraic multiplicity of eigen value 3 is 2

$$
\begin{aligned}
& \text { For } \lambda=3, \mathrm{~A}-\lambda \mathrm{I}=\mathrm{A}-3 \mathrm{I}=\left[\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right] \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}
\end{aligned}
$$

$$
\mathrm{S}-3 \mathrm{I}=\left[\begin{array}{cc}
2 & 1 \\
0 & -1 \\
0 & 0
\end{array}\right]
$$

Ran of $(A-3 I)=1$
\therefore No. of LI eigen vectors $=n-r$

$$
\begin{aligned}
& =2-1 \\
& =1
\end{aligned}
$$

Option A
43. For the function $f(x)=a+b x, 0 \leq x \leq 1$, to be a valid probability density function, which one of the following statements is correct?
(A) $\mathrm{a}=1 \cdot \mathrm{~b}=4$
(B) $\mathrm{a}=0.5, \mathrm{~b}=1$
(C) $\mathrm{a}=0, \mathrm{~b}=1$
(D) $\mathrm{a}=1, \mathrm{~b}=-1$
43. Ans: (B)

Sol:

$$
\begin{align*}
& f(x)=\mathrm{a}+\mathrm{bx}, 0 \leq \mathrm{x} \leq 1 \\
& \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1 \quad(\because \text { total probability }=1) \\
& \int_{0}^{1}(\mathrm{a}+\mathrm{bx}) \mathrm{dx}=1 \\
& \Rightarrow\left(\mathrm{ax}+\frac{\mathrm{bx}}{2}\right)_{0}^{1}=1 \\
& \Rightarrow \mathrm{a}+\frac{\mathrm{b}}{2}=1 \\
& \Rightarrow 2 \mathrm{a}+\mathrm{b}=2 \ldots \ldots \ldots \ldots . .(1) \tag{1}
\end{align*}
$$

Only option $B, a=0.5, b=1$, satisfying equation (2)
44. A column is subjected to a load through a bracket as shown in figure

The resultant force (in kN , up to one decimal place) in the bolt 1 is \qquad

44. Ans: 5.9

Sol: An eccentric load P may be replaced by set of one direct concentric load (P) and twisting moment (M)

$$
\begin{aligned}
& \mathrm{P}=10 \mathrm{kN} \\
& \mathrm{M}=\mathrm{P} \times \mathrm{e} .=10 \times 15=150 \mathrm{kN}-\mathrm{cm}
\end{aligned}
$$

Radial distance $\mathbf{r}_{1}=\mathbf{r}_{2}=\mathbf{r}_{3}=\mathbf{r}_{4}=10 / 2=5 \mathrm{~cm}$
Force in each bolt due to direct concentric load $\left(F_{a}\right)$

$$
\mathrm{F}_{\mathrm{a}}=2.5
$$

$$
\mathrm{F}_{\mathrm{a}}=\frac{P}{n}=\frac{10}{4}=2.5 \mathrm{kN}
$$

Force in bolt No. 1 due to twisting moment $\left(\mathrm{F}_{\mathrm{m}}\right)$

$$
\mathrm{F}_{\mathrm{m} 1}=\frac{M r_{1}}{\Sigma r^{2}}=\frac{150 \times 5}{4 \times 5^{2}}=7.5 \mathrm{kN}
$$

The resultant force in the bolt 1

$$
\mathrm{F}_{\mathrm{m} 1}=7.5
$$

C.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R} 1}=\sqrt{F_{a}^{2}+F_{m 1}^{2}+2 F_{a} F_{m 1} \cdot \cos \theta_{1}} \\
& =\sqrt{2.5^{2}+7.5^{2}+2 \times 2.5 \times 7.5 \times \cos 135^{\circ}}=5.99 \mathrm{kN}
\end{aligned}
$$

The resultant force $\left(F_{R 1}\right)$ in the bolt $1($ in $\mathbf{k N})=5.99 \mathrm{kN}=\underline{\mathbf{5 . 9}}$ (Answer)

45. Water flows through a 90° bend in a horizontal plane as depicted in the figure

A pressure of 140 kPa is measured at section $1-1$. The inlet diameter marked at a section $1-1$ is $\frac{27}{\sqrt{\pi}} \mathrm{~cm}$. While the nozzle diameter marked at section 2-2 is $\frac{14}{\sqrt{\pi}} \mathrm{~cm}$. Assume the following.
(i) Acceleration due to gravity $=10 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) Weights of both the bent pipe segment as well as water are negligible.
(iii) Friction across the bend is negligible

The magnitude of the force (in kN , up to two decimal places) that would be required to hold the pipe section is \qquad
45. Ans: $\mathbf{3 9 7 . 3 1}$

Sol: The pressure at the exit of the nozzle is atmosphere pressure it will be zero

$$
\begin{aligned}
& \mathrm{P}_{1}=140 \mathrm{kPa}, \mathrm{~d}_{1}=\frac{27}{\sqrt{\pi}} \mathrm{~cm} \\
& \mathrm{P}_{2}=0, \mathrm{~d}_{2}=\frac{14}{\sqrt{\pi}} \mathrm{~cm}
\end{aligned}
$$

Apply bernoulie's equation between section (1) and (2)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{1}=\frac{\mathrm{P}_{2}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{2} \\
& \frac{140 \times 10^{3}}{9.81 \times 10^{3}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+0=0+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+0 \\
& \frac{\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=\frac{140 \times 10^{3}}{9.81 \times 10^{3}} \\
& \mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}=280 \\
& \frac{4}{(0.14)^{2}} \mathrm{Q}^{2}-\frac{4}{(0.27)^{2}} \mathrm{Q}^{2}=280 \\
& 4 \mathrm{Q}^{2}(51.02-13.7174)=280 \\
& \mathrm{Q}=1.3698 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Apply momentum equation in x-direction

$$
\begin{aligned}
& P_{1} A_{1}-F_{x}=\rho Q\left(V_{2}-V_{1}\right) \\
& \because V_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& 140 \times 10^{3} \times \frac{\pi}{4} \frac{(0.27)^{2}}{\pi}-\mathrm{F}_{\mathrm{x}}=1000 \times 1.3698 \times\left(0-\frac{1.3698}{\mathrm{~A}}\right) \\
& 2.5515-\mathrm{F}_{\mathrm{x}}=-1369.8 \times \frac{1.3698}{\frac{\pi}{4} \times \frac{0.27^{2}}{\pi}} \\
& \mathrm{~F}_{\mathrm{x}}=2.5515+102.9548 \\
& \quad=105.506 \mathrm{kN}
\end{aligned}
$$

In y-direction apply momentum

$$
\begin{aligned}
& F_{y}=\rho Q V_{2} \\
& =1000 \times 1.3698 \times \frac{1.3698}{\frac{\pi}{4} \times \frac{(0.14)^{2}}{\pi}}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{y}}=382.9289 \mathrm{kN}
$$

\therefore Resultant force $\mathrm{F}_{\mathrm{R}}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}}$

$$
\begin{aligned}
& =\sqrt{105.506^{2}+382.9289^{2}} \\
& =397.1978 \mathrm{kN}
\end{aligned}
$$

46. A 1 m wide rectangular channel has a bed slope of 0.0016 and the Manning's roughness coefficient is 0.04 . Uniform flow takes place in the channel at a flow depth of 0.5 m . At a particular section, gradually varied flow (GVF) is observed and the flow depth is measured as 0.6 m . The GVF profile at that section is classified as
(A) $\quad \mathrm{S}_{1}$
(B) $\quad \mathrm{S}_{2}$
(C) $\quad \mathrm{M}_{1}$
(D) $\quad \mathrm{M}_{2}$
47. Ans: (C)

Sol:

$$
\begin{aligned}
\mathrm{y} & =0.6 \mathrm{~m} \\
\mathrm{y}_{\mathrm{n}} & =0.5 \mathrm{~m} \\
\mathrm{~B} & =1 \mathrm{~m} \\
\mathrm{~S} & =0.0016 \\
\mathrm{n} & =0.04
\end{aligned}
$$

$$
\begin{aligned}
y_{c} & =\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
q=\frac{Q}{B} & =\frac{B \cdot y_{n} \cdot V}{B}=y_{n}^{\mathrm{v}} \\
& =y_{n} \times \frac{1}{n} \times R^{2 / 3} s^{1 / 2} \\
q & =y_{n} \times \frac{1}{n}\left(\frac{y_{n}}{2}\right)^{2 / 3} \mathrm{~s}^{1 / 2} \\
= & 0.5 \times \frac{1}{0.04}\left(\frac{0.5}{2}\right)^{2 / 3} 0.0016^{1 / 2} \\
q= & 0.1984 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
\mathrm{y}_{\mathrm{c}} & =\left(\frac{0.1984^{2}}{9.81}\right)^{1 / 3} \\
\mathrm{y}_{\mathrm{c}}= & 0.1589 \mathrm{~m}
\end{aligned}
$$

$\therefore \mathrm{y}>\mathrm{y}_{\mathrm{n}}>\mathrm{y}_{\mathrm{c}}$
The GVF profile at section of flow depth 0.6 is M_{1}
47. The activity details of a project are given below:

Activity	Depends on	Duration (in days)
P	--	6
Q	P	15
R	Q.T	12
S	R	16
T	P	10
U	Q.T	14
V	U	16

The estimated minimum time (in days) for the completion of the project will be \qquad
47. Ans: 51

Sol:

Path
Duration
P-Q-U-V

$$
6+15+14+16=51
$$

P-T-Dummy-U-V

$$
6+10+0+14+16=46
$$

P-T-Dummy-R-S
$6+10+0+12+16=44$
Minimum time for the completion of the project = 51 days
48. The following observations are made while testing aggregate for its suitability in pavement construction:
i. Mass of oven-dry aggregate in air $=1000 \mathrm{~g}$
ii. Mass of saturated surface-dry aggregate in air $=1025 \mathrm{~g}$
iii. Mass of saturated surface-dry aggregate under water $=625 \mathrm{~g}$

Based on the above observations, the correct statement is
(A) bulk specific gravity of aggregate $=2.5$ and water absorption $=2.5 \%$
(B) bulk specific gravity of aggregate $=2.5$ and water absorption $=2.4 \%$
(C) apparent specific gravity of aggregate $=2.5$ and water absorption $=2.5 \%$
(D) apparent specific gravity of aggregate $=2.5$ and water absorption $=2.4 \%$
48. Ans: (A)

Sol: Bulk specific gravity; G

$$
\mathrm{G}=\frac{\text { oven dry weight }}{\text { Saturated surface dry weight }- \text { weight in water }}
$$

$$
\begin{aligned}
= & \frac{1000}{1025-625} \\
& =2.5
\end{aligned}
$$

Water absorption; w

$$
\begin{aligned}
\mathrm{W} & =\frac{\text { saturated surface dry weight }- \text { oven dry weight }}{\text { oven dry weight } \times 100} \\
& =\frac{1025-1000}{1000} \times 100 \\
& =2.5 \%
\end{aligned}
$$

49. The value of M in the beam $A B C$ shown in the figure is such that the joint B does not rotate.

The value of support reaction (in kN) at B should be equal to \qquad
49. Ans: 60 kN

Sol: If joint B is not allowed to rotate the AB portion behaves like a fixed beam

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\frac{\mathrm{w} \ell}{2}=\frac{30 \times 4}{2}=60 \mathrm{kN}
$$

50. Two wastewater streams A and B, having an identical ultimate $B O D$ are getting mixed to form the stream C. The temperature of the stream A to $20^{\circ} \mathrm{C}$ and the temperature of the stream C is $10^{\circ} \mathrm{C}$. It is given that.
i. The 5-day BOD of the stream A measured at $20^{\circ} \mathrm{C}=50 \mathrm{mg} / \mathrm{l}$
ii. BOD rate constant (base 10) at $20^{\circ} \mathrm{C}=0.115$ per day
iii. Temperature coefficient $=1.135$

The 5-day BOD (in mg / l up to one decimal place) of the stream C , calculated at $10^{\circ} \mathrm{C}$ is \qquad
50. Ans: 21.2

Sol:

Ultimate BOD of stream $A=$ ultimate BOD of stream B
\therefore Ultimate BOD of stream 'C' $=$ ultimate BOD of stream $A=L_{o}$ 5 day BOD@ $20^{\circ} \mathrm{C}$ for stream A y5 $\mathrm{s}^{\circ} \mathrm{C}$
$=50 \mathrm{mg} / \mathrm{l}$

$$
\begin{aligned}
\therefore \mathrm{y}_{5}^{20^{\circ} \mathrm{C}} & =\mathrm{L}_{\mathrm{o}}\left[1-10^{-\mathrm{k}_{20} \times 5}\right] \\
50 & =\mathrm{L}_{\mathrm{o}}\left[1-10^{-0.115 \times 5}\right] \\
\mathrm{L}_{\mathrm{o}} & =68.126 \mathrm{mg} / \mathrm{l} \text { Since } 199 \\
\mathrm{k}_{\mathrm{T}} & =\mathrm{k}_{20}(1.135)^{\mathrm{T}-20} \\
\mathrm{k}_{10}= & 0.115(1.135)^{10-20}=0.0324 \mathrm{~d}^{-1}
\end{aligned}
$$

5 day BOD of stream @ $10^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{y}_{5}^{10^{\circ} \mathrm{C}} & =\mathrm{L}_{\mathrm{o}}\left[1-10^{-\mathrm{k}_{10} \times 5}\right] \\
& =68.126\left[1-10^{-0.0324 \times 5}\right] \\
& =21.2 \mathrm{mg} / \mathrm{l}
\end{aligned}
$$

51. The equivalent sound power level (in dB) of the four sources with the noise levels of $60 \mathrm{~dB}, 69 \mathrm{~dB}$, 70 dB and 79 dB is \qquad

51. Ans: 80

Sol: $\quad \mathrm{L}_{\text {equ }}=10 \log _{10} \Sigma\left[10^{\frac{\mathrm{L}_{\mathrm{i}}}{10}} \times \mathrm{T}_{\mathrm{i}}\right]$

$$
\begin{gathered}
10 \log _{10}\left[10^{\frac{60}{10}}+10^{\frac{69}{10}}+10^{\frac{70}{10}}+10^{\frac{79}{10}}\right]=79.92 \mathrm{~dB} \simeq 80 \mathrm{~dB} \\
60 \longrightarrow 80 \\
69 \longrightarrow 73 \longrightarrow 80 \\
70 \longrightarrow 73 \\
79
\end{gathered}
$$

52. A sluice gate used to control the flow in a horizontal channel of unit-width is shown in figure

It is observed that the depth of flow is 1.0 m upstream of the gate, while the depth is 0.2 mm downstream of the gate. Assuming a smooth flow transition across the sluice gate, i.e., without any energy loss, and the acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$, the discharge (in $\mathrm{m}^{3} / \mathrm{s}$, up to two decimal places) passing under the sluice gate is \qquad
52. Ans: $\mathbf{0 . 8 1 6}$

Sol: Since it is horizontal surface the specific energy is same at both upstream and downstream sections.

Equating specific energy's

$$
\begin{aligned}
\mathrm{E}_{1} & =\mathrm{E}_{2} \\
\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} & =\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}
\end{aligned}
$$

Let $\mathrm{y}_{1}, \mathrm{y}_{2}$ and $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are the depths and velocitys of upstream and downstream sections respectively.
$\mathrm{q}=$ discharge per meter width

$$
\begin{gathered}
q=y_{1} V_{1} \Rightarrow V_{1}=\frac{q}{y_{1}} \\
q=y_{2} V_{2} \Rightarrow V_{2}=\frac{q}{y_{2}} \\
\therefore y_{1}+\frac{q^{2}}{2{g y_{1}^{2}}_{2}}=y_{2}+\frac{q^{2}}{2{g y_{2}^{2}}_{2}} \\
1+\frac{q^{2}}{2 \times 10 \times 1^{2}}=0.2+\frac{q^{2}}{2 \times 10(0.2)^{2}} \\
1+0.05 q^{2}=0.2+1.25 q^{2} \\
0.8=1.2 q^{2} \\
q=0.816 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}
\end{gathered}
$$

\therefore Discharge $\mathrm{Q}=0.816 \mathrm{~m}^{3} / \mathrm{sec} \approx 0.82$
53. Consider the equation $\frac{d u}{d t}=3 t^{2}+1$ with $u=0$ at $t=0$. This is numerically solved by using the forward Euler method with a step size. $\Delta \mathrm{t}=2$. The absolute error in the solution at the end of the first time step is \qquad

53. Ans: 8

Sol:

$$
\begin{align*}
& \frac{\mathrm{du}}{\mathrm{dt}}=3 \mathrm{t}^{2}+1, \mathrm{u}(0)=0, \mathrm{~h}=\Delta \mathrm{t}=2 \\
& \Rightarrow \mathrm{du}=\left(3 \mathrm{t}^{2}+1\right) \mathrm{dt} \\
& \Rightarrow \int \mathrm{du}=\int\left(3 \mathrm{t}^{2}+1\right) \mathrm{dt} \\
& \Rightarrow \mathrm{u}=\mathrm{t}^{3}+\mathrm{t}+\mathrm{c} \ldots \ldots \ldots \ldots \ldots \ldots \tag{1}\\
& \mathrm{u}(0)=0:(1) \Rightarrow 0=\mathrm{C} \\
& (1) \Rightarrow \mathrm{u}=\mathrm{t}^{3}+\mathrm{t}
\end{align*}
$$

Now, at $\mathrm{t}=2, \mathrm{u}=2^{3}+2=10$ is the exact solution
The first approximation is

$$
\begin{aligned}
\mathrm{u}_{1} & =\mathrm{u}_{\mathrm{o}}+\operatorname{hf}\left(\mathrm{t}_{\mathrm{o}}, \mathrm{u}_{\mathrm{o}}\right), \text { where } \mathrm{f}(\mathrm{t}, \mathrm{u})=3 \mathrm{t}^{2}+1 \\
& =0+2 \mathrm{f}(0,0) \\
& =2(1) \\
\mathrm{u}_{1} & =2 \text { is the numeral solution }
\end{aligned}
$$

(or) approximate solution

$$
\begin{aligned}
\text { Error } & =\mid \text { exact solution }- \text { approximate solution } \mid \\
& =|10-2| \\
& =8
\end{aligned}
$$

54. The observed bearings of a traverse are given below

Line	Bearing	Line	Bearing
PQ	$46^{\circ} 15^{\prime}$	QP	$226^{\circ} 15^{\prime}$
QR	$108^{\circ} 15^{\prime}$	RQ	$286^{\circ} 15^{\prime}$
RS	$201^{\circ} 30^{\prime}$	SR	$20^{\circ} 30^{\prime}$
ST	$321^{\circ} 45^{\prime}$	TS	$141^{\circ} 45^{\prime}$

The station(s) most likely to be affected by the local attraction is /are
(A) Only R
(B) Only S
(C) R and S
(D) P and Q
54. Ans: (a)

Sol: Difference between $\mathrm{FB} \& \mathrm{BB} \& \mathrm{PQ}=180^{\circ}$
Difference between $\mathrm{FB} \& \mathrm{BB}$ of $\mathrm{TS}=180^{\circ}$
Hence stations $\mathrm{P}, \mathrm{Q}, \mathrm{T} \& \mathrm{~S}$ are free from local attraction
But station ' R ' is affected by local attraction.
55. The infinite sand slope shown in the figure is on the verge of sliding failure. The ground water table coincides with the ground surface. Unit weight of water $\gamma_{\mathrm{w}}=9.81 \mathrm{kN} / \mathrm{m}^{3}$.

The value of the effective angle of internal friction (in degrees, up to one decimal place) of the sand is \qquad

55. Ans: 34.3

Sol: For an infinite slope with seepage parallel to slope the F.O safety against sliding,

$$
\mathrm{F}=\frac{\gamma^{\prime}}{\gamma_{\mathrm{sat}}} \frac{\tan \varphi^{\prime}}{\tan \mathrm{i}} \text { (For pure sands) }
$$

If $\mathrm{F}=1$, the slope will be at verge of failure

$$
\begin{aligned}
\therefore 1 & =\frac{\gamma^{\prime}}{\gamma_{\text {sat }}} \frac{\tan \varphi^{\prime}}{\tan \mathrm{i}} \\
1 & =\frac{\gamma_{\mathrm{sat}} \cdot \gamma_{\mathrm{w}}}{\gamma_{\mathrm{sat}}} \frac{\tan \varphi^{\prime}}{\tan \mathrm{i}} \\
1 & =\frac{21-9.81}{21} \frac{\tan \phi^{\prime}}{\tan 20^{\circ}} \\
\therefore \phi & =34.34^{\circ} \\
\text { Say } & =34.3^{\prime}
\end{aligned}
$$

HEARTY CONGRATULATIONS TO OUR

 ESE 2016 RANKERS

Section: General Aptitude

1. Consider the following sentences.

All benches are beds. No bed is a bulb. Some bulbs are lamps.
Which of the following can be inferred ?
i. some beds are lamps
ii. some lamps are beds
(A) Only i
(B) Only ii
(C) Both i and ii
(D) Neither i nor ii

1. Ans: (D)

Sol: From the given statements, the following venn diagrams are possible

Given conclusions (i) and (ii) are not possible from the above diagrams, so option (D) is correct.
02. The following sequence of numbers is arranged in increasing order: $1, x, x, x, y, y, 9,16,18$ given that the mean and median are equal, and are also equal to twice the mode, the value of y is
(A) 5
(B) 6
(C) 7
(D) 8
02. Ans: (D)

Sol: Given increasing order of number sequence is

$$
1, \mathrm{x}, \mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{y}, 9,16,18
$$

Total number of numbers $=9$
Mean $=$ Median $=2$ Mode (given)
Mean $=\frac{\text { sum of numbers }}{\text { Total no.of numbers }}$

$$
\begin{align*}
& =\frac{1+x+x+x+y+y+9+16+18}{9} \\
& =\frac{1+3 x+2 y+16+18+9}{9} \\
& =\frac{3 x+2 y+44}{9} \ldots \ldots \ldots \text { (i) } \tag{i}
\end{align*}
$$

Median \Rightarrow As number of terms are odd (i.e) 9 so, median will be middle of the sequence $=y$
Mode $=$ Number showing maximum frequency of repetition $=x$ (three times)
From the given condition

$$
\begin{equation*}
y=2 x \tag{ii}
\end{equation*}
$$

\qquad
By solving equation (i) and (ii), we get

$$
x=4, y=8
$$

\therefore The value of y is 8
03. If the radius of a right circular cone is increased by 50% its volume increases by
(A) 75%
(B) 100%
(C) 125%
(D) 237.5%

03. Ans: (C)

Sol: Volume of a right circular cone
$\mathrm{V}=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$
$\mathrm{R}=$ radius of a cone
$\mathrm{H}=$ height of the cone
$\mathrm{V} \propto \mathrm{R}^{2}$
$\mathrm{V}_{1}=\mathrm{R}^{2}$
$\mathrm{V}_{2}=(1.5)^{2} \mathrm{R}^{2}$ with increasing
$\mathrm{V}_{2}=2.25 \mathrm{R}^{2}=2.25 \mathrm{~V}_{1}$
\therefore Volume increases $=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{~V}_{1}} \times 100$

$$
\begin{aligned}
& =\frac{2.25 \mathrm{~V}_{1}-\mathrm{V}_{1}}{\mathrm{~V}_{1}} \times 100 \\
& =\frac{\mathrm{V}_{1}(1.25)}{\mathrm{V}_{1}} \times 100 \\
& =1.25 \times 100=125 \%
\end{aligned}
$$

4. \qquad with someone else's email account is now a very serious offence
(A) Involving
(B) Assisting
(C) Tampering
(D) Incubating
5. Ans: (C)

Sol: Tampering means to carry on under hand or improper negotiations/ to interfere so as to weaken/ change for the worse.
05. The bacteria in milk are destroyed when it \qquad heated to 80 degree Celsius.
(A) would be
(B) will be
(C) is
(D) was
05. Ans: (C)

Sol: Habitual action/automatic results.
06. Students applying for hostel rooms are allotted rooms in order of seniority. Students already staying in a room will move if they get a room in their preferred list. Preferences of lower ranked applicants are ignored during allocation.
Given the data below, which room will Ajit stay in?

Names	Student seniority	Current Room	Room preference list
Amar	1	P	R.S.Q
Akbar	2	None	R.S
Anthony	3	Q	P
Ajit	4	S	Q.P.R

(A)
P
(B) Q
(C) R
(D) S
06. Ans: (B)

Sol: From given table, According to their preferences Room ' R ' is preferred by Amar, Akbar and Ajit but Amar is senior so, Room ' R ' is for Amar and from the preference list Akbar is compulsory stay in Room ' S ' only, Anthony is preferred only one room ' P ' only so, P is for Anthony.
\therefore The room for Ajit is ' Q '

Persons	Rooms to be allotted
Amar	R
Akabr	S
Anthony	P
Ajit	Q

7. Two machines M1 and M2 are able to execute any of four jobs $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S . The machines can perform one job on one object at a time. Jobs P, Q, R and S take 30 minutes, 20 minutes, 60 minutes and 15 minutes each respectively. There are 10 objects each requiring exactly 1 job. Job P is to be performed on 2 objects. Job Q on 3 objects. Job R on 1 object and Job S and 4 objects. What is the minimum time needed to complete all the jobs?
(A)
2 hours
(B) 2.5 hours
(C) 3 hours
(D) 3.5 hours

07. Ans: (A)

Sol: If Machine M_{1} is able to execute jobs P and Q
If Machine M_{2} is able to execute jobs R and S
For Job ' P ' time taken 30 minutes with 2 objects

$$
=2 \times 30=60 \mathrm{~min}
$$

For Job ' Q ' is taken 20 minutes with 3 objects

$$
=20 \times 3=60 \mathrm{~min}
$$

\therefore Total time taken by Machine $\left(\mathrm{M}_{1}\right)$ for jobs P and Q

$$
=60 \mathrm{~min}+60 \mathrm{~min}=2 \mathrm{hrs}
$$

For Job ' R ' is taken 60 min with 1 object

$$
=60 \times 1=60 \mathrm{~min}
$$

For Job ' S ' is taken 15 min with 4 objects

$$
=4 \times 15=60 \mathrm{~min}
$$

\therefore Total time taken by machine $\left(\mathrm{M}_{2}\right)$ for Jobs R and $\mathrm{S}=60+60=2 \mathrm{hrs}$
08. The last digit of $(2171)^{7}+(2172)^{9}+(2173)^{11}+(2174)^{13}$ is
(A)
(B) 4
(C) 6
(D) 8

08. Ans: (B)

Sol: Given equation

$$
(2171)^{7}+(2172)^{9}+(2173)^{11}+(2174)^{13}
$$

All power values are divide with 4 then the possible remainders are $3,1,3$ and 1
$(1)^{3}+(2)^{1}+(3)^{3}+(4)^{1}$
$1+2+27+4=34$
\therefore The last digit is ' 4 '
09. The bar graph below shows the output of five carpenters over one month, each of whom made different items of furniture : chairs, tables, and beds

Consider the following statements
i. The number of beds made by carpenter C 2 is exactly the same as the number of tables made by carpenter C3.
ii. The total number of chairs made by all carpenters is less than the total number of tables Which one of the following is true?
(A) Only i
(B) Only ii
(C) Both i and ii
(D) Neither i nor ii

09. Ans: (C)

Sol: From the given bar graph,
(i) The number of beds made by carpenter $\mathrm{C}_{2}=$ The number tables made by carpenter C_{3}

$$
8 \mathrm{Nos}=8 \mathrm{Nos}
$$

\therefore Statement (i) is true
(ii) The total number of chairs made by all carpenters $=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\mathrm{C}_{5}$

$$
=2+10+5+2+4=23 \mathrm{Nos}
$$

The total numbers of tables made by all carpenters $=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\mathrm{C}_{5}$

$$
=7+2+8+3+9=29 \text { Nos }
$$

23 Nos <29 Nos
\therefore Statement (ii) is also true
\therefore Both the statements (i) and (ii) are true
10. The old concert hall was demolished because of fears that the foundation would be affected by the construction of the new metro line in the area. Modern technology for underground metro construction tried to mitigate the impact of pressurized air pockets created by the excavation of large amounts of soil. But even with these safeguards, it was feared that the soil below the concert hall would not be stable.

From this, one can infer that
(A) The foundation of old buildings create pressurized air pockets underground, which are difficult to handle during metro construction
(B) Metro construction has to be done carefully considering its impact on the foundations of existing buildings
(C) Old buildings in an area form an impossible hurdle to metro construction in that area
(D) Pressurized air can be used to excavate large amounts of soil from underground areas.
10. Ans: (B)

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Questions \& Solutions)	
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-I Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-I Obi)	Mechanical Engineering (Volume-I Obi)
Instrumentation Engineering	Electrical Engineering (Volume-II Obi)	Mechanical Engineering (Volume-II Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-1 Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-II Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO / PSUs (Previous Yeors Questions With Solutions \& Useful for BARC, SAIL, BEL, NPCIL, AAl \& OTHER PSUs)		

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise
(6) +919397699966
* You can Buy Online also

TESTSERIES

(Prelims \& Mains)					
Streams: EC, EE, ME, CE					
Test Type		Prelims	Mains		
Online	Offline	Offline			
	43	-	-		
	31	20	08		
	-	-	04		
Full Lenth Mock Tests	08	04	04		

Streams: EC, EE, ME, CE, CS, IN, PI	
Test Type	No. Of Tests (Online)
Chapter-wise Tests	20
Subject-wise Grand Tests	40
Full Lenth Mock Tests	12

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS iON for conduting Pw-GATE 2018 (Center bosed MOCK Test) on PAN India bosis with Anolytics.

