ACE
Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kolkata

GATE 2017

Electronics \& Communication Engineering

Questions with Detailed Solutions

AFTERNOON SESSION

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418, 19, 20

1. In the circuit shown, V is a sinusoidal voltage source. The current I is in phase with voltage V .

The ratio $\frac{\text { Amplitude of voltage across the capcitor }}{\text { amplitude of voltage acrros the resistor }}$ is \qquad

01. Ans: 0.2

Sol: Given that V and I are in phase
\Rightarrow circuit is at resonance
$\Rightarrow \mathrm{V}_{\mathrm{C}}=\mathrm{QV} \angle-90^{\circ}$
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}$

$$
\begin{aligned}
\rightarrow \frac{\left|\mathrm{V}_{\mathrm{C}}\right|}{\left|\mathrm{V}_{\mathrm{R}}\right|} & =\frac{\mathrm{QV}}{\mathrm{~V}}=\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} \\
& =\frac{1}{5} \sqrt{\frac{5}{5}}=0.2
\end{aligned}
$$

2. An npn bipolar junction transistor (BJT) is operating in the active region. If the reverse bias across the base-collector junction is increased. Then
(A) the effective base width increases and common-emitter current gain increases
(B) the effective base width increases and common emitter current gain decreases
(C) the effective base width decreases and common-emitter current gain increases
(D) the effective base width decreases and common-emitter current gain decreases
3. Ans: (C)

Sol: If RB across the Base -collector junction increases
\Rightarrow Effective Base width decreases
So re-combinations in Base decreases
So α increases, so β increases
03. The residues of a function $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}-4)(\mathrm{z}+1)^{3}}$ are
(A) $\frac{-1}{27}$ and $\frac{-1}{125}$
(B) $\frac{1}{125}$ and $\frac{-1}{125}$
(C) $\frac{-1}{27}$ and $\frac{1}{5}$
(D) $\frac{1}{125}$ and $\frac{-1}{5}$
03. Ans: (B)

Sol: $f(z)=\frac{1}{(z-4)(z+1)^{3}}$

$$
\operatorname{Resf}_{z=4}(z)=\frac{1}{(4+1)^{3}}=\frac{1}{125}
$$

$$
\operatorname{Resf}_{\mathrm{z}=-1}(\mathrm{z})=\frac{1}{2!} \operatorname{Lt}_{\mathrm{z} \rightarrow-1} \frac{\mathrm{~d}^{2}}{\mathrm{dz}^{2}}\left\{(\mathrm{z}+1)^{3} \frac{1}{(\mathrm{z}-4)(\mathrm{z}+1)^{3}}\right\}=\frac{1}{2} \underset{\mathrm{z} \rightarrow-1}{\mathrm{Lt}}\left\{\frac{2}{(\mathrm{z}-4)^{3}}\right\}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{\frac{2}{-125}\right\} \\
& =\frac{-1}{125}
\end{aligned}
$$

4. Consider the circuit shown in figure. Assume base to emitter voltage $\mathrm{V}_{\mathrm{BE}}=0.8 \mathrm{~V}$ and common base current gain (α) of transistor is unity.

The value of the collectors to emitter voltage V_{CE} (in volt) is \qquad

04. Ans: 6V

Sol: $\alpha=1 \Rightarrow \beta \approx \infty \Rightarrow I_{B}=0$

$$
\mathrm{V}_{\mathrm{B}}=18 \times \frac{16}{16+44}=18 \times \frac{16}{60}=4.8 \mathrm{~V}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=4.8-0.8=4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=\frac{4}{2 \mathrm{k}}=2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{C}}=18-(4 \mathrm{k} \times 2 \mathrm{~m}) \\
& \quad=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=10-4=6 \mathrm{~V}
\end{aligned}
$$

5. Which one of the following graphs shows the Shannon capacity (channel capacity) in bits of a memoryless binary symmetric channel with crossover probability p?
(A)
(B)

(C)

05. Ans: (C)

Sol: The channel capacity of a BSC channel is

$$
\mathrm{C}=1+\mathrm{Plog}_{2} \mathrm{P}+(1-\mathrm{P}) \log _{2}(1-\mathrm{P})
$$

When,

$$
\begin{array}{ll}
P=0 & \Rightarrow C=1 \\
P=1 / 2 & \Rightarrow C=0 \\
P=1 & \Rightarrow C=1
\end{array}
$$

Channel capacity of a BSC

06. The input $x(t)$ and the output $y(t)$ of a continuous time system are related as $y(t)=\int_{t-T}^{t} x(u) d u$. The system is
(A) Linear and time variant
(B) linear and time invariant
(C) non linear and time variant
(D) nonlinear and time invariant
06. Ans: (B)

Sol: $y(t)=\int_{t-T}^{t} x(u) d u$
The system is linear, it satisfied both superposition and scaling property.
$y_{1}(t)=\int_{t-T}^{t} x(u-\tau) d u$
$u-\tau=\lambda$
$d u=d \lambda$
$y_{1}(t)=\int_{t-T-\tau}^{t-\tau} x(\lambda) d \lambda$
$y(t-\tau)=\int_{t-\tau-T}^{t-\tau} x(u) d u$
$\mathrm{y}_{1}(\mathrm{t})=\mathrm{y}(\mathrm{t}-\tau)$
So, Time invariant

COAL INDIA LIMITED (CIL)

 Management Trainee \& Other PSUs
Classroom coaching

(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

Starts on

『 $15^{\text {th }}$ Feb 2017 @ Delhi

Online Test Series (EE | ME | CE)

Total Tests : 20
『 starts from $\mathbf{1 7}^{\text {h }}$ Feb 2017

$$
\text { ESE } \underset{\text { Mains (Stage - II) }}{2017}
$$

Classroom Coaching Starts from 15 ${ }^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests : 16
V. Will Conduct at all Our centers
07. An LTI system with unit sample response $\mathrm{h}(\mathrm{n})=5 \delta[\mathrm{n}]-7 \delta[\mathrm{n}-1]+7 \delta[\mathrm{n}-3]-5 \delta[\mathrm{n}-4]$ is a
(A) low pass filter
(B) high pass filter
(C) band pass filter
(D) band stop filter
07. Ans: (C)

Sol: $\mathrm{h}(\mathrm{n})=5 \delta(\mathrm{n})-7 \delta(\mathrm{n}-1)+7 \delta(\mathrm{n}-3)-5 \delta(\mathrm{n}-4)$
In frequency domain

$$
\begin{aligned}
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=5-7 \mathrm{e}^{-\mathrm{j} \omega}+7 \mathrm{e}^{-\mathrm{j} 3 \omega}-5 \mathrm{e}^{-\mathrm{j} 4 \omega} \\
& \Rightarrow \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=5 \mathrm{e}^{-\mathrm{j} 2 \omega}\left(\mathrm{e}^{\mathrm{j} 2 \omega}-\mathrm{e}^{-\mathrm{j} 2 \omega}\right)-7 \mathrm{e}^{-\mathrm{j} 2 \omega}\left(\mathrm{e}^{\mathrm{j} \omega}-\mathrm{e}^{-\mathrm{j} \omega}\right) \\
& =5 \mathrm{e}^{-\mathrm{j} 2 \omega}[2 \mathrm{j} \sin (2 \omega)]-7 \mathrm{e}^{-\mathrm{j} 2 \omega}[2 \mathrm{j} \sin \omega] \\
& =\mathrm{e}^{-\mathrm{j} 2 \omega}[10 \mathrm{j} \sin 2 \omega-14 \mathrm{j} \sin \omega]
\end{aligned}
$$

ω	$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$	$\left\|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\|$
0	0	0
$\frac{\pi}{2}$	14 j	14
π	0	0

It is a Band pass filter.
08. For the system shown in the figure, $\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})=$ \qquad

08. Ans: 1

Sol: $\frac{Y(s)}{X(s)}=\frac{2+1}{1+2}=1$
09. Two conducting spheres $S 1$ and $S 2$ of radii a and $b(b>a)$ respectively, are placed far apart and connected by a long, thin conducting wire, as shown in the figure.

For some charge placed on this structure, the potential and surface electric field on S 1 are V_{a} and E_{a}, and that on S 2 are V_{b} and E_{b} respectively. Then, which of the following is CORRECT ?
(A) $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}$ and $\mathrm{E}_{\mathrm{a}}<\mathrm{E}_{\mathrm{b}}$
(B) $\mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{b}}$ and $\mathrm{E}_{\mathrm{a}}>\mathrm{E}_{\mathrm{b}}$
(C) $V_{a}=V_{b}$ and $E_{a}>E_{b}$
(D) $\mathrm{V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{b}}$ and $\mathrm{E}_{\mathrm{a}}=\mathrm{E}_{\mathrm{b}}$
09. Ans: (C)

Sol:

When the two spheres are connected by a conducting wire, charge will flow from one to another until their potentials are equal.
$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}$
$\frac{1}{4 \pi \in} \frac{\mathrm{Q}_{1}}{\mathrm{a}}=\frac{1}{4 \pi \in} \frac{\mathrm{Q}_{2}}{\mathrm{~b}}$
$\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{a}}{\mathrm{b}}$
$\mathrm{E}_{\mathrm{a}}=\frac{1}{4 \pi \in} \frac{\mathrm{Q}_{1}}{\mathrm{a}^{2}}$
$\mathrm{E}_{\mathrm{b}}=\frac{1}{4 \pi \in} \frac{\mathrm{Q}_{2}}{\mathrm{~b}^{2}}$
$\therefore \frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{E}_{\mathrm{b}}}=\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}} \frac{\mathrm{~b}^{2}}{\mathrm{a}^{2}}$
$\frac{E_{a}}{E_{b}}=\frac{b}{a}$
So, $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}$
and $E_{a}>E_{b}$
10. Which of the following statement is incorrect?
(A) Lead compensator is used to reduce the settling time.
(B) Lag compensator is used to reduce the steady state error.
(C) Lead compensator may increase the order of a system
(D) Lag compensator always stabilizes an unstable system.
10. Ans: (D)

Sol: Lag compensator reduces the steady state error but it cannot stabilizes an unstable system.
11. In the figure, D 1 is a real silicon pn junction diode with a drop of 0.7 V under forward bias condition and D 2 is a zener diode with breakdown voltage of -6.8 V . The input $\mathrm{V}_{\mathrm{in}}(\mathrm{t})$ is a periodic square wave of period T, whose one period is shown in the figure.

Assuming $10 \tau \ll \mathrm{~T}$. Where τ is the time constant of the circuit, the maximum and minimum values of the output waveform are respectively?
(A) 7.5 V and -20.5 V
(B) 6.1 V and -21.9 V
(C) 7.5 V and -21.2 V
(D) 6.1 V and -22.6 V
11. Ans: (A)

Sol:

12. Consider the state space realization
$\left[\begin{array}{c}\dot{x}_{1}(\mathrm{t}) \\ \dot{\mathrm{x}}_{2}(\mathrm{t})\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & -9\end{array}\right]\left[\begin{array}{c}\mathrm{x}_{1}(\mathrm{t}) \\ \mathrm{x}_{2}(\mathrm{t})\end{array}\right]+\left[\begin{array}{c}0 \\ 45\end{array}\right] \mathrm{u}(\mathrm{t})$, with the initial condition $\left[\begin{array}{l}\mathrm{x}_{1}(0) \\ \mathrm{x}_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] ;$
Where $u(t)$ denotes the unit step function. The value of $\underset{t \rightarrow \infty}{\operatorname{tt}}\left|\sqrt{\mathrm{x}_{1}^{2}(\mathrm{t})+\mathrm{x}_{2}^{2}(\mathrm{t})}\right|$ is \qquad

12. Ans: 5

Sol: $x(t)=$ ZIR + ZSR

$$
\begin{aligned}
& \mathrm{ZIR}=\mathrm{e}^{\mathrm{At}} \mathrm{x}(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \mathrm{ZSR}=\mathrm{L}^{-1}[\phi(\mathrm{~S}) \mathrm{BU}(\mathrm{~S})]
\end{aligned}
$$

$$
(\mathrm{SI}-\mathrm{A})=\left[\begin{array}{cc}
\mathrm{s} & 0 \\
0 & \mathrm{~s}+9
\end{array}\right], \operatorname{Adj}(\mathrm{SI}-\mathrm{A})=\left[\begin{array}{cc}
\mathrm{s}+9 & 0 \\
0 & \mathrm{~s}
\end{array}\right]
$$

$$
\phi(\mathrm{s})=(\mathrm{SI}-\mathrm{A})^{-1}=\frac{\operatorname{Adj}[\mathrm{SI}-\mathrm{A}]}{|\mathrm{SI}-\mathrm{A}|}=\left[\begin{array}{lc}
\frac{1}{\mathrm{~S}} & 0 \\
0 & \frac{1}{\mathrm{~S}+9}
\end{array}\right]
$$

$$
\left.\mathrm{ZSR}=\mathrm{L}^{-1}\left[\left[\begin{array}{cc}
\frac{1}{\mathrm{~S}} & 0 \\
0 & \frac{1}{\mathrm{~S}+9}
\end{array}\right]\left[\begin{array}{c}
0 \\
45
\end{array}\right]\left[\frac{1}{\mathrm{~S}}\right]\right]=\mathrm{L}^{-1}\left[\begin{array}{c}
0 \\
\frac{45}{\mathrm{~S}(\mathrm{~S}+9)}
\end{array}\right]=\left[\begin{array}{c}
0 \\
5\left(1-\mathrm{e}^{-9 \mathrm{t}}\right.
\end{array}\right)\right]
$$

$$
\mathrm{x}_{1}(\mathrm{t})=0, \mathrm{x}_{2}(\mathrm{t})=5\left(1-\mathrm{e}^{-9 \mathrm{t}}\right)
$$

$$
\underset{t \rightarrow \infty}{\mathrm{Lt}}\left|\sqrt{\mathrm{x}_{1}^{2}(\mathrm{t})+\mathrm{x}_{2}^{2}(\mathrm{t})}\right|=5
$$

13. An n-channel enhancement mode MOSFET is biased at $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{TH}}$ and $\mathrm{V}_{\mathrm{DS}}>\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)$, where V_{GS} is the gate to source voltage, V_{DS} is the drain to source voltage and V_{TH} is the threshold voltage. Considering channel length modulation effect to be significant, the MOSFET behaves as a
(A) Voltage source with zero output impedance
(B) Voltage source with non-zero output impedance
(C) Current source with finite output impedance
(D) Current source with infinite output impedance

13. Ans: (C)

Sol: If the effect of channel length modulation is considered then the output resistance is finite value.
14. The general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-5 y=0
$$

in terms of arbitrary constants K_{1} and K_{2} is
(A) $\mathrm{K}_{1} \mathrm{e}^{(-1+\sqrt{6}) \mathrm{x}}+\mathrm{K}_{2} \mathrm{e}^{(-1-\sqrt{6}) \mathrm{x}}$
(B) $\mathrm{K}_{1} \mathrm{e}^{(-1+\sqrt{8}) \mathrm{x}}+\mathrm{K}_{2} \mathrm{e}^{(-1-\sqrt{8}) \mathrm{x}}$
(C) $\mathrm{K}_{1} \mathrm{e}^{(-2+\sqrt{6}) \mathrm{x}}+\mathrm{K}_{2} \mathrm{e}^{(-2-\sqrt{6}) \mathrm{x}}$
(D) $\mathrm{K}_{1} \mathrm{e}^{(-2+\sqrt{8}) \mathrm{x}}+\mathrm{K}_{2} \mathrm{e}^{(-2-\sqrt{8}) \mathrm{x}}$
14. Ans: (A)

Sol: Given $\frac{d^{2} y}{d^{2}}+2 \frac{d y}{d x}-5 y=0$
Auxiliary equation is $D^{2}+2 D-5=0$
Roots are $-1 \pm \sqrt{6}$
\therefore The general solution is
$y=K_{1} e^{(-1+\sqrt{6}) x}+K_{2} e^{(-1-\sqrt{6}) x}$
15. Consider the random process
$\mathrm{x}(\mathrm{t})=\mathrm{U}+\mathrm{Vt}$.
Where U is a zero mean Gaussian random variable and V is a random variable uniformly distributed between 0 and 2. Assume that U and V are statistically independent. The mean value of the random process at $\mathrm{t}=2$ is \square
15. Ans: 2

Sol: $\mathrm{X}(\mathrm{t})=\mathrm{U}+\mathrm{Vt}$

$$
\begin{aligned}
& \mathrm{E}[\mathrm{U}]=0, \mathrm{E}[\mathrm{~V}]=1 \\
& \begin{aligned}
\mathrm{E}[\mathrm{X}(\mathrm{t})] & =\mathrm{E}[\mathrm{U}+\mathrm{Vt}] \\
& =\mathrm{E}[\mathrm{U}]+\mathrm{E}[\mathrm{~V}] \mathrm{t} \\
& =0+1 \times \mathrm{t}=\mathrm{t}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{E}[\mathrm{X}(\mathrm{t})]_{\mathrm{at} t}=2=2
$$

(Mean)
Figure: pdf of V
16. The smaller angle (in degrees) between the planes $x+y+z=1$ and $2 x-y+2 z=0$ is \qquad
16. Ans: 54.73°

Sol: Angle between two planes
$a_{1} x+b_{1} y+c_{1} z=d_{1}$ and $a_{2} x+b_{2} y+c_{2} z=d_{2}$ is given by
$\cos \theta=\frac{\left|\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}\right|}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}} \sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}$
Now, the angle between $x+y+z=1$ and $2 x-y+2 z=0$ is

$$
\begin{aligned}
& \cos \theta=\frac{2-1+2}{\sqrt{1+1+1} \sqrt{4+1+4}}=\frac{3}{3 \sqrt{3}} \\
& \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=54.73^{\circ}
\end{aligned}
$$

17. A two wire transmission line terminates in a television set. The VSWR measured on the line is 5.8. The percentage of power that is reflected from the television set is \qquad
18. Ans: 49.82

Sol: $\mathrm{S}=5.8$

$$
|\Gamma|=\frac{\mathrm{S}-1}{\mathrm{~S}+1}=\frac{4.8}{6.8}=0.705
$$

$\%$ of reflected power $=|\Gamma|^{2} \times 100=(0.705)^{2} \times 100=49.82 \%$
18. The output V_{0} of the diode circuit shown in figure is connected to an averaging DC voltmeter. The reading on the DC voltmeter in volts, neglecting the voltage drop across the diode, is \qquad

18. Ans: $\mathbf{3 . 1 8} \mathrm{V}$

Sol:

19. Consider the circuit shown in figure.

The Boolean expression F implemented by the circuit is
(A) $\bar{X} \bar{Y} \bar{Z}+X Y+\bar{Y} Z$
(B) $\bar{X} Y \bar{Z}+X Z+\bar{Y} Z$
(C) $\bar{X} Y \bar{Z}+X Y+\bar{Y} Z$
(D) $\bar{X} \bar{Y} \bar{Z}+X Z+\bar{Y} Z$
19. Ans: (B)

Sol:

$$
\begin{aligned}
\mathrm{F}_{1} & =\overline{\mathrm{X}} \mathrm{Y}+\mathrm{X} .0=\overline{\mathrm{X}} \mathrm{Y} \\
\mathrm{~F} & =\overline{\mathrm{Z}} \mathrm{~F}_{1}+\mathrm{Z} \overline{\mathrm{~F}}_{1} \\
& =\overline{\mathrm{Z}}(\overline{\mathrm{X}} \mathrm{Y})+\mathrm{Z}(\mathrm{X}+\overline{\mathrm{Y}}) \\
& =\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\mathrm{XZ}+\overline{\mathrm{Y}} \mathrm{Z}
\end{aligned}
$$

20. In a DRAM,
(A) Periodic refreshing is not required
(B) information is stored in a capacitor
(C) information is stored in a latch
(D) both read and write operations can be performed simultaneously

20. Ans: (B)

Sol: In DRAM
(i) Periodic refreshing is required
(ii) Information is stored in a capacitor
(iii) Information is not stored in a latch
(iv) Both Read and Write operations cannot be performed simultaneously
21. For the circuit shown in figure, P and Q are the inputs and Y is the output.

The logic implemented by the circuit is
(A) XNOR
(B) XOR
(C) NOR
(D) OR
21. Ans: (B)

Sol: If $\mathrm{P}=$ high $\left.\Rightarrow \begin{array}{c}\text { PMOS is } \mathrm{OFF} \\ \text { NMOS is } \mathrm{ON}\end{array}\right\} \Rightarrow \mathrm{y}=\overline{\mathrm{Q}}$

$$
\text { If } \left.\mathrm{P}=\text { low } \Rightarrow \begin{array}{c}
\mathrm{PMOS} \text { is } \mathrm{ON} \\
\mathrm{NMOS} \text { is } \mathrm{OFF}
\end{array}\right\} \Rightarrow \mathrm{y}=\mathrm{Q}
$$

$\left.\begin{array}{c|c|c}\mathrm{P} & \mathrm{Q} & \mathrm{Y} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right\}$ Ex-OR gate
22. Consider an n-channel MOSFET having width W , length L, electron mobility in the channel μ_{n} and oxide capacitance per unit area C_{ox}. If gate-to-source voltage $\mathrm{V}_{\mathrm{GS}}=0.7 \mathrm{~V}$, drain - to - source voltage $\mathrm{V}_{\mathrm{DS}}=0.1 \mathrm{~V},\left(\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\right)=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, threshold voltage $\mathrm{V}_{\mathrm{TH}}=0.3 \mathrm{~V}$ and $(\mathrm{W} / \mathrm{L})=50$, then the transconductance g_{m} (in $\left.m A / V\right)$ is
22. Ans: $0.5 \mathrm{~mA} / \mathrm{V}$

Sol: $\mathrm{V}_{\mathrm{GS}}=0.7$
$\mathrm{V}_{\mathrm{DS}}=0.1$
$\mathrm{V}_{\mathrm{Th}}=0.3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{Th}}$
$0.1<0.7-0.3$
$0.1<0.4 \Rightarrow$ TRIODE
$\mathrm{I}_{\mathrm{D}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) \mathrm{V}_{\mathrm{DS}}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS}}^{2}\right]$
$\mathrm{g}_{\mathrm{m}}=\frac{\partial \mathrm{I}_{\mathrm{G}}}{\partial \mathrm{V}_{\mathrm{GS}}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left[\mathrm{V}_{\mathrm{DS}}\right]$
$=100 \times 10^{-6} \times 50 \times 0.1$
$=0.5 \times 10^{-3}$
$=0.5 \mathrm{~mA} / \mathrm{V}$

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM
HYDERABAD
$29^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM
HYDERABAD \& DELHI
1st week of July 2017
23. A sinusoidal message signal is converted to a PCM signal using a uniform quantizer. The required signal to quantization noise ratio (SQNR) at the output of the quantizer is 40 dB . The minimum number of bits per sample needed to achieve the desired SQNR is \qquad
23. Ans: 7

Sol: The signal to Noise ratio in a uniform Quantizer is

$$
\begin{aligned}
\mathrm{SNR} & =[1.8+6 \mathrm{n}] \geq 40 \mathrm{~dB} \\
6 \mathrm{n} & \geq 40-1.8
\end{aligned}
$$

$$
\geq 38.2
$$

$$
\mathrm{n} \geq \frac{38.2}{6}
$$

$$
\geq 6.36
$$

So $\mathrm{n}_{\min }($ integer $)=7$
24. A connection is made consisting of resistance A is series with a parallel combination of resistance B and C. Three resistors of value $10 \Omega, 5 \Omega, 2 \Omega$ are provided. Consider all possible permutations of the given resistors into the positions $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and identify the configuration with maximum possible overall resistance; and also the ones with minimum possible overall resistance. The ratio of maximum to minimum values of the resistances (up to second decimal place) is \qquad
24. Ans: 2.143

Sol:

Given that, R_{A} or R_{B} or $\mathrm{R}_{\mathrm{C}}=10 \Omega$
R_{A} or R_{B} or $R_{C}=5 \Omega$
R_{A} or R_{B} or $\mathrm{R}_{\mathrm{C}}=2 \Omega$

For Req max:

The required combination is
$\mathrm{R}_{\mathrm{A}}=10 \Omega$ and $\mathrm{R}_{\mathrm{B}}=5 \Omega$ or 2Ω
and $\mathrm{R}_{\mathrm{C}}=2 \Omega$ or 5Ω

$$
\text { So, } \begin{aligned}
\text { Req } & =\mathrm{R}_{\mathrm{A}}+\left(\mathrm{R}_{\mathrm{B}} / / \mathrm{R}_{\mathrm{C}}\right) \\
& =10+(2 / / 5)=\frac{80}{7}=11.4285 \Omega \\
& =\text { Req max. }
\end{aligned}
$$

For Req min:

The required combination is
$\mathrm{R}_{\mathrm{A}}=2 \Omega$ and $\mathrm{R}_{\mathrm{B}}=10 \Omega$ or 5Ω
and $\mathrm{R}_{\mathrm{C}}=10 \Omega$ or 5Ω
$\mathrm{So}, \operatorname{Req}=\mathrm{R}_{\mathrm{A}}+\left(\mathrm{R}_{\mathrm{B}} \backslash \backslash \mathrm{R}_{\mathrm{C}}\right)=2+(10 \backslash \backslash 5)$

$$
\begin{aligned}
& =\frac{16}{3} \Omega=5.33 \Omega \\
& =\text { Req } \mathrm{min} .
\end{aligned}
$$

Hence, $\frac{R_{\text {eq } \max }}{R_{\text {eq } \min }}=\frac{11.4285}{5.33}=2.143$
25. The rank of the matrix
$\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$ is
\qquad .

25. Ans: 4

Sol: $A=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\mathrm{R}_{4} \rightarrow \mathrm{R}_{4}+\mathrm{R}_{1}$
$\mathrm{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$
$\mathrm{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\mathrm{R}_{4} \rightarrow \mathrm{R}_{4}+\mathrm{R}_{2}$
$\mathrm{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\mathrm{R}_{4} \rightarrow \mathrm{R}_{4}+\mathrm{R}_{3}$
$\mathrm{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right]$
$\mathrm{R}_{5} \rightarrow \mathrm{R}_{5}+\mathrm{R}_{4}$
$\mathrm{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\therefore \rho(\mathrm{A})=4$
26. A second order LTI system is described by the following state equation.
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}_{1}(\mathrm{t})-\mathrm{x}_{2}(\mathrm{t})=0$
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}_{2}(\mathrm{t})+2 \mathrm{x}_{1}(\mathrm{t})+3 \mathrm{x}_{2}(\mathrm{t})=\mathrm{r}(\mathrm{t})$
When $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ are the two state variables and $\mathrm{r}(\mathrm{t})$ denotes the input. The output $\mathrm{c}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})$. The system is
(A) undamped (oscillatory)
(B) under damped
(C) critically damped
(D) over damped
26. Ans: (D)

Sol: $\quad \dot{x}_{1}-x_{2}=0 \Rightarrow \dot{x}_{1}-x_{2}$
$\dot{\mathrm{x}}_{2}+2 \mathrm{x}_{1}+3 \mathrm{x}_{2}=\mathrm{r}$
$\dot{\mathrm{x}}_{2}=\mathrm{r}-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}$

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{r}} \tag{2}\\
& \mathrm{C}=\mathrm{x}_{1} \\
& {[\mathrm{C}]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]}
\end{align*}
$$

$$
\mathrm{TF}=\mathrm{C} \frac{\mathrm{Adj}[\mathrm{SI}-\mathrm{A}]}{|\mathrm{SI}-\mathrm{A}|} \mathrm{B}+\mathrm{D}
$$

$$
|S I-A|=\left[\begin{array}{cc}
S & -1 \\
2 & S+3
\end{array}\right] \operatorname{Adj}[S I-A]=\left[\begin{array}{cc}
S+3 \cap+1 \\
-2 & S
\end{array}\right]
$$

$$
\mathrm{TF}=\frac{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{S}+3 & +1 \\
-2 & \mathrm{~S}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]}{\mathrm{S}(\mathrm{~S}+3)+2}=\frac{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
\mathrm{~S}
\end{array}\right]}{\mathrm{S}^{2}+3 \mathrm{~S}+2}=\frac{1}{\mathrm{~S}^{2}+3 \mathrm{~S}+2}
$$

CE S ${ }^{2}+3 S+2=0$

Over damped system
27. The un modulated carrier in an AM transmitter is 5 kW . This carrier is modulated by a sinusoidal modulating signal. The maximum percentage of modulation is 50%. If it is reduced to 40%, then the maximum unmodulated carrier power (in kW) that can be used without over loading the transmitter is \qquad
27. Ans: 5.208 KW

Sol: $\mathrm{P}_{\mathrm{C}}^{\prime}=5 \mathrm{KW}$
$\mu=0.5$
$P_{t}=5000\left[1+\frac{0.25}{2}\right]$
$=5000 \times 1.125$
$\mathrm{P}_{\mathrm{t}}=5625 \mathrm{~W}$
$\mu=0.4$
$5625=\mathrm{P}_{\mathrm{C}}^{\prime}\left[1+\frac{0.16}{2}\right]$
$5625=\mathrm{P}_{\mathrm{C}}^{\prime}[1.08]$
$\mathrm{P}_{\mathrm{C}}^{\prime}=\frac{5625}{1.08}=5208 \mathrm{~W}$
28. Passengers try repeatedly to get a seat reservation in any train running between two stations until they are successful. If there is 40% chance of getting reservation in any attempt by a passenger, then the average number of attempts that passengers need to make to get a seat reserved is \qquad
28. Ans: 2.5

Sol: Let $\mathrm{X}=$ Number of attempts required to get seat reserved

X	1	2	3	4	\cdots
$\mathrm{P}(\mathrm{x})$	$\frac{2}{5}$	$\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)$	$\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right)$	$\left(\frac{3}{5}\right)^{3}\left(\frac{2}{5}\right)$	\cdots

$\therefore \mathrm{E}(\mathrm{x})=1 \times \frac{2}{5}+2\left(\frac{3}{5} \times \frac{2}{5}\right)+3\left[\left(\frac{3}{2}\right)^{2} \times\left(\frac{2}{5}\right)\right]+$.

$$
\begin{aligned}
& =\frac{2}{5}\left\{1+2\left(\frac{3}{5}\right)+3\left(\frac{3}{5}\right)^{2}+\ldots \ldots \ldots\right\} \\
& =\frac{2}{5}\left\{1-\frac{3}{5}\right\}^{-2} \\
& =\frac{2}{5}\left(\frac{2}{5}\right)^{-2}=\frac{2}{5} \times\left(\frac{5}{2}\right)^{2} \\
& =2.5
\end{aligned}
$$

29. Consider the parallel combination of two LTI systems shown in figure.

The impulse response of the systems are

$$
\begin{aligned}
& \mathrm{h}_{1}(\mathrm{t})=2 \delta(\mathrm{t}+2)-3 \delta(\mathrm{t}+1) \\
& \mathrm{h}_{2}(\mathrm{t})=\delta(\mathrm{t}-2)
\end{aligned}
$$

If the input $x(t)$ is a unit step signal, then the energy of $y(t)$ is \qquad
29. Ans: 7

Sol: $h(t)=h_{1}(t)+h_{2}(t)$

$$
\begin{aligned}
x(t) & =u(t) \\
y(t) & =x(t) * h(t) \\
& =u(t) *[2 \delta(t+2)-3 \delta(t+1)+\delta(t-2)]
\end{aligned}
$$

Taking Laplace Transform
$Y(s)=\frac{1}{s}\left[2 e^{2 s}-3 e^{s}+e^{-2 s}\right]$

Taking Inverse laplace transform

$$
E_{y(t)}=\int_{-\infty}^{\infty}|y(t)|^{2} d t=\int_{-2}^{-1} 4 d t+\int_{-1}^{2} 1 d t
$$

$$
=(4 \times 1)+(1 \times 3)=7 \mathrm{~W}
$$

ESE 20
 17MAINS (STAGE - II)

For E\&T / EE / CE / ME

FREE DOUBT CLEARING SESSIONS

Through

Through
Live Video Classes.
30. The switch in the circuit, shown in the figure, was open for a long time and is closed at $t=0$

The current $\mathrm{i}(\mathrm{t})$ (in ampere) at $\mathrm{t}=0.5$ seconds is \qquad
30. Ans: 8.16

Sol: For $\mathrm{t}<0$, switch is opened (steady state)
$\mathrm{i}_{\mathrm{L}}(0) \Rightarrow \mathrm{t}=0-(\mathrm{S} . S), \mathrm{R} \rightarrow \mathrm{R}, \mathrm{L} \rightarrow \mathrm{S} . \mathrm{C}$

$$
\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{10}{2}=5 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{I}_{0}
$$

For $\mathrm{t} \geq 0$, switch is closed

For R-L source free CKT $i_{L}(t)=I_{0} e^{-t / \tau}$
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{2.5}{5}=\frac{1}{2} \mathrm{sec}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=5 \mathrm{e}^{-2 \mathrm{t}} \mathrm{Amps}$
By KCL at ' x '
$10=\mathrm{i}_{\mathrm{L}}(\mathrm{t})+\mathrm{i}(\mathrm{t})$

$$
\begin{aligned}
\mathrm{i}(\mathrm{t}) & =10-\mathrm{i}_{\mathrm{L}}(\mathrm{t}) \\
& =10-5 \mathrm{e}^{-2 \mathrm{t}} \mathrm{Amp} \\
\text { At } \mathrm{t} & =0.5 \mathrm{sec} \\
\mathrm{i}(\mathrm{t}) & =10-5 \mathrm{e}^{-1} \\
& =8.16 \mathrm{Amp}
\end{aligned}
$$

31. The signal $\mathrm{x}(\mathrm{t})=\sin (14000 \pi \mathrm{t})$, where t is in seconds, is sampled at a rate of 9000 samples per second. The sampled signal is the input to an ideal lowpass filter with frequency response $H(f)$ as follows:

$$
\mathrm{H}(\mathrm{f})= \begin{cases}1, & |\mathrm{f}| \leq 12 \mathrm{kHz} \\ 0, & |\mathrm{f}|>12 \mathrm{kHz}\end{cases}
$$

What is the number of sinusoids in the output and their frequencies in kHz ?
(A) Number $=1$, frequency $=7$
(B) Number $=3$, frequencies $=2,7,11$
(C) Number $=2$, frequencies $=2,7$
(D) Number $=2$, frequencies $=7,11$

31. Ans: (B)

Sol: Given $x(t)=\sin (14000 \pi t)$
$\mathrm{f}_{\mathrm{m}}=7 \mathrm{kHz}$,
$\mathrm{f}_{\mathrm{s}}=9 \mathrm{kHz}$,
The frequency of sampled signal are $\pm \mathrm{f}_{\mathrm{m}} \pm \mathrm{nf}_{\mathrm{s}}$
$=7 \mathrm{kHz}, 2 \mathrm{kHz}, 16 \mathrm{kHz}, 11 \mathrm{kHz}, 25 \mathrm{kHz}$,

The output frequencies of the filter are $=7 \mathrm{kHz}, 2 \mathrm{kHz}, 11 \mathrm{kHz}$

Engineering Academy
Leading Institute for DSE/GATE/PSUs

Yeaus \mathcal{O} Excellencel

To win the race join $A C E$

HEARTY CONGRATULATIONS TO OUR GATE 2016 RANKERS

32. If the vector function $\overrightarrow{\mathrm{F}}=\hat{\mathrm{a}}_{\mathrm{x}}\left(3 \mathrm{y}-\mathrm{k}_{1} \mathrm{z}\right)+\hat{\mathrm{a}}_{\mathrm{y}}\left(\mathrm{k}_{2} \mathrm{x}-2 \mathrm{z}\right)-\hat{\mathrm{a}}_{\mathrm{z}}\left(\mathrm{k}_{3} \mathrm{y}+\mathrm{z}\right)$ is irrotational, then the values of the constants $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} respectively, are
(A) $0.3,-2.5,0.5$
(B) 0.0, 3.0, 2.0
(C) $0.3,0.33,0.5$
(D) 4.0, 3.0, 2.0
32. Ans: (B)

Sol: Given

$$
\overline{\mathrm{F}}=\left(3 \mathrm{y}-\mathrm{k}_{1} \mathrm{z}\right) \overrightarrow{\mathrm{i}}+\left(\mathrm{k}_{2} \mathrm{x}-2 \mathrm{z}\right) \overrightarrow{\mathrm{j}}-\left(\mathrm{k}_{3} \mathrm{y}+\mathrm{z}\right) \overrightarrow{\mathrm{k}}
$$

Curl $\overrightarrow{\mathrm{F}}=0$
$\Rightarrow\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 y-k_{1} z & k_{2} x-2 z & -k_{3} y-z\end{array}\right|=0$
$\Rightarrow\left(-\mathrm{k}_{3}+2\right) \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}\left(0-\mathrm{k}_{1}\right)+\overrightarrow{\mathrm{k}}\left(\mathrm{k}_{2}-3\right)=0$
$\mathrm{k}_{3}=2$
$\mathrm{k}_{1}=0$
$\mathrm{k}_{2}=3$
33. A unity feedback control system is characterized by the open loop transfer function

$$
\mathrm{G}(\mathrm{~s})=\frac{10 \mathrm{~K}(\mathrm{~s}+2)}{\mathrm{s}^{3}+3 \mathrm{~s}^{2}+10}
$$

The Nyquist path and the corresponding Nyquist plot of $G(s)$ are shown in the figures below.
(

If $0<K<1$, then number of poles of the closed loop transfer function that lie in the right half of the s-plane is
(A) 0
(B) 1
(C) 2
(D) 3
33. Ans: (C)

Sol: $G(s)=\frac{10 k(S+2)}{S^{3}+3 S^{2}+10}$
$\mathrm{G}(\mathrm{s})=\frac{10 \mathrm{k}(\mathrm{S}+2)}{(\mathrm{S}+3.72)(\mathrm{S}-0.36+\mathrm{j} 1.5)(\mathrm{S}-0.36-\mathrm{j} 1.5)}$
$\mathrm{P}=2$ (Two poles in the RHS)
If $\mathrm{K}<1$, the number of encirclements about $(-1, j 0)$ is 0
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$\mathrm{N}=2-0=2$
$\Rightarrow 2$ CL poles lies in the RHS-plane.
34. The minimum value of the function $f(x)=\frac{1}{3} x\left(x^{2}-3\right)$ in the interval $-100 \leq x \leq 100$ occurs at $\mathrm{x}=$ \qquad
34. Ans: $\mathbf{- 1 0 0}$

Sol: $\quad f(x)=\frac{1}{3} x\left(x^{2}-3\right)=\frac{x^{3}}{3}-x$ in $[-100,100]$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}^{2}-1=0$
$\Rightarrow \mathrm{x}=1,-1$ are critical points
$\mathrm{f}(1)=-\frac{2}{3}, \mathrm{f}(-1)=\frac{2}{3}$
$f(-100)=-333233.33$
$\mathrm{f}(100)=333233.33$
\therefore The minimum values occurs at $\mathrm{x}=-100$
35. An electron $\left(\mathrm{q}_{1}\right)$ is moving in free space with velocity $10^{5} \mathrm{~m} / \mathrm{s}$ towards a stationary electron $\left(\mathrm{q}_{2}\right)$ far away. The closest distance that this moving electron gets to the stationary electron before the repulsive force diverts its path is \qquad $\times 10^{-8} \mathrm{~m}$
[Given, mass of electron $\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$, charge of electron $\mathrm{e}=-1.6 \times 10^{-19} \mathrm{C}$, and permittivity $\left.\varepsilon_{0}=(1 / 36 \pi) \times 10^{-9} \mathrm{~F} / \mathrm{m}\right]$.

35. Ans: 5.06

Sol: As electron (q_{1}) moving with velocity $10^{5} \mathrm{~m} / \mathrm{s}$ i.e it is having kinetic energy $\mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$.
As electron q_{2} which is at rest having potential energy $P . E=q V$.
The moving electron continue it's motion with out deflection until P.E of $q_{2}=K . E$ of q_{1}.
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{qV}$ (V is voltage which is same as of potential of charge at rest)
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{q} \cdot \frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{R}}(\mathrm{R}$ is the shortest distance $)$
$\mathrm{R}=\frac{\mathrm{q}^{2} \times 2}{4 \pi \varepsilon_{0} \times \mathrm{mv}^{2}}=\frac{\left(1.6 \times 10^{-19}\right)^{2} \times 2}{4 \pi \times \frac{10^{-9}}{36 \pi} \times 9.1 \times 10^{-31} \times\left(10^{5}\right)^{2}}=5.06 \times 10^{-8} \mathrm{~m}$
$\mathrm{R}=5.06 \times 10^{-8} \mathrm{~m}$
36. Standard air filled rectangular waveguides of dimensions $\mathrm{a}=2.29 \mathrm{~cm}$ and $\mathrm{b}=1.02 \mathrm{~cm}$ are designed for radar applications. It is desired that these waveguides operate only in the dominant TE_{10} mode with the operating frequency at least 25% above the cut-off frequency of the TE_{10} mode but not higher than 95% of the next higher cutoff frequency. The range of the allowable operating frequency f is
(A) $8.19 \mathrm{GHz} \leq \mathrm{f} \leq 13.1 \mathrm{GHz}$
(B) $8.19 \mathrm{GHz} \leq \mathrm{f} \leq 12.45 \mathrm{GHz}$
(C) $6.55 \mathrm{GHz} \leq \mathrm{f} \leq 13.1 \mathrm{GHz}$
(D) $1.64 \mathrm{GHz} \leq \mathrm{f} \leq 10.24 \mathrm{GHz}$

36. Ans: (B)

Sol: Given: $\mathrm{a}=2.29 \mathrm{~cm}, \mathrm{~b}=1.02 \mathrm{~cm}$

$$
\left.\mathrm{f}_{\mathrm{c}}\right|_{\mathrm{TE}_{10}}=\frac{\mathrm{c}}{2 \mathrm{a}}=\frac{3 \times 10^{8}}{2 \times 2.29 \times 10^{-2}}=6.5 \mathrm{GHz}
$$

Since, $\mathrm{b}<\frac{\mathrm{a}}{2}$, next higher order mode is TE_{20}.
$\left.\mathrm{f}_{\mathrm{c}}\right|_{\mathrm{TE}_{20}}=\frac{\mathrm{c}}{2} \times \frac{2}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{a}}=\frac{3 \times 10^{8}}{2.29 \times 10^{-2}}=13.1 \mathrm{GHz}$

So, the range of allowable operating frequency is

$$
\left.1.25 \mathrm{f}_{\mathrm{c}}\right|_{\mathrm{TE}_{10}} \leq \mathrm{f} \leq\left. 0.95 \mathrm{f}_{\mathrm{c}}\right|_{\mathrm{TE}_{20}}
$$

i.e. $8.19 \mathrm{GHz} \leq \mathrm{f} \leq 12.45 \mathrm{GHz}$.
37. A unity feedback control system is characterized by the open loop transfer function

$$
G(s)=\frac{2(s+1)}{s^{3}+k s^{2}+2 s+1}
$$

The value of k for which the system oscillates at $2 \mathrm{rad} / \mathrm{s}$ is \qquad

37. Ans: 0.75

Sol: $G(s)=\frac{2(S+1)}{S^{3}+\mathrm{kS}^{2}+2 S+1}$, given $\omega=2 \mathrm{rad} / \mathrm{sec}$

For marginal stable $\frac{4 \mathrm{k}-3}{\mathrm{k}}=0 \Rightarrow \mathrm{~K}=\frac{3}{4}=0.75$

HEARTY CONGRATULATIONS TO OUR

 ESE 2016 RANKERS
38. An integral I over a counter clock wise circle C is given by

$$
I=\oint_{C} \frac{z^{2}-1}{z^{2}+1} e^{z} d z
$$

If C is defined as $|z|=3$, then the value of I is
(A) $-\pi i \sin (1)$
(B) $-2 \pi i \sin (1)$
(C) $-3 \pi \mathrm{i} \sin (1)$
(D) $-4 \pi i \sin (1)$
38. Ans: (D)

Sol: Let $f(z)=\frac{z^{2}-1}{z^{2}+1} e^{z}=\frac{\left(z^{2}-1\right) e^{z}}{(z+i)(z-i)}$
$\mathrm{z}=\mathrm{i},-\mathrm{i}$ are simple poles lying is side ' C '

$$
\begin{aligned}
& \underset{z=i}{\operatorname{Resf}}(z)=\frac{\left(i^{2}-1\right) e^{i}}{2 i}=-\frac{2}{2 i} e^{i}=i e^{i} \\
& \underset{z=-i}{\operatorname{Resf}}(z)=\frac{\left((-i)^{2}-1\right) e^{-i}}{(-2 i)}=\frac{1}{i} e^{-i}=-i e^{-i}
\end{aligned}
$$

\therefore By Cauchy residue theorem,

$$
\begin{aligned}
\oint_{\mathrm{C}} \frac{\mathrm{z}^{2}-1}{\mathrm{z}^{2}+1} \mathrm{e}^{\mathrm{z}} \mathrm{dz} & =2 \pi \mathrm{i}\left(\mathrm{ie}^{\mathrm{i}}-\mathrm{ie}^{-\mathrm{i}}\right) \\
& =-2 \pi\left(\mathrm{e}^{\mathrm{i}}-\mathrm{e}^{-\mathrm{i}}\right) \\
& =-2 \pi\{[\cos (1)+\mathrm{i} \sin (1)]-[\cos (1)-\mathrm{i} \sin (1)]\} \\
& =-4 \pi \mathrm{i} \sin (1)
\end{aligned}
$$

39. Consider the circuit shown in figure

The Thevenin equivalent resistance (in Ω) across $\mathrm{P}-\mathrm{Q}$ is \qquad

39. Ans:-1

Sol: Evaluation of R_{th} by case (3) approach

\rightarrow here, $\mathrm{V}=1 \mathrm{i}_{0} \rightarrow$ (1)
By KVL $\Rightarrow 0+3 \mathrm{i}_{0}-1 . \mathrm{i}_{0}-1\left(\mathrm{i}_{0}-\mathrm{I}\right)=0$
$\Rightarrow 3 \mathrm{i}_{0}-\mathrm{i}_{0}-\mathrm{i}_{0}+\mathrm{I}=0$
$\Rightarrow \mathrm{i}_{0}+\mathrm{I}=0$
$\Rightarrow \mathrm{I}=-\mathrm{i}_{0} \rightarrow(2)$

From (1) and (2) \Rightarrow
$\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{th}}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{+\mathrm{i}_{0}}{-\mathrm{i}_{0}}=-1 \Omega$
40. Two n-channel MOSFETs, T1 and T2, are identical in all respects except that the width of T2 is double of T1. Both the transistors are biased in the saturation region of operation, but the gate overdrive voltage $\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)$ of T 2 is double that of T , where V_{GS} and V_{TH} are the gate-tosource voltage and threshold voltage of the transistors, respectively. If the drain current and transconducatance of T 1 are $\mathrm{I}_{\mathrm{D} 1}$ and $\mathrm{g}_{\mathrm{m} 1}$ respectively; the corresponding values of these two parameters for T2 are
(A) $8 \mathrm{I}_{\mathrm{D} 1}$ and $2 \mathrm{~g}_{\mathrm{m} 1}$
(B) $8 \mathrm{I}_{\mathrm{D} 1}$ and $4 \mathrm{~g}_{\mathrm{m} 1}$
(C) $4 \mathrm{I}_{\mathrm{D} 1}$ and $4 \mathrm{~g}_{\mathrm{m} 1}$
(D) $4 \mathrm{I}_{\mathrm{D} 1}$ and $2 \mathrm{~g}_{\mathrm{m} 1}$

40. Ans: (B)

Sol: $\mathrm{W}_{2}=2 \mathrm{~W}_{1}$
$\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{TH}}=2\left(\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{TH}}\right)$
$\mathrm{I}_{\mathrm{D}} \propto \mathrm{W}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}$
$\frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 1}}=2 \times 2^{2}=8$
$\mathrm{I}_{\mathrm{D} 2}=8 \mathrm{I}_{\mathrm{D} 1}$
$\mathrm{g}_{\mathrm{m}} \propto \mathrm{W}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)$
$\underline{g_{m 2}}=2 \times 2=4$
$\mathrm{g}_{\mathrm{m} 1}$
$g_{m 2}=4 g_{m 1}$
41. Consider a binary memoryless channel characterized by the transition probability diagram shown in figure.

The channel is
(A) lossless
(B) noiseless
(C) useless
(D) deterministic
41. Ans: (C)

Sol:

Channel matrix:

$$
\mathrm{P}(\mathrm{Y} / \mathrm{X})=\begin{array}{cc}
\mathrm{y}_{1} & \mathrm{y}_{2} \\
\mathrm{x}_{1}\left[\begin{array}{ll}
0.25 & 0.75 \\
\mathrm{x}_{2}
\end{array}\left[\begin{array}{ll}
1 / 4 & 3 / 4 \\
0.25 & 0.75
\end{array}\right]\right.
\end{array}=\left[\begin{array}{ll}
1 / 4 & 3 / 4
\end{array}\right]
$$

Assume $\mathrm{P}\left(\mathrm{x}_{1}\right)=\mathrm{P}\left(\mathrm{x}_{2}\right)=\frac{1}{2}$
$\mathrm{P}(\mathrm{X}, \mathrm{Y})=\left[\begin{array}{ll}1 / 8 & 3 / 8 \\ 1 / 8 & 3 / 8\end{array}\right]$
$\mathrm{P}\left(\mathrm{y}_{1}\right)=\frac{1}{4}, \mathrm{P}\left(\mathrm{y}_{2}\right)=\frac{3}{4}$
$P(X / Y)=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
(A) losseless : [If $\mathrm{H}(\mathrm{X} / \mathrm{Y})=0$]

$$
\begin{aligned}
& \mathrm{H}(\mathrm{X} / \mathrm{Y})=\frac{1}{8} \log 2+\frac{3}{8} \log 2+\frac{1}{8} \log 2+\frac{3}{8} \log 2 \\
& \quad=1 \\
& \quad \neq 0
\end{aligned}
$$

\therefore Not lossless
(D) Deterministic: $[\operatorname{If~} H(Y / X)=0]$

$$
\begin{aligned}
& \mathrm{H}(\mathrm{Y} / \mathrm{X})=\frac{1}{8} \log (4)+\frac{3}{8} \log \left(\frac{4}{3}\right)+\frac{1}{8} \log 4+\frac{3}{8} \log \left(\frac{4}{3}\right) \\
& \quad \neq 0 \\
& \mathrm{H}(\mathrm{Y} / \mathrm{X}) \neq 0
\end{aligned}
$$

\therefore Not Deterministic
(B) Noiseless: [If $H(X / Y)=H(Y / X)=0$]
$H(X / Y) \neq H(Y / X) \neq 0$
\therefore Not noiseless
(C) Useless: [If $\mathrm{I}(\mathrm{X}, \mathrm{Y})=0]$

$$
\begin{aligned}
& \mathrm{I}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} / \mathrm{Y}) \\
& \quad=\frac{1}{2} \log 2+\frac{1}{2} \log 2-1 \\
& \quad=0
\end{aligned}
$$

\therefore useless (zero capacity)
42. A MOS capacitor is fabricated on p-type Si (silicon) where the metal work function is 4.1 eV and electron affinity of Si is $4.0 \mathrm{eV}, \mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}=0.9 \mathrm{eV}$; where E_{C} and E_{F} are conduction band minimum and the Fermi energy levels of Si , respectively. Oxide $\varepsilon_{\mathrm{r}}=3.9, \varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$, oxide thickness $\mathrm{t}_{\mathrm{ox}}=0.1 \mu \mathrm{~m}$ and electron charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$. If the measured flat band voltage of this capacitor is -1 V , then the magnitude of the fixed charge at the oxide semiconductor interface, in $\mathrm{nC} / \mathrm{cm}^{2}$, is \qquad
42. Ans: 6.903

Sol:

$\left\{\right.$ Work function $\left.\Rightarrow \mathrm{E}_{\text {Vacuum }}-\mathrm{E}_{\text {fermilevel }}\right\}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{FB}}=\phi_{\mathrm{ms}}-\frac{\mathrm{q}_{\mathrm{ox}}}{\mathrm{C}_{\mathrm{ox}}} \\
& -1=-0.8-\frac{\mathrm{q}_{\mathrm{oxx}}}{\mathrm{C}_{\mathrm{ox}}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{FB}} \rightarrow \text { Flat band voltage } \\
\phi_{\mathrm{ms}} \rightarrow \phi_{\mathrm{m}}-\phi_{\mathrm{s}}
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
\frac{q_{o x}}{c_{\mathrm{ox}}}
\end{aligned} \Rightarrow\right. \text { potential developed due to charge at surface } \\
0.2=\frac{\mathrm{q}_{\mathrm{ox}}}{\mathrm{C}_{\mathrm{ox}}}
\end{array}\right\} \begin{aligned}
\mathrm{q}_{\mathrm{ox}} & =0.2 \mathrm{C}_{\mathrm{ox}} \\
= & 0.2 \frac{\varepsilon_{\mathrm{ox}}}{\mathrm{t}_{\mathrm{ox}}} \\
& =0.2 \times \frac{3.9 \times 8.85 \times 10^{-14}}{10^{-5}} \\
\mathrm{q}_{\mathrm{ox}} & =6.903 \mathrm{nC} / \mathrm{cm}^{2}
\end{aligned} .
$$

43. The transfer function of a causal LTI system is $H(s)=1 / \mathrm{s}$. If the input to the system is $\mathrm{x}(\mathrm{t})=[\sin (\mathrm{t}) / \pi \mathrm{t}] \mathrm{u}(\mathrm{t})$; where $\mathrm{u}(\mathrm{t})$ is a unit step function. The system output $\mathrm{y}(\mathrm{t})$ as $\mathrm{t} \rightarrow \infty$ is \qquad
44. Ans: 0.5

Sol: $\mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}}$

$$
\begin{aligned}
& x(t)=\frac{\sin t}{\pi t} u(t) \\
& \sin t u(t) \leftrightarrow \frac{1}{s^{2}+1}
\end{aligned}
$$

$$
\frac{\sin \mathrm{tu}(\mathrm{t})}{\mathrm{t}} \leftrightarrow \int_{\mathrm{s}}^{\infty} \frac{1}{\mathrm{~s}^{2}+1} \mathrm{ds}=\left.\tan ^{-1}(\mathrm{~s})\right|_{\mathrm{s}} ^{\infty}=\frac{\pi}{2}-\tan ^{-1}(\mathrm{~s})
$$

$$
\mathrm{X}(\mathrm{~s})=\frac{1}{\pi}\left[\frac{\pi}{2}-\tan ^{-1}(\mathrm{~s})\right]
$$

$$
=\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(\mathrm{~s})
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{X}(\mathrm{~s})}
$$

$$
\Rightarrow \mathrm{Y}(\mathrm{~s})=\mathrm{X}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\left[\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(\mathrm{~s})\right] \frac{1}{\mathrm{~s}}
$$

$$
\begin{aligned}
y(\infty) & =\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0}\left[\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(s)\right] \\
& =\frac{1}{2}
\end{aligned}
$$

44. The permittivity of water at optical frequencies is $1.75 \varepsilon_{0}$. It is found that an isotropic light source at a distance d under water forms an illuminated circular area of radius 5 m , as shown in the figure.

The critical angle is $\theta_{\text {c }}$

The value of d (in meter) is
44. Ans: 4.34

Sol:

$\sin \theta_{c}=\sqrt{\frac{\varepsilon_{2}}{\varepsilon 1}}$
$\sin \theta_{c}=\frac{1}{\sqrt{1.75}} \quad \therefore \theta_{c}=49^{\circ}$
Form the triangle $\tan \theta_{\mathrm{c}}=\frac{5}{\mathrm{~d}}$

$$
\mathrm{d}=\frac{5}{\tan (49)}=\frac{5}{1.15}=4.34 \mathrm{~m}
$$

45. The state diagram of a finite state machine (FSM) designed to detect an overlapping sequence of three bits is shown in the figure. The FSM has an input 'In' and an output 'out'. The initial state of the FSM is S_{0}.

If the input sequence is 10101101001101 , starting with the left most bit, then the number of times 'Out' will be 1 is \qquad
45. Ans: 4

Sol: Given input sequence

Number of times out will be 1 is $\underline{4}$
46. A programmable logic array (PLA) is shown in the figure.

The Boolean function F implemented is
(A) $\overline{\mathrm{P}} \overline{\mathrm{Q}} \mathrm{R}+\overline{\mathrm{P}} \mathrm{QR}+\mathrm{P} \overline{\mathrm{Q}} \overline{\mathrm{R}}$
(B) $(\overline{\mathrm{P}}+\overline{\mathrm{Q}}+\mathrm{R})(\overline{\mathrm{P}}+\mathrm{Q}+\mathrm{R})+(\mathrm{P}+\overline{\mathrm{Q}}+\overline{\mathrm{R}})$
(C) $\overline{\mathrm{P}} \overline{\mathrm{Q}} \mathrm{R}+\overline{\mathrm{P}} \mathrm{QR}+\mathrm{P} \overline{\mathrm{Q}} \overline{\mathrm{R}}$
(D) $(\overline{\mathrm{P}}+\overline{\mathrm{Q}}+\mathrm{R})(\overline{\mathrm{P}}+\mathrm{Q}+\mathrm{R})+(\mathrm{P}+\overline{\mathrm{Q}}+\mathrm{R})$
46. Ans: (C)

Sol: $\quad \mathrm{F}=\overline{\mathrm{P}} \overline{\mathrm{Q}} \mathrm{R}+\overline{\mathrm{P}} \mathrm{QR}+\mathrm{P} \overline{\mathrm{Q}} \mathrm{R}$
47. A modulating signal given by $\mathrm{x}(\mathrm{t})=5 \sin \left(4 \pi 10^{3} \mathrm{t}-10 \pi \cos 2 \pi 10^{3} \mathrm{t}\right) \mathrm{V}$ is fed to a phase modulator with phase deviation constant $\mathrm{k}_{\mathrm{p}}=5 \mathrm{rad} / \mathrm{V}$. If the carrier frequency is 20 kHz , the instantaneous frequency (in kHz) at $\mathrm{t}=0.5 \mathrm{~ms}$ is \qquad
47. Ans: 70 kHz

Sol: $s(t)=A_{c} \cos \left\lfloor 2 \pi f_{c} t+k_{p} m(t)\right\rfloor$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}+\frac{\mathrm{k}_{\mathrm{p}}}{2 \pi} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{x}(\mathrm{t}) \\
&=20 \mathrm{k}+\frac{5}{2 \pi} \times 5 \frac{\mathrm{~d}}{\mathrm{dt}}\left(\sin 4 \pi 10^{3} \mathrm{t}-10 \pi \cos 2 \pi 10^{3} \mathrm{t}\right) \\
&=20 \mathrm{k}+\frac{25}{2 \pi} \times\left[\cos \left(4 \pi 10^{3} \mathrm{t}-10 \pi \cos 2 \pi 10^{3} \mathrm{t}\right)(4 \pi 1 \mathrm{l}\right. \\
& \mathrm{f}_{\mathrm{i}(\mathrm{t}=0.5 \mathrm{~ms})}=20 \mathrm{k}+\frac{25}{2 \pi} \times \cos (4 \pi+10 \pi) \times 4 \pi \times 10^{3} \\
&=20 \mathrm{k}+\frac{25}{2 \pi} \times 4 \pi \times 10^{3} \\
&=20 \mathrm{k}+50 \mathrm{k} \\
& \mathrm{f}_{\mathrm{i}(\mathrm{t}=0.5 \mathrm{~ms})}=70 \mathrm{kHz}
\end{aligned}
$$

$$
=20 \mathrm{k}+\frac{25}{2 \pi} \times\left[\cos \left(4 \pi 10^{3} \mathrm{t}-10 \pi \cos 2 \pi 10^{3} \mathrm{t}\right)\left(4 \pi 10^{3}+10 \pi \sin 2 \pi 10^{3} \mathrm{t} \times 2 \pi 10^{3}\right)\right]
$$

48. Assuming that transistors M_{1} and M_{2} are identical and have a threshold voltage of 1 V , the state of transistors M_{1} and M_{2} are respectively

(A) Saturation, Saturation
(B) Linear, Linear
(C) Linear, Saturation
(D) Saturation, Linear
49. Ans: (C)

Sol:

Given $\mathrm{V}_{\mathrm{th}}=1 \mathrm{~V}$
Here both the transistors are ' ON '

For \mathbf{M}_{2} :

$\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{th}}<\mathrm{V}_{\mathrm{D}} \quad[1.5<3]$
$\Rightarrow \mathrm{M}_{2}$ is in saturation

For \mathbf{M}_{1} :

Let us assume M_{1} is in saturation
$\left(\mathrm{I}_{\mathrm{D}}\right)_{\mathrm{M} 2}=\left(\mathrm{I}_{\mathrm{D}}\right)_{\mathrm{M} 1}$
$\left(2.5-\mathrm{V}_{0}-1\right)^{2}=(2-1)^{2} \quad\left[\because \mathrm{I}_{\mathrm{D}} \propto\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{th}}\right)^{2}\right]$
$\therefore \mathrm{V}_{0}=0.5$
$\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{th}}>\mathrm{V}_{\mathrm{DS}} \quad[1>0.5]$
\Rightarrow our assumption is wrong
$\therefore \mathrm{M}_{1}$ is in triode region
$\mathrm{M}_{2} \rightarrow$ saturation
$\mathrm{M}_{1} \rightarrow$ triode
49. The values of the integrals

$$
\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x
$$

and

$$
\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x\right) d y
$$

are
(A) same and equal to 0.5
(B) same and equal to -0.5
(C) 0.5 and -0.5 , respectively
(D) -0.5 and -0.5 , respectively
49. Ans: (C)

Sol: The values of the integral
$\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x$
And $\int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x\right) d y$

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y\right) d x=\int_{0}^{1}\left\{\frac{2 x-(x+y)}{(x+y)^{3}} d y\right\} d x \\
& =\int_{0}^{1}\left\{\left[\frac{2 x}{(x+y)^{3}}-\frac{1}{(x+y)^{2}}\right] d y\right\} d x \\
& =\int_{0}^{1}\left\{\left[2 x(x+y)^{-3}-(x+y)^{-2}\right] d y\right) d x \\
& =\int_{0}^{1}\left\{\frac{2 x(x+y)^{-2}}{-2}-\frac{(x+y)^{-1}}{-1}\right\}_{0}^{1} d x \\
& =\int_{0}^{1}\left\{\frac{-x}{(x+y)^{2}}+\frac{1}{x+y}\right\}_{0}^{1} d x \\
& =\int_{0}^{1}\left\{\left[\frac{-x}{(x+1)^{2}}+\frac{1}{x+1}\right]-\left[\frac{-1}{x}+\frac{1}{x}\right]\right\} d x \\
& =\int_{0}^{1}\left\{\frac{-x+x+1}{(x+1)^{2}}\right\} d x \\
& =\int_{0}^{1} \frac{1}{(x+1)^{2}} d x \\
& =\left(\frac{-1}{x+1}\right)_{0}^{1} \\
& =\left(\frac{-1}{2}\right)-(-1) \\
& =\frac{1}{2} \\
& =\int_{0}^{1}\left[\int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x\right] d y=\int_{0}^{[}\left[\frac{(x+y)-2 y}{(x+y)^{3}} d x\right] d y \\
& =\int_{0}^{1}\left\{\left[\frac{1}{(x+y)^{2}}-\frac{2 y}{(x+y)^{3}}\right] d x\right\} d y \\
& =\int_{0}^{1}\left\{-\frac{1}{x+y}+\frac{y}{(x+y)^{2}}\right\}_{0}^{1} d y \\
& =\int_{0}^{1}\left\{\left[-\frac{1}{y+1}+\frac{y}{(y+1)^{2}}\right]-\left[-\frac{1}{y}+\frac{1}{y}\right]\right\} d y \\
& =\int_{0}^{1}\left\{\left[-\frac{1}{y+1}+\frac{y}{(y+1)^{2}}\right]\right\} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left[\frac{-(\mathrm{y}+1)+\mathrm{y}}{(\mathrm{y}+1)^{2}}\right] \mathrm{dy} \\
& =\int_{0}^{1} \frac{-\mathrm{dy}}{(1+\mathrm{y})^{2}} \\
& =\left(\frac{1}{1+\mathrm{y}}\right)_{0}^{1} \\
& =\frac{1}{2}-1 \\
& =-\frac{1}{2}
\end{aligned}
$$

50. Consider an LTI system with magnitude response $|\mathrm{H}(\mathrm{f})|= \begin{cases}1-\frac{|\mathrm{f}|}{20}, & |\mathrm{f}| \leq 20 \\ 0, & |f|>20\end{cases}$
and phase response $\operatorname{Arg}[H(f)]=-2 \mathrm{f}$.
If the input to the system is
$\mathrm{x}(\mathrm{t})=8 \cos \left(20 \pi \mathrm{t}+\frac{\pi}{4}\right)+16 \sin \left(40 \pi \mathrm{t}+\frac{\pi}{8}\right)+24 \cos \left(80 \pi \mathrm{t}+\frac{\pi}{16}\right)$
Then the average power of the output signal $y(t)$ is \qquad
51. Ans: 8

Sol: $|H(f)|=\left\{\begin{array}{cl}1-\frac{|f|}{20} ; & |f| \leq 20 \\ 0 ; & |f|>20\end{array}\right.$

$$
\angle \mathrm{H}(\mathrm{f})=-2 \mathrm{f}
$$

$A \sin \left(\omega_{0} t+\phi\right)$

$A \cos \left(\omega_{0} t+\phi\right)$ | $H(\omega)$ |
| :--- |
| LTI | | $A\left\|H\left(\omega_{0}\right)\right\| \sin \left(\omega_{0} t+\phi+\angle H\left(\omega_{0}\right)\right)$ |
| :--- |
| $A\left\|H\left(\omega_{0}\right)\right\| \cos \left(\omega_{0} t+\phi+\angle H\left(\omega_{0}\right)\right)$ |

For the given first input signal $8 \cos \left(20 \pi t+\frac{\pi}{4}\right)$
$\mathrm{f}_{0}=10 \mathrm{~Hz}$
$\left|H\left(f_{0}\right)\right|=1-\frac{1}{2}=\frac{1}{2}$
$\angle \mathrm{H}\left(\mathrm{f}_{0}\right)=-2 \times 10=-20$

The output is $=\left(8 \times \frac{1}{2}\right) \cos \left(20 \pi t+\frac{\pi}{4}-20\right)$

$$
=4 \cos \left(20 \pi t+\frac{\pi}{4}-20\right)
$$

For the given second input signal $16 \sin \left(40 \pi t+\frac{\pi}{8}\right)$
$\mathrm{f}_{0}=20 \mathrm{~Hz}$
$\left|\mathrm{H}\left(\mathrm{f}_{0}\right)\right|=0$
$\angle \mathrm{H}\left(\mathrm{f}_{0}\right)=-40^{\circ}$
The output is zero
For the given third input signal $24 \cos \left(80 \pi t+\frac{\pi}{16}\right)$
$\mathrm{f}_{0}=40 \mathrm{~Hz}$
$H\left(f_{0}\right)=0$ as $f_{0}>20$
$\angle \mathrm{H}\left(\mathrm{f}_{0}\right)=-80^{\circ}$
The output is zero
$y(t)=4 \cos \left(20 \pi t+\frac{\pi}{4}-20^{\circ}\right)+0+0=4 \cos \left(20 \pi t+\frac{\pi}{4}-20^{\circ}\right)$
$P_{y}(t)=\frac{4^{2}}{2}=8 W$
51. Figure 1 shows a 4-bit ripple carry adder realized using full adders and figure 2 shows the circuit of a full adder (FA). The propagation delay of the XOR, AND and OR gates in figure 2 are 20ns, 15 ns and 10 ns , respectively. Assume all the inputs to the 4 -bit adder are initially reset to 0 .

Figure (1)

Figure 2

At $\mathrm{t}=0$, the inputs to the 4-bit adder are changed to $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}=1100, \mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}=0100$ and $\mathrm{Z}_{0}=1$. The output of the ripple carry adder will be stable at t (in ns$)=$ \qquad
51. Ans: 70

Sol:

Given inputs

$$
\begin{array}{ccccc}
& 1 & 1 & 0 & 0 \\
& \mathrm{z}_{4} & \mathrm{z}_{3} & \mathrm{z}_{2} & \mathrm{z}_{1} \\
& 1
\end{array}
$$

(1) (1) (0) (0)
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$

Since carry $=0$ for $\mathrm{FA}_{1} \& \mathrm{FA}_{2}$
$\mathrm{t}=\mathrm{t}_{\mathrm{z}_{3}}+\mathrm{t}_{\mathrm{AND}}+\mathrm{t}_{\mathrm{OR}}$
$\mathrm{t}_{\mathrm{z}_{3}}=$ time taken to produce carry $=20+10+15$

$$
=45 \mathrm{~ns}
$$

$t=45+15+10$
$=70 \mathrm{~ns}$
$\mathrm{FA}_{1} \Rightarrow \mathrm{t}_{\mathrm{S}_{0}}=40 \mathrm{~ns}, \mathrm{t}_{\mathrm{z}_{1}}=45 \mathrm{~ns}$
$\mathrm{FA}_{2} \Rightarrow$ sin cecarry $\mathrm{z}_{1}=0$
\Rightarrow no need to wait for carry to come, so it is executed in parallel with FA_{1}
$\Rightarrow \mathrm{t}_{\mathrm{s}_{1}}=40 \mathrm{~ns}, \mathrm{t}_{\mathrm{z}_{2}}=45 \mathrm{~ns}$
$\mathrm{FA}_{3} \Rightarrow$ since carry $\mathrm{z}_{2}=0 \Rightarrow$ same process

$$
\Rightarrow \mathrm{t}_{\mathrm{s}_{2}}=40 \mathrm{~ns}, \mathrm{t}_{\mathrm{z}_{3}}=45 \mathrm{~ns}
$$

$\mathrm{FA}_{4} \Rightarrow$ Since carry $\mathrm{z}_{3}=1 \Rightarrow$ it has to wait for carry to come
So $\quad \mathrm{S}_{3}=45+20=65 \mathrm{~ns}$

$$
\mathrm{Z}_{4}=45+15+10=70 \mathrm{~ns}
$$

52. For a particular intensity of incident light on a silicon pn junction solar cell, the photocurrent density $\left(\mathrm{J}_{\mathrm{L}}\right)$ is $2.5 \mathrm{~mA} / \mathrm{cm}^{2}$ and the open-circuit voltage $\left(\mathrm{V}_{\mathrm{OC}}\right)$ is 0.451 V . Consider thermal voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ to be 25 mV . If the intensity of the incident light is increased by 20 times, assuming that the temperature remains unchanged, V_{oc} (in volts) will be \qquad
53. Ans: 0.6

Sol: $\quad \mathrm{V}_{\mathrm{oc}}=\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{I}_{\mathrm{o}}}+1\right)$
$V_{o c}=\eta V_{T}+\ell n\left(\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{I}_{o}}+1\right) \quad\left\{\begin{array}{l}\mathrm{J}_{\mathrm{L}} \text { : photo current density }\end{array}\right.$
$0.451=2 \times 25 \mathrm{mV}+\ln \left(\frac{2.5 \times 10^{-3}}{J_{\mathrm{o}}}+1\right)\{\eta=2$ for si p-n diode

$$
\begin{equation*}
\mathrm{J}_{\mathrm{o}}=\frac{2.5 \times 10^{-3}}{8265.777}=3.0245 \times 10^{-7} \mathrm{~A} / \mathrm{cm}^{2} . \tag{1}
\end{equation*}
$$

If incident light is increased by 20 times
$\Rightarrow \mathrm{J}_{\mathrm{L}}$ is also increased by 20 times

$$
\begin{aligned}
\mathrm{J}_{\mathrm{L}}^{1} & =20 \times \mathrm{J}_{\mathrm{L}} \\
& =50 \mathrm{~mA} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{oc}}{ }^{1} & =\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{~J}_{\mathrm{L}}^{1}}{\mathrm{~J}_{\mathrm{o}}}+1\right) \\
& =2 \times 25 \mathrm{mV} \ell \mathrm{n}\left(\frac{50 \times 10^{-3}}{3.0245 \times 10^{-7}}+1\right) \\
& =0.6 \mathrm{~V}
\end{aligned}
$$

53. In the circuit shown, transistor Q_{1} and Q_{2} are biased at a collector current of 2.6 mA . Assuming the transistor current gains are sufficiently large to assume collector current equal to emitter current and thermal voltage of 26 mV , the magnitude of voltage gain $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{s}}$ in the mid band frequency range is \qquad (up to second decimal place).
54. Ans: 50

Sol:

$$
A_{\mathrm{V}}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=\frac{-\mathrm{g}_{\mathrm{m} 1} \mathrm{R}_{\mathrm{C}}}{1+\mathrm{g}_{\mathrm{m} 1} \mathrm{R}_{\mathrm{eq}}}
$$

Here $\mathrm{g}_{\mathrm{m} 1}=\mathrm{g}_{\mathrm{m} 2}=\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{V}_{\mathrm{T}}}=\frac{2.6 \mathrm{~mA}}{2.6 \mathrm{mV}}=10^{-1}$
$\therefore \mathrm{A}_{\mathrm{V}}=\frac{-\mathrm{g}_{\mathrm{m} 1} \mathrm{RC}}{2}=\frac{-0.1 \times 1000}{2}=-50$

Or

Method-II:

$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}_{\text {be }}$
$\mathrm{V}_{0}=-\mathrm{i}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$
$\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{-\mathrm{i}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}}{2 \mathrm{~V}_{\mathrm{be}}}$

$$
\begin{aligned}
& =\frac{-g_{m}}{2} \mathrm{RC} \\
& =-50
\end{aligned}
$$

54. An abrupt pn junction (located at $\mathrm{x}=0$) is uniformly doped on both p and n sides. The width of the depletion region is W and the electric field variation in the x -direction is $\mathrm{E}(\mathrm{x})$. Which of the following figures represents the electric field profile near the pn junction.
(A)

(C)

(D)

55. Ans: (A)

Sol: We know Electric field is maximum at middle of junction so options (B), (D) can be eliminated. In any $p-n$ junction, Electric field is always from n to $p\left(\right.$ since $\left.V_{n}>V_{p}\right)$

We know $\mathrm{E}=-\nabla \mathrm{V}$
Take option (a):

E.F
$V_{p}-V_{N}=-\int E . d x=-v e\left(\right.$ in option (a), E_{0} is positive)
$\Rightarrow \mathrm{V}_{\mathrm{N}}>\mathrm{V}_{\mathrm{P}}($ which is always true $)$

Take option (C) :

E.F
$V_{P}-V_{N}=-\int E . d x \quad\left\{\right.$ In option (c), E_{0} is negative $\}$

$$
\begin{gathered}
=+\mathrm{Ve} \\
\Rightarrow \mathrm{~V}_{\mathrm{p}}>\mathrm{V}_{\mathrm{N}}(\text { Not possible })
\end{gathered}
$$

55. In the voltage reference circuit shown in the figure, the op-amp is ideal and the transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ $\ldots ., \mathrm{Q}_{32}$ are identical in all respects and have infinitely large values of common - emitter current gain (β). The collector current $\left(\mathrm{I}_{\mathrm{c}}\right)$ of the transistors is related to their base emitter voltage $\left(\mathrm{V}_{\mathrm{BE}}\right)$ by the relation $I_{C}=I_{S} \exp \left(V_{B E} / V_{T}\right)$; where I_{s} is the saturation current. Assume that the voltage V_{P} shown in the figure is 0.7 V and the thermal voltage $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$

The output voltage $\mathrm{V}_{\text {out }}$ (in volts) is \qquad
55. Ans: 1.14642

Sol: From Fig. $\mathrm{V}_{+}=\mathrm{V}_{\text {bel }}\left(\mathrm{Q}_{1}\right.$ transistor $)$
$\mathrm{V}_{+}=\mathrm{V}_{-}$(virtual short)

$$
\begin{equation*}
\frac{\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {bel }}}{20 \mathrm{k}}=\mathrm{I}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\text {bel }}}{26 \mathrm{~m}}} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {bel }}}{20 \mathrm{k}}=\frac{\mathrm{V}_{\text {bel }}-0.7}{5 \mathrm{k}}=31 \mathrm{I}_{\mathrm{S}} \mathrm{e}^{\frac{0.7}{26 \mathrm{~m}}} \\
& \frac{(2)}{(1)} \Rightarrow 1=31 \mathrm{e}^{\frac{0.7-\mathrm{b}_{\text {bel }}}{26 \mathrm{~m}}} \\
& \Rightarrow \mathrm{~V}_{\text {bel }}=0.789283667
\end{aligned}
$$

Substituting $V_{\text {bel }}$ in (2)

$$
\begin{aligned}
& \frac{\mathrm{V}_{\text {out }}-0.78928}{20 \mathrm{k}}=\frac{0.78928-0.7}{5 \mathrm{k}} \\
& \Rightarrow \mathrm{~V}_{\text {out }}=1.14642 \mathrm{~V}
\end{aligned}
$$

General Aptitude

56. The ninth and the tenth of this month are Monday and Tuesday
(A) Figuratively
(B) retrospectively
(C) respectively
(D) rightfully
57. Ans: (C)

Sol: 'Respectively' means in the same order as the people or things already mentioned.
57. A rule states that in order to drink beer, one must be over 18 years old. In a bar, there are 4 people. P is 16 years old, Q is 25 years old, R is drinking milkshake and S is drinking a beer. What must be checked to ensure that the rule is being followed?
(A) only P's drink
(B) Only P's drink and S's age
(C) only S's age
(D) Only P's age drink. Q's drink and S's age

57. Ans: (B)

Sol: From the given data is P's age is 16 years it is under 18 years of age so, drink is need to check and ' S ' is drinking a beer so, his age is more than 18 years (or) not also need to check from the rules given above.
\therefore Ans: (B) is correct
58. Fatima starts form point P , goes North for 3 km , and then East for 4 km to reach point Q . She then turns to face point P and goes 15 km in that direction. She then goes North for 6 km . How far is she from point P , and in which direction should she go to reach point P ?
(A) 8 km , East
(B) 12 km , North
(C) 6 km , East
(D) 10 km , North
58. Ans: (A)

Sol: From the given data, the following diagram is possible

$(\text { HYP })^{2}=(\text { opp } . \text { side })^{2}+(\text { Adjacent side })^{2}$
$(10)^{2}=(6)^{2}+x^{2}$
$x^{2}=(10)^{2}-(6)^{2}$
$\therefore \sqrt{100-36}=8 \mathrm{~km}$
For Reading ' P ' from the Reached position is 8 km towards East
59. 500 students are taking one or more courses out of chemistry, physics and Mathematics. Registration records indicate course enrolment as follows: chemistry (329), physics (186), Mathematics (295), chemistry and physics (83), chemistry and Mathematics (217), and physics and Mathematics (63), How many students are taking all 3 subjects?
(A) 37
(B) 43
(C) 47
(D) 53
59. Ans: (D)

Sol: Chemistry $=\mathrm{C}$, physics $=\mathrm{P}$ and
Mathematics $=\mathrm{M}$
$\mathrm{n}(\mathrm{CUPUM})=500, \mathrm{n}(\mathrm{C})(=329, \mathrm{n}(\mathrm{P})=186$
$\mathrm{n}(\mathrm{M})=295, \mathrm{n}(\mathrm{C} \cap \mathrm{P})=83, \mathrm{n}(\mathrm{C} \cap \mathrm{M})=217$
and $n(p \cap M)=63$
$\mathrm{n}(\mathrm{CUPUM})=\mathrm{n}(\mathrm{C})+\mathrm{n}(\mathrm{P})+\mathrm{n}(\mathrm{M})(\mathrm{C} \cap \mathrm{P})-\mathrm{n}(\mathrm{C} \cap \mathrm{M})-\mathrm{n}(\mathrm{P} \cap \mathrm{M})+\mathrm{n}(\mathrm{P} \cap \mathrm{C} \cap \mathrm{M})$
$500=329+186+295-83-217-36+\mathrm{n}(\mathrm{C} \cap \mathrm{P} \cap \mathrm{M})$
$500=810-363+\mathrm{n}(\mathrm{C} \cap \mathrm{P} \cap \mathrm{M})$
$\therefore \mathrm{n}(\mathrm{C} \cap \mathrm{P} \cap \mathrm{M})=500-447=53$
60. It \qquad to read this year's textbook \qquad the last year's
(A) easier, than
(B) most easy, than
(C) easier, from
(D) easiest, from
60. Ans: (A)

Sol: It is a comparative degree, so the right option is (A)
61. A contour line joins locations having the same height above the mean sea level. The following is a contour plot of a geographical region. Contour lines are shown at 25 m intervals in this spot.

Which of the following is the steepest path leaving from P ?
(A) P to Q
(B) P to R
(C) P to S
(D) P to T
61. Ans: (B)

Sol: Form the given contour lines and Locations

The path from P to $\mathrm{Q}=575$ to $500=75 \mathrm{~m}$ deep
The path from P to $R=575$ to $425=150 \mathrm{~m}$ deep
The path from P to $\mathrm{S}=575$ to $525=25 \mathrm{~m}$ deep
The path from P to $\mathrm{T}=575$ to $525=25 \mathrm{~m}$ deep
Among all of this paths P to R is the steepest path
62. "If you are looking for a history of India, or for an account of the rise and fall of the British Raj, or for the reason of the cleaving of the subcontinent into two mutually antagonistic parts and the effects this mutilation will have in the respective sections, and ultimately on Asia, you will not find it in these pages; for though I have spent a lifetime in the country. I lived too near the seat of events, and was too intimately associated with the actors, to get the perspective needed for the impartial recording of these matters. "

Which of the following statements best reflects the author's opinion?
(A) An intimate association does not allow for the necessary perspective
(B) Matters are recorded with an impartial perspective
(C) An intimate association offers an impartial perspective
(D) Actors are typically associated with the impartial recording of matters.

62. Ans: (C)

Sol: The key sentence is 'I lived too near the seat of events'
63. Each of $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z has been married at most once. X and Y married and have two children P and $\mathrm{Q} . \mathrm{Z}$ is the grandfather of the daughter S of P . Further, Z and W are married and are parents of R. Which one of the following must necessarily be FALSE?
(A) X is the mother in law of R
(B) P and R not married to each other
(C) P is a son of X and Y
(D) Q cannot be married to R
63. Ans: (B)

Sol:

From the given data ' S ' is grand daughter of Z through ' R ' only and P and R are married couple so , option (B) is necessary false.
64. The number of 3-digit numbers such that the digit 1 is never to the immediate right of 2 is
(A) 781
(B) 791
(C) 881
(D) 891
64. Ans: (C)

Sol: Total number of three digit numbers possible are $9 \times 10 \times 10=900$
Number of possibilities for digit ' 1 ' to be immediate right of digit ' 2 ' are

x	2	1

$$
9 \times 1 \times 1=9
$$

$$
=19
$$

So, number of possibilities such that the digit ' 1 ' is never to the immediate right of ' 2 ' are $900-19=881$
65. 1200 men and 500 women can build a bridge in 2 weeks. 900 men and 250 women will take 3 weeks to build the same bridge. How many men will be needed to build the bridge in one week?
(A) 3000
(B) 3300
(C) 3600
(D) 3900
65. Ans: (C)

Sol: Let a man can build the bridge $=x$ weeks
A woman can build the bridge $=\mathrm{y}$ weeks
From the given data,

$$
\begin{align*}
& \frac{1200}{x}+\frac{500}{y}=\frac{1}{2} . \tag{i}\\
& \frac{900}{x}+\frac{250}{y}=\frac{1}{3} \ldots .
\end{align*}
$$

By solving equation (i) and (ii), $x=3600$
\therefore A man can build the bridge in 3600 weeks

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Questions \& Solutions)	
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-1 Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-I Obi)	Mechanical Engineering (Volume-1 Obi)
Instrumentation Engineering	Electrical Engineering (Volume-ll Obj)	Mechanical Engineering (Volume-II Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-1 Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-II Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO Special Books For GENCO TRANSCO \&	SUs (Previous Years Questions With Solutions \& Useful for BARC, SAIL, OMS (Previous Questions \& Solutions of Various Exams Useful for SSC JJ,	AAI \& OTHER PSUs) E, STEEL PLANT, ISRO, BARC and Other PSUs)

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise (6) +919397699966
* You can Buy Online also

$\square=S$ S \quad S					
들 (Prelims \& Mains)				C	
Streams : EC, EE, ME, CE				Streams : EC, EE, ME, CE, CS, IN, PI	
Test Type	Prelims		Mains	Test Type	No. Of Tests (Online)
	Online	Offline			
Chapter-wise Tests	43	-	-	Chapter-wise Tests	20
Subject-wise Grand Tests	31	20	08	Subject-wise Grand Tests	40
Revision Tests	-	-	04	Subject-wise Grand Tests	40
Full Lenth Mock Tests	08	04	04	Full Lenth Mock Tests	12

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS ION for conduting Pw-GATE 2018 (Center bosed MOCK Test) on PAN India basis with Anolytics.

Video Solutuions are available for Selected Objective Questions for Online Exams

