$A C D$
Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kolkata

GATE 2017

 Computer Science \& Information Technology
Questions with Detailed Solutions

AFTERNOON SESSION

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418, 19, 20

1. Consider the following statement about the routing protocols, Routing Information Protocol (RIP) and Open Shortest Path First (OSPF) in an IPv4 network.
I. RIP uses distance vector routing
II. RIP packets are sent using UDP
III. OSPF packets arte sent using TCP
IV. OSPF operation is based on link-state routing

Which of the statements above are CORRECT?
(A) I and IV only
(B) I, II and III only
(C) I, II and IV only
(D) II, III and IV only

1. Ans: (C)

Sol: RIP uses distance vector routing
RIP packets are sent using UDP
OSPF doesn't use UDP or TCP and sends directly via IP
OSPF operation is based on LSR
02. The maximum number of IPv4 router addresses that can be listed in the record route (RR) option field of an $\operatorname{IPv} 4$ header is \qquad .
02. Ans: 9

Sol: Record Route option in the IP header is used to record the path taken by the Echo Request message and corresponding Echo Reply message (available on IPv4 only). Each hop in the path uses an entry in the Record Route option. If possible, specify a Count that is equal to or greater than the number of hops between the source and destination. The Count must be a minimum of 1 and a maximum of 9 .

The maximum number of addresses or names in the host list is 9
: 3 :
AFTERNOON SESSION
03. Consider the following function implemented in C :
void printxy (int x, int y)
\{
int *ptr;
$\mathrm{x}=0$;
$\mathrm{ptr}=\& \mathrm{x} ;$
$y=* p t r ;$
*ptr $=1 ;$
Printf("\%d, \%d", x, y);
\}
The output of invoking printxy $(1,1)$ is
(A) 0,0
(B) 0,1
(C) 1,0
(D) 1,1
03. Ans: (C)

Sol:

Output $=1,0$
04. In a file allocation system, which of the following allocation scheme(s) can be used if no external fragmentation is allowed?
I. Contiguous
II. Linked
III. Indexed
(A) I and III only
(B) II only
(C) III only
(D) II and III only

04. Ans: (D)

Sol: In contiguous allocation method, external Fragmentation may occur, but in linked and indexed allocation the blocks are allocated in non-contiguous manner. So possibility of external fragmentation is none.
05. Let $\mathrm{L}_{1}, \mathrm{~L}_{2}$ be any two context-free languages and R be any regular language. Then which of the following is/are CORRECT?
I. $L_{1} \cup L_{2}$ is context-free
II. $\overline{\mathrm{L}}_{1}$ is context-free
III. $\mathrm{L}_{1}-\mathrm{R}$ is context-free
IV. $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$ is context-free
(A) I, II and IV only
(B) I and III only
(C) II and IV only
(D) I only
05. Ans: (B)

Sol: $\mathrm{L}_{1}, \mathrm{~L}_{2}$ be two context free languages, R is any Regular language union of two CFL is again a CFL
$\Rightarrow \mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is a CFL
$\Rightarrow \mathrm{L}_{1}-\mathrm{R}$ is also context free.
$\therefore \mathrm{I} \& \mathrm{III}$ is correct
06. Consider the following tables T1 and T2

$\mathbf{T 1}$	
\mathbf{P}	\mathbf{Q}
2	2
3	8
7	3
5	8
6	9
8	5
9	8

$\mathbf{T 2}$	
\mathbf{R}	\mathbf{S}
2	2
8	3
3	2
9	7
5	7
7	2

In table $\mathrm{T} 1, \mathrm{P}$ is the primary key and Q is the foreign key referencing R in table T 2 with on-delete cascade and on-update cascade. In table $\mathrm{T} 2, \mathrm{R}$ is the primary key and S is the foreign key referencing P in table T 1 with on-delete set NULL and on-update cascade. In order to delete record $(3,8)$ from table T 1 , the number of additional records that need to be deleted from table T 1 is
\qquad .
06. Ans: 0

Sol: When $<3,8>$ is deleted, its related tuples in T_{2} is $(8,3)$ and 3 is to set null. Hence the number of additional tuples to delete is 0
07. G is an undirected graph with n vertices and 25 edges such that each vertex of G has degree at least 3. Then the maximum possible value of n is \qquad .
07. Ans: 16

Sol: For any undirected graph, if degree of each vertex is atleast k, then

$$
\begin{aligned}
& \mathrm{k}|\mathrm{~V}| \leq 2|\mathrm{E}| \quad \text { Where }|\mathrm{V}|=\mathrm{n} \\
\Rightarrow & 3|\mathrm{~V}| \leq 2(25) \\
\Rightarrow & |\mathrm{V}| \leq 16.66 \\
\Rightarrow & |\mathrm{~V}| \leq 16 \quad(\because|\mathrm{~V}| \text { is an integer }) \\
\therefore & \text { Maximum possible value of } \mathrm{n}=16
\end{aligned}
$$

8. The representation of the value of a 16-bit unsigned integer X in hexadecimal number system is BCA9. The representation of the value of X in octal number system is
(A) 571244
(B) 736251
(C) 571247
(D) 136251
9. Ans: (D)

Sol: Given data is BCA9 ${ }_{\mathrm{H}}$
$\underline{1} \underline{011} \underline{110} \underline{010} \underline{101} \underline{001}_{2}=136251_{8}$

COAL INDIA LIMITED (CIL) Management Trainee \& Other PSUs

Classroom coaching
(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

Starts on

『 $15^{\text {th }}$ Feb 2017 @ Delhi

Online Test Series (EE | ME | CE)

Total Tests : 20
区 starts from $\mathbf{1 7}^{\text {th }}$ Feb 2017

$$
\text { ESE E Mains Strage-l|) } 2017
$$

Classroom Coaching Starts from 15 ${ }^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests : 16
$\boxed{\square}$ Will Conduct at all Our centers
09. Match the algorithms with their time complexities:

Algorithm

(P) Towers of Hanoi with n disks
(Q) Binary search given n sorted numbers
(R) Heap sort given n numbers at the worst case
(S) Addition of two $\mathrm{n} \times \mathrm{n}$ matrices

Time complexity

(i) $\theta\left(\mathrm{n}^{2}\right)$
(ii) $\theta(n \log n)$
(iii) $\theta\left(2^{n}\right)$
(iv) $\theta(\log n)$
(A) $\mathrm{P} \rightarrow$ (iii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (i), $\mathrm{S} \rightarrow$ (ii)
(B) $\mathrm{P} \rightarrow$ (iv), $\mathrm{Q} \rightarrow$ (iii), $\mathrm{R} \rightarrow$ (i), $\mathrm{S} \rightarrow$ (ii)
(C) $\mathrm{P} \rightarrow$ (iii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (ii), $\mathrm{S} \rightarrow$ (i)
(D) $\mathrm{P} \rightarrow$ (iv), $\mathrm{Q} \rightarrow$ (iii), $\mathrm{R} \rightarrow$ (ii), $\mathrm{S} \rightarrow$ (i)
09. Ans: (C)

Sol: Towers of Hanoi with n disks $-\mathrm{O}(2 \mathrm{n})$
Binary search given n sorted numbers $-\mathrm{O}(\operatorname{logn})$
Heap sort given n numbers at worst case $-\mathrm{O}(\mathrm{n} \operatorname{logn})$
Addition of two matrices of size $\mathrm{n} \times \mathrm{n}-\mathrm{O}(\mathrm{n} 2)$
10. Which of the following statements about parser is/are CORRECT?
I. Canonical LR is more powerful than SLR.
II. SLR is more powerful than LALR.
III. SLR is more powerful than Canonical LR.
(A) I only
(B) II only
(C) III only
(D) II and III only
10. Ans: (A)

Sol: CLR is more powerful than SLR and LALR is more powerful than SLR.
11. Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ denote the statements "It is raining", "It is cold" and "It is pleasant", respectively. Then the statement "It is not raining and it is pleasant, and it is not pleasant only if it is raining and it is cold" is represented by
(A) $(\neg \mathrm{p} \wedge \mathrm{r}) \wedge(\neg \mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q}))$
(B) $(\neg \mathrm{p} \wedge \mathrm{r}) \wedge((\mathrm{p} \wedge \mathrm{q}) \rightarrow \neg \mathrm{r})$
$(C)(\neg \mathrm{p} \wedge \mathrm{r}) \vee((\mathrm{p} \wedge \mathrm{q}) \rightarrow \neg \mathrm{r})$
(D) $(\neg \mathrm{p} \wedge \mathrm{r}) \vee(\mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q}))$

11. Ans: (A)

Sol: The sentence 'it is not raining and it is pleasant' can be represented as ($\sim \mathrm{p} \wedge \mathrm{r}$)
The sentence 'it is not pleasant only if it is raining and it is cold can be represented as $\sim \mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q})$
\therefore The given statement can be represented as $(\sim \mathrm{p} \wedge \mathrm{r}) \wedge(\sim \mathrm{r} \rightarrow(\mathrm{p} \wedge \mathrm{q}))$
12. Given the following binary number in 32-bit (single precision) IEEE-754 format:

$$
00111110011011010000000000000000
$$

The decimal value closest to this floating-point number is
(A) 1.45×10^{1}
(B) 1.45×10^{-1}
(C) 2.27×10^{-1}
(D) 2.27×10^{1}

12. Ans: (C)

Sol: $0011111001101101000 \ldots . .0$
$S=0, E=01111100, M=11011010 \ldots . .0$
Expression value $=(-1)^{\mathrm{S}} \times 1 . \mathrm{M} \times 2^{\mathrm{E}-127}$

$$
\begin{aligned}
& =(-1) \times 1.11011010_{2} \times 2^{-3}=1.85_{10} \times \frac{1}{8} \\
& =0.23=2.3 \times 10^{-1}
\end{aligned}
$$

13. If $f(x)=R \sin \left(\frac{\pi x}{2}\right)+S \cdot f^{\prime}\left(\frac{1}{2}\right)=\sqrt{2}$ and $\int_{0}^{1} f(x) d x=\frac{2 R}{\pi}$, then the constants R and S are respectively.
(A) $\frac{2}{\pi}$ and $\frac{16}{\pi}$
(B) $\frac{2}{\pi}$ and 0
(C) $\frac{4}{\pi}$ and 0
(D) $\frac{4}{\pi}$ and $\frac{16}{\pi}$

13. Ans: (C)

Sol: Given that

$$
\begin{align*}
& \mathrm{f}(\mathrm{x})=\mathrm{R} \sin \left(\frac{\pi \mathrm{x}}{2}\right)+\mathrm{S}-\cdots--(1) \tag{1}\\
& \mathrm{f}^{1}\left(\frac{1}{2}\right)=\sqrt{2}-\cdots--(2) \tag{2}\\
& \int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{2 \mathrm{R}}{\pi}-\cdots-(3) \tag{3}\\
& \mathrm{f}^{1}(\mathrm{x})=\left(\frac{\pi \mathrm{R}}{2}\right) \operatorname{Cos}\left(\frac{\pi \mathrm{x}}{2}\right) \\
& \mathrm{f}^{1}\left(\frac{1}{2}\right)=\sqrt{2} \\
& \Rightarrow \frac{\pi \mathrm{R}}{2} \operatorname{Cos}\left(\frac{\pi}{4}\right)=\sqrt{2} \\
& \mathrm{R}=\frac{4}{\pi} \\
& \int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{2 \mathrm{R}}{\pi} \\
& \Rightarrow \int_{0}^{1}\left[\mathrm{R} \operatorname{Sin}\left(\frac{\pi \mathrm{x}}{2}\right)+\mathrm{S}\right] \mathrm{dx}=\frac{2 \mathrm{R}}{\pi} \\
& \Rightarrow \int_{0}^{1}\left[\frac{4}{\pi} \operatorname{Sin} \frac{\pi \mathrm{x}}{2}+\mathrm{S}\right] \mathrm{dx}=\frac{8}{\pi^{2}} \\
& \Rightarrow-\frac{8}{\pi^{2}}\left[\operatorname{Cos}\left(\frac{\pi \mathrm{x}}{2}\right)\right]^{1}+\mathrm{S}(\mathrm{x})_{0}^{1}=\frac{8}{\pi^{2}} \\
& \Rightarrow
\end{align*}
$$

14. Consider a quadratic equation $x^{2}-13 x+36=0$ with coefficients in a base b. The solutions of this equation in the same base b are $\mathrm{x}=5$ and $\mathrm{x}=6$. Then $\mathrm{b}=$ \qquad .

14. Ans: 8

Sol: For quadratic equation
$A x^{2}+B x+C=0$
Sum of the roots $=\frac{-B}{A}$
Product of the roots $=\frac{\mathrm{C}}{\mathrm{A}}$
$\therefore 5+6=13$
and 5. $(6)=30$
The above equations are true only for octal system
$\therefore \mathrm{b}=8$
15. Consider socket API on a Linux machine that supports connected UDP sockets. A connected UDP socket is a UDP socket on which connect function has already been called. Which of the following statements is/are CORRECT?
I. A connected UDP socket can be used to communicate with multiple peers simultaneously.
II. A process can successfully call connect function again for an already connected UDP socket.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
15. Ans: (C)
16. Match the following according to input (from the left column) to the compiler phase (in the right column) that processes it:
(P) Syntax tree
(i) Code generator
(Q) Character stream
(ii) Syntax analyzer
(R) Intermediate representation
(iii) Semantic analyzer
(S) Token stream
(iv) Lexical analyzer
(A) $\mathrm{P} \rightarrow$ (ii), $\mathrm{Q} \rightarrow$ (iii), $\mathrm{R} \rightarrow$ (iv), $\mathrm{S} \rightarrow$ (i)
(B) $\mathrm{P} \rightarrow$ (ii), $\mathrm{Q} \rightarrow$ (i), $\mathrm{R} \rightarrow$ (iii), $\mathrm{S} \rightarrow$ (iv)
(C) $\mathrm{P} \rightarrow$ (iii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (i), $\mathrm{S} \rightarrow$ (ii)
(D) $\mathrm{P} \rightarrow$ (i), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (ii), $\mathrm{S} \rightarrow$ (iii)
16. Ans: (C)
17. Which of the following is/are shared by all the threads in a process?
I. Program counter
II. Stack
III. Address space
IV. Registers
(A) I and II only
(B) III only
(C) IV only
(D) III and IV only
17. Ans: (B)

Sol: Threads of a process share data section, code section and heap, but do not share stack and registers.
18. Let $\mathrm{P}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{ccc}-1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5\end{array}\right]$ be two matrices.

Then the rank of $\mathrm{P}+\mathrm{Q}$ is
18. Ans: 2

Sol: $P+Q=\left[\begin{array}{ccc}0 & -1 & -2 \\ 8 & 9 & 10 \\ 8 & 8 & 8\end{array}\right]$
$|\mathrm{P}+\mathrm{Q}|=0$
$\Rightarrow \operatorname{Rank}$ of $(\mathrm{P}+\mathrm{Q})<3$
$(\mathrm{P}+\mathrm{Q})$ has 2 linearly independent rows
\therefore Rank of $(\mathrm{P}+\mathrm{Q})=2$
19. An ER model of a database consists of entity types A and B. These are connected by a relationship R which does not have its own attribute. Under which one of the following conditions, can the relational table for R be merged with that of A ?
(A) Relationship R is one-to-many and the participation of A in R is total.
(B) Relationship R is one-to-many and the participation of A in R is partial.
(C) Relationship R is many-to-one and the participation of A in R is total.
(D) Relationship R is many-to-one and the participation of A in R is partial.
19. Ans: (C)

Sol:

Here the relation R is merged with R .
20. Identify the language generated by the following grammar, where S is the start variable.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{XY} \\
& \mathrm{X} \rightarrow \mathrm{aX} \mid \mathrm{a} \\
& \mathrm{Y} \rightarrow \mathrm{aYb} \mid \varepsilon
\end{aligned}
$$

(A) $\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m} \geq \mathrm{n}, \mathrm{n}>0\right\}$
(B) $\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m} \geq \mathrm{n}, \mathrm{n} \geq 0\right\}$
(C) $\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}>\mathrm{n}, \mathrm{n} \geq 0\right\}$
(D) $\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}>\mathrm{n}, \mathrm{n}>0\right\}$

20. Ans: (C)

Sol: $\mathrm{S} \rightarrow \mathrm{XY}$
$\mathrm{X} \rightarrow \mathrm{aX} \mid \mathrm{a}$
$\mathrm{Y} \rightarrow \mathrm{aYb} \mid \varepsilon$
$\mathrm{X} \rightarrow \mathrm{a}^{+}$
$\mathrm{Y} \rightarrow\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 0, \mathrm{~m}=\mathrm{n}\right\}$
$\mathrm{Y} \rightarrow \mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{m}}, \mathrm{m} \geq 0$

$$
\begin{aligned}
& S \rightarrow X Y \\
& S \rightarrow a^{n} a^{m} b^{m}, m \geq 0, n \geq 1 \\
& S \rightarrow a^{i} b^{j}, i>j, i \geq 1, j \geq 0 \\
& L=\left\{a^{m} b^{n} \mid m>n, n \geq 0\right\}
\end{aligned}
$$

21. Match the following:
(P) static char var;
(i) Sequence of memory locations to store addresses
(Q) $\mathrm{m}=\operatorname{malloc}(10)$;
(ii) A variable located in data section of memory

$$
\mathrm{m}=\mathrm{NULL} ;
$$

(R) char *ptr[10];
(iii) Request to allocate a CPU register to store data
(S) register int var1;
(iv) A lost memory which cannot be freed
(A) $\mathrm{P} \rightarrow$ (ii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (i), $\mathrm{S} \rightarrow$ (iii)
(B) $\mathrm{P} \rightarrow$ (ii), $\mathrm{Q} \rightarrow$ (i), $\mathrm{R} \rightarrow$ (iv), $\mathrm{S} \rightarrow$ (iii)
(C) $\mathrm{P} \rightarrow$ (ii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (iii), $\mathrm{S} \rightarrow$ (i)
(D) $\mathrm{P} \rightarrow$ (iii), $\mathrm{Q} \rightarrow$ (iv), $\mathrm{R} \rightarrow$ (i), $\mathrm{S} \rightarrow$ (ii)
21. Ans: (A)

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM

HYDERABAD

$29^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM

HYDERABAD \& DELHI

$7^{\text {st }}$ week of July 2017
22. Consider the set $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ under the partial ordering

$$
\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{~b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{~d}),(\mathrm{a}, \mathrm{e}),(\mathrm{b}, \mathrm{~b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{e}),(\mathrm{c}, \mathrm{c}),(\mathrm{c}, \mathrm{e}),(\mathrm{d}, \mathrm{~d}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{e})\}
$$

The Hasse diagram of the partial order (X, R) is shown below.

The minimum number of ordered pairs that need to be added to R to make (X, R) a lattice is
\qquad .
22. Ans: 0

Sol: In the given poset, the Join and meet exist for every pair of elements in X.
\therefore The poset (X, R) is a lattice. Hence, the minimum number of ordered pairs that need to be added to R to make (X, R) a lattice $=0$
23. The minimum possible number of states of a deterministic finite automaton that accepts the regular language $\mathrm{L}=\left\{\mathrm{w}_{1} \mathrm{aw}_{2}\left|\mathrm{w}_{1}, \mathrm{w}_{2} \in\{\mathrm{a}, \mathrm{b}\}^{*},\left|\mathrm{w}_{1}\right|=2,\left|\mathrm{w}_{2}\right| \geq 3\right\}\right.$ is \qquad .
23. Ans: 8

Sol: $\mathrm{L}=\left\{\mathrm{w}_{1} \mathrm{aw}_{2}\left|\mathrm{w}_{1}, \mathrm{w}_{2} \in(\mathrm{a}+\mathrm{b})^{*},\left|\mathrm{w}_{1}\right|=2,\left|\mathrm{w}_{2}\right| \geq 3\right\}\right.$
Let $X \in L$

$$
\begin{array}{cl}
\Rightarrow X=w_{1} \mathrm{a} \mathrm{w}_{2} & \left|\mathrm{w}_{1}\right|=2 \\
|X| \geq 6 & \left|w_{2}\right|=3
\end{array}
$$

L has strings of length ≥ 6. So minimum 7 states are required and to make it complete one dead state is required
\therefore Minimum Number of states required to construct DFA for the language L is 8
24. A circular queue has been implemented using a singly linked list where each node consists of a value and a single pointer pointing to the next node. We maintain exactly two external pointers FRONT and REAR pointing to the front node and the rear node of the queue, respectively. Which of the following statements is/are CORRECT for such a circular queue, so that insertion and deletion operations can be performed in $\mathrm{O}(1)$ time?
I. Next pointer of front node points to the rear node.
II. Next pointer of rear node points to the front node.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
24. Ans: (B)

Sol: It is an extension for the basic single linked list. In circular linked list Instead of storing a Null value in the last node of a single linked list, store the address of the 1 st node (root) forms a circular linked list. Using circular linked list it is possible to directly traverse to the first node after reaching the last node and so perform additions and deletions in $\mathrm{O}(1)$ time complexity.
For that, rear node points to front node but front node doesn't point to rear node.
25. The Breadth First Search (BFS) algorithm has been implemented using the queue data structure. Which one of the following is a possible order of visiting the nodes in the graph below?

(A) MNOPQR
(B) NQMPOR
(C) QMNROP
(D) POQNMR
25. Ans: (D)
26. P and Q are considering to apply for a job. The probability that P applies for the job is $\frac{1}{4}$, the probability that P applies for the job given that Q applies for the job is $\frac{1}{2}$, and the probability that Q applies for the job given that P applies for the job is $\frac{1}{3}$. Then the probability that P does not apply for the job given that Q does not apply for the job is
(A) $\frac{4}{5}$
(B) $\frac{5}{6}$
(C) $\frac{7}{8}$
(D) $\frac{11}{12}$
26. Ans: (A)

Sol: Given that, $\mathrm{p}(\mathrm{P})=\frac{1}{4}----(1)$
$\mathrm{p}(\mathrm{P} \mid \mathrm{Q})=\frac{1}{2}$
$\mathrm{p}(\mathrm{Q} \mid \mathrm{P})=\frac{1}{3} \cdots \cdots(3)$
From (2), $\frac{\mathrm{p}(\mathrm{p} \cap \mathrm{Q})}{\mathrm{p}(\mathrm{Q})}=\frac{1}{2}$
From (3), $\frac{\mathrm{p}(\mathrm{p} \cap \mathrm{Q})}{\mathrm{p}(\mathrm{P})}=\frac{1}{3}$
From (1) and (5), $\mathrm{p}(\mathrm{P} \cap \mathrm{Q})=\frac{1}{12}$
From (4) and (6), $\mathrm{p}(\mathrm{Q})=\frac{1}{6}$
Required probability $=p\left(\overline{\mathrm{P}} \left\lvert\, \overline{\mathrm{Q}}=\frac{\mathrm{p}(\overline{\mathrm{P}} \cap \overline{\mathrm{Q}})}{\mathrm{P}(\overline{\mathrm{Q}})}\right.\right.$

$$
=\frac{1-\mathrm{p}(\mathrm{P} \cup \mathrm{Q})}{\mathrm{P}(\overline{\mathrm{Q}})}=\frac{1-\left\{\frac{1}{4}+\frac{1}{6}-\frac{1}{12}\right\}}{\left(\frac{5}{6}\right)}=\frac{4}{5}
$$

27. If $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are Boolean variables, then which one of the following is INCORRECT?
(A) $w x+w(x+y)+x(x+y)=x+w y$
(B) $\overline{w \bar{x}}(y+\bar{z})+\bar{w} x=\bar{w}+x+\bar{y} z$
(C) $(w \bar{x}(y+x \bar{z})+\bar{w} \bar{x}) y=x \bar{y}$
(D) $(w+y)(w x y+w y z)=w x y+w y z$
28. Ans: (C)

Sol: Option: (A)

$w x+w x+w y+x+x y=x+w y$
$w x+x+x y+w y=x+w y$
$x+w y=x+w y$
TRUE

Option: (B)

$$
\begin{aligned}
& \overline{w \bar{x}(y+\bar{z})}+\bar{w} x=\bar{w}+x+\bar{y} z \\
& w \bar{x} y+w \bar{x} \bar{z}+\bar{w} x=\bar{w}+x+\bar{y} z \\
& (\bar{w}+x+\bar{y}) \cdot(\bar{w}+x+z)+\bar{w} x=\bar{w}+x+\bar{y} z \\
& \bar{w}+\bar{w} x+\bar{w} z+\bar{w} x+x+x z+\bar{w} \bar{y}+x \bar{y}+\bar{y} z=\bar{w}+x \cdot \bar{y} z \\
& \overline{\mathrm{w}}+\mathrm{x}+\overline{\mathrm{yz}}=\overline{\mathrm{w}}+\mathrm{x}+\overline{\mathrm{y} z}
\end{aligned}
$$

TRUE

Option: (C)

$(w \bar{x}(y+x \bar{z})+\bar{w} \bar{x}) y=x \bar{y}$
$w \bar{x} y+\bar{w} \bar{x} y=x \bar{y}$
$\bar{x} y=x \bar{y}$

FALSE

Option: (D)

$(w+y) .(w x y+w y z)=w x y+w y z$
$w x y+w y z+w x y+w y z=w x y+w y z$
$\therefore w x y+w y z=w x y+w y z$
TRUE
28. Consider the following C Program.

```
# include<stdio.h>
# include<string.h>
int main( )
{
    char * c = " GATECSIT2017";
    char * p = c;
    printf("%d", (int) strlen (c+2[p] - 6[p] - 1));
    return 0;
}
```

The output of the program is
28. Ans: 2

Sol: Strlen function computes no. of non zero characters.
so it returns 2 .
29. Let $L(R)$ be the language represented by regular expression R. Let $L(G)$ be the language generated by a context free grammar G. Let $L(M)$ be the language accepted by a Turing machine M.

Which of the following decision problems are undecidable?
I. Given a regular expression R and a string w, is $w \in L(R)$?
II. Given a context-free grammar G , is $\mathrm{L}(\mathrm{G})=\phi$?
III. Given a context-free grammar G , is $\mathrm{L}(\mathrm{G})=\sum^{*}$ for some alphabet Σ ?
IV. Given a Turing machine M and a string w, is $w \in L(M)$?
(A) I and IV only
(B) II and III only
(C) II, III and IV only
(D) III and IV only
29. Ans: (D)

Sol: $\mathrm{L}(\mathrm{R})$ is a Regular language
$\mathrm{L}(\mathrm{G})$ is a CFL
$\mathrm{L}(\mathrm{M})$ is a REL
R - Regular expression

G-CFG
M - Turing machine
(i) Is $w \in L(R)$? is decidable since membership property is trivial for Regular language
(ii) Is $\mathrm{L}(\mathrm{G})=\phi$? is also Decidable, emptyness of CFG is decidable
(iii) Universalness of CFG is undecidable i.e is $L(G)=\Sigma^{*}$! is undecidable
(iv) Membership property of REL is undecidable
\therefore Is $\mathrm{w} \in \mathrm{L}(\mathrm{M}) ?$ is undecidable
\therefore (iii) \& (iv) is undecidable
30. In a two-level cache system, the access times of L_{1} and L_{2} caches are 1 and 8 clock cycles, respectively. The miss penalty from the L_{2} cache to main memory is 18 clock cycles. The miss rate of L_{1} cache is twice that of L_{2}. The average memory access time (AMAT) of this cache system is 2 cycles. The miss rates of L_{1} and L_{2} respectively are:
(A) 0.111 and 0.056
(B) 0.056 and 0.111
(C) 0.0892 and 0.1784
(D) 0.1784 and 0.0892
30. Ans: (A)
31. In a B^{+}tree, if the search-key value is 8 bytes long, the block size is 512 bytes and the block pointer size is 2 bytes, then the maximum order of the B^{+}tree is \qquad .

31. Ans: 52

Sol: Key $=8$, Block size $=512$, Block pointer $=2$ bytes, the order of B^{+}tree is maximum number of block pointers in it. (Let ' n ')
$\mathrm{n} * 2+(\mathrm{n}-1) 8 \leq 512$
$2 \mathrm{n}+8 \mathrm{n}-8 \leq 512$
$10 \mathrm{n} \leq 520$
$\mathrm{n} \leq 52$
32. If the ordinary generating function of a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is $\frac{1+Z}{(1-Z)^{3}}$, then $a_{3}-a_{0}$ is equal to \qquad .
32. Ans: 15

Sol: Let $\frac{1+Z}{(1-Z)^{3}}=a_{0}+a_{1} Z+a_{2} Z^{2}+a_{3} Z^{3}+$ \qquad
$\frac{1+Z}{(1-Z)^{3}}=(1+Z)(1-Z)^{-3}$

$$
=(1+Z)\left(1+3 Z+6 Z^{2}+10 Z^{3}+.\right.
$$

Using binomial theorem

$$
\begin{equation*}
=1+4 Z+9 Z^{2}+16 Z^{3}+\ldots \ldots \infty \tag{2}
\end{equation*}
$$

From (1) and (2), $a_{0}=1$ and $a_{3}=16$
$\therefore \mathrm{a}_{3}-\mathrm{a}_{0}=15$

ESE . 20
 17 MAINS (STAGE - II)

Exclusive Postal Coaching Offer for Prelims Qualified Students

For E\&T / EE / CE / ME

33. The pre-order traversal of a binary search tree is given by $12,8,6,2,7,9,10,16,15,19,17,20$. Then the post-order traversal of this tree is:
(A) $2,6,7,8,9,10,12,15,16,17,19,20$
(B) $2,7,6,10,9,8,15,17,20,19,16,12$
(C) $7,2,6,8,9,10,20,17,19,15,16,12$
(D) $7,6,2,10,9,8,15,16,17,20,19,12$
33. Ans: (B)

Sol: Preorder $=12,8,6,2,7,9,10,16,15,19,17,20$

$=2,7,6,10,9,8,15,17,20,19,16,12$
34. Consider the following C function.
int fun(int n)
\{
int i, j;
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{
for $(\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+=\mathrm{i})$
\{
$\operatorname{printf}(" \% d$ \%d", $\mathrm{i}, \mathrm{j})$;
\}
\}
\}
Time complexity of fun in terms of θ notation is
(A) $\theta(\mathrm{n} \sqrt{\mathrm{n}})$
(B) $\theta\left(n^{2}\right)$
(C) $\theta(\mathrm{n} \log \mathrm{n})$
(D) $\theta\left(n^{2} \log n\right)$

34. Ans: (C)

Sol: Running Time $=n+\frac{n+1}{2}+\frac{n+2}{3}+\frac{n+3}{4}+\ldots \ldots . . \frac{n+(n-1)}{n}$.

$$
\begin{aligned}
& =\mathrm{n}\left[1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots+\frac{1}{\mathrm{n}}\right]+\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots+\frac{\mathrm{n}-1}{\mathrm{n}}\right] \\
& =\theta(\mathrm{n} \log \mathrm{n})
\end{aligned}
$$

35. Consider the following snippet of a C program. Assume that swap(\&x, \&y) exchanges the contents of x and y.
int main ()
\{

$$
\begin{aligned}
& \text { int array }[]=\{3,5,1,4,6,2\} ; \\
& \text { int done }=0 ; \\
& \text { int } i ; \\
& \text { while (done }=0)
\end{aligned}
$$

```
    {
        done = 1;
        for (i=0;i<=4;i++)
        {
        if (array [i] < array [i+1])
        {
            swap (&array[i], &array[i+1]);
            done = 0;
                }
        {
            if (array[i] > array[i-1])
        {
        swap(&array[i], &array[i-1];
        done = 0;
        }
        }
    }
    printf("%d", array[3]);
}
```

The output of the program is \qquad .

35. Ans:3

Sol: After performing while loop, the content in array[3] is ' 3 '.

0	1	2	3	4	5
3	5	1	4	6	2
5	3	4	6	2	1
6	5	3	4		
6	5	4	3		

36. Consider a binary code that consists of only four valid code words as given below:

$$
00000,01011,10101,11110
$$

Let the minimum Humming distance of the code be p and the maximum number of erroneous bits that can be corrected by the code be q. Then the values of p and q are
(A) $p=3$ and $q=1$
(B) $p=3$ and $q=2$
(C) $\mathrm{p}=4$ and $\mathrm{q}=1$
(D) $\mathrm{p}=4$ and $\mathrm{q}=2$

36. Ans: (A)

Sol: The number of bit positions in which two code words differ is called Hamming Distance.

So minimum distance $=3 \Leftarrow \mathrm{p}$
To connect d errors, you need a distance $2 d+1$ code
So $3=2 d+1$
Hence $\mathrm{d}=1 \Leftarrow \mathrm{q}$
$\mathrm{p}=3, \quad \mathrm{q}=1$
37. Consider the following database table named top_scorer.

top_scorer		
player	country	goals
Klose	Germany	16
Ronaldo	Brazil	15
G Muller	Germany	14
Fontaine	France	13
Pele	Brazil	12
Klinsmann	Germany	11
Kocsis	Hungary	11
Batistuta	Argentina	10
Cubillas	Peru	10
Lato	Poland	10
Lineker	England	10
T Muller	Germany	10
Rahn	Germany	10

Consider the following SQL query:
SELECT ta.player FROM top_scorer AS ta
WHERE ta.goals > ALL (SELECT tb.goals)
FROM top_scorer AS tb
WHERE tb.country = 'Spain')
AND ta.goals> ANY (SELECT tc.goals FROM top_scorer AS tc
WEHRE tc.country = 'Germany')
The number of tuples returned by the above SQL query is \qquad .

37. Ans: 7

Sol: The output of the query is ta.player
Klose
Ronaldo
G muller
Fontaine

Pele
Klismann
Kocsis
38. The read access times and the hit ratios for different caches in a memory hierarchy are as given below.

Cache	Read access time (in nanoseconds)	Hit ratio
I-cache	2	0.8
D-cache	2	0.9
L2-cache	8	0.9

The read access time of main memory is 90 nanoseconds. Assume that the caches use the referred-word-first read policy and the write back policy. Assume that all the caches are direct mapped caches. Assume that the dirty bit is always 0 for all the blocks in the caches. In execution of a program, 60% of memory reads are for instruction fetch and 40% are for memory operand fetch. The average read access time in nanoseconds (up to 2 decimal places) is \qquad .
38. Ans: 5.40
39. Two transactions T_{1} and T_{2} are given as

$$
\begin{aligned}
& \mathrm{T}_{1}: \mathrm{r}_{1}(\mathrm{X}) \mathrm{w}_{1}(\mathrm{X}) \mathrm{r}_{1}(\mathrm{Y}) \mathrm{w}_{1}(\mathrm{Y}) \\
& \mathrm{T}_{2}: \mathrm{r}_{2}(\mathrm{Y}) \mathrm{w}_{2}(\mathrm{Y}) \mathrm{r}_{2}(\mathrm{Z}) \mathrm{w}_{2}(\mathrm{Z})
\end{aligned}
$$

where $r_{i}(V)$ denotes a read operation by transaction T_{i} on a variable V and $w_{i}(V)$ denotes a write operation by transaction T_{i} on a variable V . The total number of conflict serializable schedules that can be formed by T_{1} and T_{2} is \qquad .
39. Ans: 54

Sol: There is only one conflict serializable schedule as $T_{1} \rightarrow T_{2}$, because last operation of T_{1} and first operation of T_{2} conflicts each other.
Number of schedules that are conflict serializable to $T_{2} \rightarrow T_{1}$ is 53 .
Proof: The operations of T_{1} is $\mathrm{R}_{1}(\mathrm{x})_{-} \mathrm{W}_{1}(\mathrm{x})_{-} \mathrm{R}_{1}(\mathrm{y})_{-} \mathrm{W}_{1}(\mathrm{y})$
The first operation of T_{2} that conflicts with operation of T_{1} is $W_{2}(y)$ but not $R_{2}(z), W_{2}(z)$.

The number of places where $W_{2}(y)$ can appear is
Case $1: \underline{W_{2}}(y) R_{1}(x) W_{1}(x) R_{1}(y) W_{1}(y)$
Case 2: $R_{1}(x) \underline{W}_{2}(y) W_{1}(x) R_{1}(y) W_{1}(y)$
Case 3: $R_{1}(x) W_{1}(x) \underline{W}_{2}(y) R_{1}(y) W_{1}(y)$
Case 1: The number of positions that $R_{2}(z) W_{2}(z)$ can come before $W_{2}(y)$ is ${ }^{5} C_{1}+{ }^{5} C_{2}=15$ (either both can take same space or two different spaces).
$R_{2}(y)$ can come before $W_{2}(y)$ therefore one position, therefore total possible schedules are $=15 \times 1$

$$
=15 .
$$

Case 2: The number of positions that $\mathrm{R}_{2}(\mathrm{z}) \mathrm{W}_{2}(\mathrm{z})$ can come before $\mathrm{W}_{2}(\mathrm{y})$ is ${ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{2}=10$ For each of these 10 positions $\mathrm{R}_{2}(\mathrm{y})$ can take 2 positions before $\mathrm{W}_{2}(\mathrm{y})$ therefore total possible schedules are $10 \times 2=20$

Case 3: The number of positions that $\mathrm{R}_{2}(\mathrm{z}) \mathrm{W}_{2}(\mathrm{z})$ can come before $\mathrm{W}_{2}(\mathrm{y})$ is ${ }^{3} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}=6$
For each of these 6 positions $\mathrm{R}_{2}(\mathrm{y})$ can take 3 positions before $\mathrm{W}_{2}(\mathrm{y})$ therefore total possible schedules are $6 \times 3=18$.

The total conflict serializable schedules as $\mathrm{T}_{2} \rightarrow \mathrm{~T}_{1}=15+20+18=53$
\therefore Total conflict serializable schedules $=1+53=54$
40. A system shares 9 tape drives. The current allocation and maximum requirement of tape drives for three processes are shown below:

Process	Current Allocation	Maximum Requirement
P1	3	7
P2	1	6
P3	3	5

Which of the following best describes current state of the system?
(A) Safe, Deadlocked
(B) Safe, Not Deadlocked
(C) Not Safe, Deadlocked
(D) Not Safe, Not Deadlocked
40. Ans: (B)

Sol:

Process	Current Allocation	Maximum Requirement	Current need	Current Available
P1	3	7	4	$9-7=2$
P2	1	6	5	
P3	3	5	2	

with 2 available tape drives, current need of P3 can be fulfilled, so P3 can execute completly then after that P3 will release its allocated resources. Which will make total available drives to 5 . After that P1 and P2 processes can finish in any order. All processes can complete, hence safe state and no deadlock.
41. Consider the set of processes with arrival time (in milliseconds). CPU burst time (in milliseconds), and priority (0 is the highest priority) shown below. None of the processes have I/O burst time.

Process	Arrival Time	Burst Time	Priority
P_{1}	0	11	2
P_{2}	5	28	0
P_{3}	12	2	3
P_{4}	2	10	1
P_{5}	9	16	4

The average waiting time (in milliseconds) of all the processes using preemptive priority scheduling algorithm is \qquad .
41. Ans: 29

Sol: Gantt Chart:

P1	P4	P2	P4	P1	P3	P5
0	2	33	40	49	51	67

Process	Waiting Time
P1 Sin	38
P2	0
P3	37
P4	28
P5	42
Total $=145$	

Average waiting time $=\frac{145}{5}=29$
42. If the characteristic polynomial of a 3×3 matrix M over R (the set of real numbers) is $\lambda^{3}-4 \lambda^{2}+a \lambda+30 . a \in R$, and one eigenvalue of M is 2 , then the largest among the absolute values of the eigenvalues of M is \qquad .
42. Ans: 5

Sol: The characteristic equation of M is
$\lambda^{3}-4 \lambda^{2}+a \lambda+30=0$ \qquad
Substituting $\lambda=2$ in (1), we get $\mathrm{a}=-11$
Now, the characteristic equation is
$\lambda^{3}-4 \lambda^{2}-11 \lambda+30=0$
$\Rightarrow(\lambda-2)\left(\lambda^{2}-2 \lambda-15\right)=0$
$\Rightarrow \lambda=2,-3,5$
\therefore The largest among the absolute values of the eigen values of $\mathrm{M}=5$
43. If a random variable X has a Poisson distribution with mean 5 , then the expectation $\mathrm{E}\left[(\mathrm{X}+2)^{2}\right]$ equals \qquad .
43. Ans: 54

Sol: For poisson distribution,

$$
\mathrm{E}(\mathrm{X})=\mathrm{Mean}=\lambda=5
$$

$\mathrm{E}\left(\mathrm{X}^{2}\right)=\lambda^{2}+\lambda$
Now,

$$
\begin{aligned}
\mathrm{E}\left[(\mathrm{X}+2)^{2}\right] & =\mathrm{E}\left(\mathrm{X}^{2}+4 \mathrm{X}+4\right) \\
& =\mathrm{E}\left(\mathrm{X}^{2}\right)+4 \mathrm{E}(\mathrm{X})+4 \\
& =\left[\left(\lambda^{2}+\lambda\right)+4 \lambda+4\right], \text { where } \lambda=5 \\
& =54
\end{aligned}
$$

HEARTY CONGRATULATIONS TO OUR

ESE 2016 RANKERS

44. Consider the following C Program.

```
# include<stdio.h>
int main ()
{
    int m = 10;
    int n, n1;
    n = ++m;
    nl = m++;
    n- -;
    --n1;
    n-= n1;
    printf("%d", n);
    return 0;
}
```

The output the program is \qquad .
44. Ans: 0

Sol: After execution of main function, the final content in ' n ' is ' 0 '.
45. A message is made up entirely of characters from the set $X=\{P, Q, R, S, T\}$. The table of probabilities for each of the characters is shown below:

Character	Probability
P	0.22
Q	0.34
R	0.17
S	0.19
T	0.08
Total	1.00

If a message of 100 characters over X is encoded using Huffman coding, then the expected length of the encoded message in bits is \qquad .
45. Ans. 225

Sol: Calculate the Avg. No. Of Bits per Character using Huff. Coding and Multiply with the no. Of characters present in the Message.
46. Consider the recurrence function

$$
\mathrm{T}(\mathrm{n})= \begin{cases}2 \mathrm{~T}(\sqrt{\mathrm{n}})+1, & \mathrm{n}>2 \\ 2, & 0<\mathrm{n} \leq 2\end{cases}
$$

Then $T(n)$ in terms of θ notation is
(A) $\theta(\log \log n)$
(B) $\theta(\log n)$
(C) $\theta(\sqrt{n})$
(D) $\theta(\mathrm{n})$
46. Ans: (B)

Sol: $T(n)=2 T(\sqrt{n})+1 \quad$ if $n>2$

$$
=2 \quad 0<\mathrm{n} \leq 2
$$

At $\mathrm{k}^{\text {th }}$ iteration, we have $\mathrm{n}^{2^{\frac{1}{k}}}=2$

$$
2^{\mathrm{k}}=\log _{2} \mathrm{n}
$$

$$
\mathrm{k}=\log _{2} \log _{2} \mathrm{n}
$$

By substituting ' k ' value in $T(n)$, we have

$$
T(n)=\theta(\log n)
$$

47. Consider the following expression grammar G :

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}-\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}+\mathrm{F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

Which of the following grammars is not left recursive, but is equivalent to G ?
(A) $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T} \mid \mathrm{T}$
(B) $\mathrm{E} \rightarrow \mathrm{TE}^{\prime}$
$\mathrm{T} \rightarrow \mathrm{T}+\mathrm{F} \mid \mathrm{F}$
$\mathrm{E}^{\prime} \rightarrow-\mathrm{TE}^{\prime} \mid \varepsilon$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}$

$$
\mathrm{T} \rightarrow \mathrm{~T}+\mathrm{F} \mid \mathrm{F}
$$

$$
\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
$$

(C) $\mathrm{E} \rightarrow \mathrm{TX}$
$\mathrm{X} \rightarrow-\mathrm{TX} \mid \varepsilon$
(D) $\mathrm{E} \rightarrow \mathrm{TX} \mid$ (TX)
$\mathrm{X} \rightarrow-\mathrm{TX}|+\mathrm{TX}| \varepsilon$
$\mathrm{T} \rightarrow \mathrm{FY}$

$$
\mathrm{T} \rightarrow \mathrm{id}
$$

47. Ans: (C)

Sol: The production of the form $\mathrm{A} \rightarrow \mathrm{A} \alpha / \beta$ is left recursive, and can be eliminated by replacing with
$A \rightarrow \beta A^{1}$
$\mathrm{A}^{1} \rightarrow \alpha \mathrm{~A}^{1 / \varepsilon}$
48. For any discrete random variable X, with probability mass function $P(X=j)=p_{j}, p_{j} \geq 0, j \in\{0, \ldots \ldots \ldots, N\}$, and $\sum_{j=0}^{N} p_{j}=1$, define the polynomial function $g_{x}(z)=\sum_{j=0}^{N} p_{j} z^{j}$. For a certain discrete random variable Y, there exists a scalar $\beta \in[0,1]$ such that $g_{y}(z)=\{1-\beta+\beta z)^{N}$. The expectation of Y is
(A) $N \beta(1-\beta)$
(B) $N \beta$
(C) $\mathrm{N}(1-\beta)$
(D) Not expressible in terms of N and β alone

48. Ans: (B)

Sol: The cumulants generations function

$$
\begin{aligned}
&=K_{Y}(Z)=\log _{e} g_{y}(Z) \\
&=\log _{e}(1-\beta+\beta z)^{N} \\
&=N \cdot \log (1-\beta+\beta z) \\
& E(Y)=K_{1}=\left[\frac{d}{d z}\left\{K_{Y}(Z)\right\}\right]_{Z=1} \\
& \Rightarrow E(Y)=\left[\frac{N \beta}{1-\beta+\beta Z}\right]_{Z=1} \\
&=N \beta
\end{aligned}
$$

49. The next state table of a 2-bit saturating up-counter is given below.

Q_{1}	Q_{0}	Q_{1}^{+}	Q_{0}^{+}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	1	1

The counter is built as a synchronous sequential circuit using T flip-flops. The expression for T_{1} and T_{0} are
(A) $\mathrm{T}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{0}, \quad \mathrm{~T}_{0}=\overline{\mathrm{Q}}_{1} \overline{\mathrm{Q}}_{0}$
(B) $\mathrm{T}_{1}=\overline{\mathrm{Q}}_{1} \mathrm{Q}_{0}, \mathrm{~T}_{0}=\overline{\mathrm{Q}}_{1}+\overline{\mathrm{Q}}_{0}$
(C) $\mathrm{T}_{1}=\mathrm{Q}_{1}+\mathrm{Q}_{0}, \mathrm{~T}_{0}=\overline{\mathrm{Q}}_{1}+\overline{\mathrm{Q}}_{0}$
(D) $\mathrm{T}_{1}=\overline{\mathrm{Q}}_{1} \mathrm{Q}_{0}, \mathrm{~T}_{0}=\mathrm{Q}_{1}+\mathrm{Q}_{0}$
49. Ans: (B)

Sol:

$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{0}}$	
0	0	0	1	
0	1	1	1	
1	0	0	1	
1	1	0	0	
1	1	Saturated		

$\mathrm{T}_{1}=\overline{\mathrm{Q}}_{1} \mathrm{Q}_{0}$
$\mathrm{T}_{0}=\overline{\mathrm{Q}}_{1}+\overline{\mathrm{Q}}_{0}$
50. Given $f(w, x, y, z)=\sum_{m}(0,1,2,3,7,8,10)+\sum_{d}(5,6,11,15)$, where d represents the don't-care condition in Karnaugh maps. Which of the following is a minimum product-of-sums (POS) form of $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})$?
(A) $f=(\bar{w}+\bar{z})(\bar{x}+z)$
(B) $f=(\bar{w}+z)(x+z)$
(C) $\mathrm{f}=(\mathrm{w}+\mathrm{z})(\overline{\mathrm{x}}+\mathrm{z})$
(D) $\mathrm{f}=(\mathrm{w}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\mathrm{z})$

50. Ans: (A)

Sol:

$(\overline{\mathrm{x}}+\mathrm{z})(\overline{\mathrm{w}}+\overline{\mathrm{z}})$
51. Let δ denote the transition function and $\hat{\delta}$ denote the extended transition function of the $\varepsilon-\mathrm{NFA}$ whose transition table is give below:

δ	ε	a	b
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{3}\right\}$
q_{2}	$\left\{\mathrm{q}_{0}\right\}$	ϕ	ϕ
q_{3}	ϕ	ϕ	$\left\{\mathrm{q}_{2}\right\}$

Then $\hat{\delta}\left(\mathrm{q}_{2}, \mathrm{aba}\right)$ is
(A) ϕ
(B) $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{3}\right\}$
(C) $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
(D) $\left\{\mathrm{q}_{0}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
51. Ans: (C)

Sol:

52. Consider two hosts X and Y , connected by a single direct link of rate $10^{6} \mathrm{bits} / \mathrm{sec}$. The distance between the two hosts is $10,000 \mathrm{~km}$ and the propagation speed along the link is $2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. Host X send a file of 50,000 bytes as one large message to host Y continuously. Let the transmission and propagation delays be p milliseconds and q milliseconds, respectively. Then the values of p and q are
(A) $p=50$ and $q=100$
(B) $p=50$ and $q=400$
(C) $p=100$ and $q=50$
(D) $\mathrm{p}=400$ and $\mathrm{q}=50$

52. Ans: (D)

Sol: Given:

$$
\mathrm{B}=10^{6} \mathrm{bps}
$$

Distance $=10000 \mathrm{~km}$

$$
\begin{aligned}
\mathrm{T}_{\mathrm{P}} & =2 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\mathrm{~L} & =50000 \mathrm{~B}
\end{aligned}
$$

$$
\mathrm{p}=\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{~B}}=\frac{50000 \times 8}{100 \times 10^{4}}=\frac{4}{10} \times \frac{10^{3}}{10^{3}}=\frac{4000}{10}=400 \mathrm{msec}
$$

$$
\mathrm{q}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{10000 \times 10^{3}}{2 \times 10^{8}}=\frac{1}{20}=\frac{1}{20} \times \frac{10^{3}}{10^{3}}=\frac{1000}{20} \mathrm{~ms}=50 \mathrm{~ms}
$$

53. Consider the C program fragment below which is meant to divide x by y using repeated subtractions. The variables $\mathrm{x}, \mathrm{y}, \mathrm{q}$ and r are all unsigned int.
```
while (r >= y)
{
\[
\mathrm{r}=\mathrm{r}-\mathrm{y}
\]
\[
\mathrm{q}=\mathrm{q}+1
\]
\[
\}
\]
```

Which of the following conditions on the variables x, y, q and r before the execution of the fragment will ensure that the loop terminates in a state satisfying the condition $x==\left(y^{*} q+r\right)$?
(A) $(\mathrm{q}==\mathrm{r}) \& \&(\mathrm{r}==0)$
(B) $(x>0) \& \&(r==x) \& \&(y>0)$
(C) $(\mathrm{q}==0) \& \&(\mathrm{r}==\mathrm{x}) \& \&(\mathrm{y}>0)$
(D) $(\mathrm{q}==0) \& \&(\mathrm{y}>0)$

53. Ans: (C)

Sol: For $\mathrm{r}==\mathrm{x}, \mathrm{y}>0$ and $\mathrm{q}==0$
we have $x=y \times q+r$
54. Consider the following languages.
$\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{p}\right.$ is a prime number $\}$
$\mathrm{L}_{2}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{2 \mathrm{~m}} \mid \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}$
$\mathrm{L}_{3}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{2 \mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
$\mathrm{L}_{4}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
Which of the following are CORRECT?
I. L_{1} is context-free but not regular
II. L_{2} is not context-free.
III. L_{3} is not context-free but recursive
IV. L_{4} is deterministic context-free
(A) I, II and IV only
(B) II and III only
(C) I and IV only
(D) III and IV only

54. Ans: (D)

Sol: $\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{p}\right.$ is Prime $\}-$ CSL
$L_{2}=\left\{a^{n} b^{m} c^{2 m} \mid m \geq 0, n \geq 0\right\}-C F L$
$\mathrm{L}_{3}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{2 \mathrm{n}} \mid \mathrm{n} \geq 0\right\}-\mathrm{CSL} \rightarrow$ Recursive
$\mathrm{L}_{4}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}-$ DCFL, CFL
(iii) L_{3} is Not context free but Recursive - correct
since every CSL in recursive
(iv) L_{4} is DCFL - correct
L_{4} is accepted by DPDA
\therefore (iii) \& (iv) is correct
55. Consider a machine with a byte addressable main memory of 2^{32} bytes divided into blocks of size 32 bytes. Assume that a direct mapped cache having 512 cache lines is used with this machine. The size of the tag field in bits is \qquad .

55. Ans: 18

Sol: Main Memory Size $=2^{32}$ Bytes
Block size $=2{ }^{5}$ Bytes
Number of blocks in Cache $=2^{9}$

Tag 18	Block offset 9	Word offset 5
\longleftrightarrow		

Block offset size $=\log _{2} 512=9$
Word offset size $=\log _{2} 32=5$

General Aptitude

1. Choose the option with words that are not synonyms.
(A) aversion, dislike
(B) luminous, radiant
(C) plunder, loot
(D) yielding, resistant
2. Ans: (D)

Sol: 'Yielding' means tending to do where as 'resistant' means opposed to something, so both are not synonyms.
02. There are five building called $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z in a row (not necessarily in that order). V is to the West of W, Z is to the East of X and the West of V , W is the West of Y . Which is the building in the middle?
(A) V
(B) W
(C) X
(D) Y

02. Ans: (A)

Sol: From the given data, the following Row is formed

\therefore The building ' V ' is in the middle
03. There are 3 red socks, 4 greed socks and 3 blue socks. You choose 2 socks. The probability that they are of the same colour is
(A) $1 / 5$
(B) $7 / 30$
(C) $1 / 4$
(D) $4 / 15$
03. Ans: (D)

Sol: Red socks $=3$
Green socks $=3$
Blue socks $=3$
\therefore The probability that they are of the same colours of pair $=\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}+\frac{{ }^{4} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}+\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}$

$$
\begin{aligned}
& =\frac{3}{45}+\frac{6}{45}+\frac{3}{45} \\
& =\frac{12}{45}=\frac{4}{15}
\end{aligned}
$$

4. A test has twenty questions worth 100 marks in total. There are two types of questions. Multiple choice questions are worth 3 marks each and essay questions are worth 11 marks each. How many multiple choice questions does the exam have?
(A) 12
(B) 15
(C) 18
(D) 19
hearty congratulations to our GATE 2016 RANKERS

04. Ans: (B)

Sol: Total marks in the test $=100$
For multiple choice questions $=3$ marks
For essay questions = 11 marks

Option (A)

Marks for multiple choice questions $=12 \times 3=36$
Marks for essay type questions $=100-36=64$
64 is not divisible by 11
\therefore Option (A) is not correct.

Option (B)

Marks for multiple choice questions $=15 \times 3=45$
Marks for essay type questions $=100-45=\frac{55}{11}=5$
Essay type questions are 5 No's
\therefore Option (B) is correct

Option(C)

Marks for multiple choice questions $=18 \times 3=54$
Marks for essay type questions $=100-54=46$
46 is not divisible by 11
\therefore Option (C) is not correct.

Option (D)

Marks for multiple choice questions $=19 \times 3=57$
Marks for essay type questions $=100-57=43$
46 is not divisible by 11
\therefore Option (D) is not correct.
05. Saturn is \qquad to be seen on a clear night with the naked eye.
(A) enough bright
(B) bright enough
(C) as enough bright
(D) bright as enough
05. Ans: (B)

Sol: The word 'enough' as an adverb falts after the adjective so 'bright enough' is the right answer
06. The number of roots or $\mathrm{e}^{\mathrm{x}}+0.5 \mathrm{x}^{2}-2=0$ in the range $[-5,5]$ is
(A) 0
(B) 1
(C) 2
(D) 3
06. Ans: (C)

Sol: $e^{x}+0.5 x^{2}-2=0$ in the range $[-5,5]$
$f(x)=e^{x}+0.5 x^{2}-2$
$\mathrm{f}(-5)=10.50$
$f(-4)=6.01$
$\mathrm{f}(-2)=0.135$
$f(-1)=-1.13$
$f(0)=-1$
$\mathrm{f}(1)=1.21$
$f(2)=7.38$
As there are 2 sign changes from +ve to $-\mathrm{ve} \&-\mathrm{ve}$ to +ve .
Two roots will be there in the range $[-5,5]$
07. There are three boxes. One contains apples, another contains oranges and the last one contains both apples and oranges. All three are known to be incorrectly labelled. If you are permitted to open just one box and then pull out and inspect only one fruit, which box would you open to determine the contents of all three boxes?
(A) The box labelled 'Apples'
(B) The box labelled 'Apples and Oranges'
(C) The box labelled 'Oranges'
(D) Cannot be determined

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Questions \& Solutions)	
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-I Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-1 Obi)	Mechanical Engineering (Volume-1 Obi)
Instrumentation Engineering	Electrical Engineering (Volume-II Obi)	Mechanical Engineering (Volume-ll Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-1 Conv)	Mechanical Engineering (Paper-I Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-Il Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO / PSUs (Previous Years Questions With Solutions \& Useful for BARC, SAIL, BEL, NPCIL, AAI \& OTHER PSUs)		

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise
* You can Buy Online also

든 (Prelims \& Mains)				(5) ${ }_{\text {c }}$	
Streams: EC, EE, ME, CE				Streams : EC, EE, ME, CE, CS, IN, PI	
Test Type	Prel	ims	Mains	Test Type	No. Of Tests (Online)
	Online	Offline	Offline		
Chapter-wise Tests	43	-	-	Chapter-wise Tests	20
Subject-wise Grand Tests	31	20	08	Subject-wise Grand Tests	40
Revision Tests	-	-	04	Subject-wise Grand Tests	40
Full Lenth Mock Tests	08	04	04	Full Lenth Mock Tests	12

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS ION for conduting Pro-GATE 2018 (Center based MOCK Test) on PAN India basis with Analytics.

Video Solutuions are available for Selected Objective Questions for Online Exams

07. Ans: (B)

Sol: The person who is opening the boxes, he knew that all 3 are marked wrong.
Suppose if three boxes are labelled as below.

(1) Apples

(2) Oranges

(3) Apples \& Oranges

If he inspected from Box (1), picked one fruit, found orange, then he don't know whether Box contains oranges (or) both apples \& oranges.

Similarly if he picked one fruit from box(2), found apple then he don't know whether box contain apples (or) both apples \& oranges.

But if he picked one fruit from box(3), i.e., labelled as 'apples \& oranges', if he found apple then he can decide compulsorily that box (3) contain apples and as he knew all boxes are labeled as incorrect, he can tell box(2) contains both apples \& oranges, box(1) contain remaining oranges. So, he should open box labelled 'apples \& oranges' to determine contents of all the three boxes.
08. "We lived in a culture that denied any merit to literary works, considering them important only when they were handmaidens to something seemingly more urgent-namely ideology. This was a country where all gestures, even the most private, were interpreted in political terms.

The author's belief that ideology is not as important as literature is revealed by the word:
(A) 'culture'
(B) 'seemingly'
(C) 'urgent'
(D) 'political'
08. Ans: (B)

Sol: It appears to be ' B ', so the right option is ' B '.
09. X is a 30 digit number starting with the digit 4 followed by the digit 7 . Then the number X^{3} will have
(A) 90 digits
(B) 91 digits
(C) 92 digits
(D) 93 digits
09. Ans: (A)

Sol: $\mathrm{X}=(47 \ldots \ldots \ldots . .)_{30 \text { digits }}$
Suppose $(47)^{3}=2+2+2$ digits in $(47)^{3}$
Similarly $(47 \ldots \ldots .)^{3}{ }_{30 \text { digits }}=$ contains $30+30+30$ digits $=90$ digits
10. An air pressure contour line joins locations in a region having the same atmospheric pressure. The following is an air pressure contour plot of a geographical region. Contour lines are shown at 0.05 bar intervals in this plot

If the possibility of a thunderstorm is given by how fast air pressure rises or drops over a region. Which of the following regions is most likely to have a thunderstorm?
(A) P
(B) Q
(C) R
(D) S
10. Ans: (C)

Sol:

Region	Air pressure difference
P	$0.95-0.90=0.05$
Q	$0.80-0.75=0.05$
R	$0.85-0.65=0.20$
S	$0.95-0.90=0.05$

In general thunderstorms are occurred in a region where suddenly air pressure changes (i.e.,) sudden rise (or) sudden fall of air pressure. From the given contour map in ' R ' Region only more changes in air pressure so, the possibility of a thunderstorms in this region.
\therefore option(C) is correct.

