A

Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi|Kolkata

GATE 2017

Electronics \& Communication Engineering

Questions with Detailed Solutions

FORENOON SESSION

1. An $\mathrm{n}^{+}-\mathrm{n}$ Silicon device is fabricated with uniform and non-degenerate donor doping concentrations of $\mathrm{N}_{\mathrm{D} 1}=1 \times 10^{18} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D} 2}=1 \times 10^{15} \mathrm{~cm}^{-3}$ corresponding to the n^{+}and n regions respectively. At the operational temperature T, assume complete impurity ionization, kT / q $=25 \mathrm{mV}$, and intrinsic carrier concentration to be $\mathrm{n}_{\mathrm{i}}=1 \times 10^{10} \mathrm{~cm}^{-3}$. What is the magnitude of the built-in potential of this device?
(A) 0.748 V
(B) 0.460 V
(C) 0.288 V
(D) 0.173 V

Ans: (D)

Sol: $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}_{\mathrm{n}+}}=\mathrm{KT} \ell \mathrm{n}\left(\frac{\mathrm{N}_{\mathrm{C}}}{\mathrm{N}_{\mathrm{D} 1}}\right)$
$\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}_{\mathrm{n}}}=\mathrm{KT} \ell \mathrm{n}\left(\frac{\mathrm{N}_{\mathrm{C}}}{\mathrm{N}_{\mathrm{D} 2}}\right)$
$E_{F_{n+}}-E_{F_{n}}=K T \ln \left(\frac{N_{D 1}}{N_{D 2}}\right)$
$\mathrm{V}_{\mathrm{o}} \cdot \mathrm{q}=\mathrm{KT} \ell \mathrm{n}\left(\frac{\mathrm{N}_{\mathrm{D}_{1}}}{\mathrm{~N}_{\mathrm{D} 2}}\right)$
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{KT}}{\mathrm{q}} \ln \left(\frac{\mathrm{N}_{\mathrm{D} 1}}{\mathrm{~N}_{\mathrm{D} 2}}\right)$
$=25 \mathrm{mV} \ell \mathrm{n}\left(10^{3}\right)$
$=0.173 \mathrm{~V}$
Another Method:
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{KT}}{\mathrm{q}} \ln \left[\frac{\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right]$
$=\frac{\mathrm{KT}}{\mathrm{q}} \ln \left[\frac{\mathrm{N}_{\mathrm{DI}}}{\left(\frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{A}}}\right)}\right]$
$=\frac{\mathrm{KT}}{\mathrm{q}} \ln \left(\frac{\mathrm{N}_{\mathrm{D} 1}}{\mathrm{~N}_{\mathrm{D} 2}}\right)$
$=0.173 \mathrm{~V}$
02. A periodic signal $\mathrm{x}(\mathrm{t})$ has a trigonometric Fourier Series expansion

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)
$$

If $x(t)=-x(-t)=-x\left(t-\pi / \omega_{0}\right)$, we can conclude that
(A) a_{n} are zero for all n and b_{n} are zero for n even
(B) a_{n} are zero for all n and b_{n} are zero for n odd
(C) a_{n} are zero for n even and b_{n} are zero for n odd
(D) a_{n} are zero for n odd and b_{n} are zero for n even

02. Ans: (A)

Sol: Given that $x(t)=-x(-t)$ i.e odd signal, so the signal contains only b_{n} terms and $x(t)=-x\left(t-\frac{\pi}{\omega_{0}}\right)$ i.e Half wave symmetry, so the signal contains only odd harmonics.

So the resultant signal contains only b_{n} terms with odd harmonics.
03. Three fair cubical dice are thrown simultaneously. The probability that all three dice have the same number of dots on the faces showing up is (up to third decimal place) \qquad .
03. Ans: 0.027

Sol: The probability that all three dice have the same number of dots on the faces showing up is

$$
=\frac{6}{6^{3}}=\frac{1}{36}=0.027
$$

4. For a narrow base PNP BJT, the excess minority carrier concentrations ($\Delta \mathrm{n}_{\mathrm{E}}$ for emitter, $\Delta \mathrm{p}_{\mathrm{B}}$ base, $\Delta \mathrm{n}_{\mathrm{C}}$ for collector) normalized to equilibrium minority carrier concentrations ($\mathrm{n}_{\mathrm{E} 0}$ for emitter, $\mathrm{p}_{\mathrm{B} 0}$ for base, $\mathrm{n}_{\mathrm{C} 0}$ for collector) in the quasi-neutral emitter, base and collector regions are shown below. Which one of the following biasing modes is the transistor operating in?

(A) Forward active
(B) Saturation
(C) Inverse active
(D) Cutoff
5. Ans: (C)

Sol: At C - B junction, due to FB a lot of holes are injected into the base from collector. At E-B junction, due to RB very few holes are injected into the base from Emitter

At collector - Base junction, ratio of Excess minority carrier concentration to equilibrium minority carrier concentration is in order of 10^{5} (very high). This is possible when the junction is forward bias (injection)

At emitter - base junction, ratio of Excess minority carrier concentration to equilibrium minority carrier concentration is in order of 1 (negligible). This is possible when the junction is reverse Bias (no injection)
05. Consider the following statements for continuous-time linear time invariant (LTI) systems.
I. There is no bounded input bounded output (BIBO) stable system with a pole in the right half of the complex plane.
II. There is no causal and BIBO stable system with a pole in the right half of the complex plane.

Which one among the following is correct?
(A) Both I and II are true
(B) Both I and II are not true
(C) Only I is true
(D) Only II is true

05. Ans (D)

Sol: (I) For example consider a pole location at right half of complex plane, if it is anti-causal, ROC is left sided, and Roc includes $\mathrm{j} \omega$ axis, so It is a BIBO stable, so statement I is false.
(II) If a causal system having a pole on right side of s-plane it is compulsory unstable because ROC is not including j ω-axis. So statement II is true.
06. For the operational amplifier circuit shown, the output saturation voltages are $\pm 15 \mathrm{~V}$. The upper and lower threshold voltages for the circuit are, respectively.

(A) +5 V and -5 V
(B) +7 V and -3 V
(C) +3 V and -7 V
(D) +3 V and -3 V
06. Ans: (B)

Sol:

Replying KCL at node (V)
$\frac{\mathrm{V}-\mathrm{V}_{\text {out }}}{10 \mathrm{~K}}+\frac{\mathrm{V}-3}{5 \mathrm{k}}=0 \quad \Rightarrow 3 \mathrm{~V}-6=\mathrm{V}_{\text {out }}$
$\Rightarrow \mathrm{V}=\frac{\mathrm{V}_{\text {out }}+6}{3}$

UTP: If $\mathrm{V}_{\text {out }}=+\mathrm{V}_{\text {sat }}=+15 \Rightarrow \mathrm{~V}_{\mathrm{UTP}}=7 \mathrm{~V}$
LTP: If $\mathrm{V}_{\text {out }}=-\mathrm{V}_{\mathrm{sat}}=-15 \Rightarrow \mathrm{~V}_{\mathrm{LTP}}=-3 \mathrm{~V}$
07. Consider the following statements about the linear dependence of the real valued functions $\mathrm{y}_{1}=1$, $y_{2}=x$ and $y_{3}=x^{2}$. over the field of real numbers.
I. y_{1}, y_{2} and y_{3} are linearly independent on $-1 \leq \mathrm{x} \leq 0$
II. y_{1}, y_{2} and y_{3} are linearly dependent on $0 \leq x \leq 1$
III. $\mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} are linearly independent on $0 \leq \mathrm{x} \leq 1$
IV. y_{1}, y_{2} and y_{3} are linearly dependent on $-1 \leq x \leq 0$

Which one among the following is correct?
(A) Both I and II are true
(B) Both I and III are true
(C) Both II and IV are true
(D) Both III and IV are true
07. Ans: (B)

Sol: $\mathrm{y}_{1}=1, \mathrm{y}_{2}=\mathrm{x}, \mathrm{y}_{3}=\mathrm{x}^{2}$,

Let the wronskian determinant be

$$
\begin{aligned}
W & =\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right| \\
& =2\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|=2 \neq 0
\end{aligned}
$$

$\rightarrow y_{1}, y_{2}$ and y_{3} are Linearly Independent for any $x \in(-\infty,+\infty)$
08. A good trans-conductance amplifier should have
(A) high input resistance and low output resistance
(B) low input resistance and high output resistance
(C) high input and output resistances
(D) low input and output resistances
08. Ans: (C)
09. Consider the D-Latch shown in the figure, which is transparent when its clock input CK is high and has zero propagation delay. In the figure, the clock signal CLK1 has a 50% duty cycle and CLK2 is a one-fifth period delayed version of CLK1. The duty cycle at the output of the latch in percentage is \qquad .

09.

Sol:

$$
\mathrm{T}=\frac{\mathrm{T}_{\mathrm{clk}}}{2}-\frac{\mathrm{T}_{\mathrm{clk}}}{5}=\frac{5 \mathrm{~T}_{\mathrm{clk}}-2 \mathrm{~T}_{\mathrm{clk}}}{10}=\frac{3 \mathrm{~T}_{\mathrm{clk}}}{10}
$$

So duty cycle is 30%
10. The rank of the matrix $M=\left[\begin{array}{ccc}5 & 10 & 10 \\ 1 & 0 & 2 \\ 3 & 6 & 6\end{array}\right]$ is
(A) 0
(B) 1
(C) 2
(D) 3
10. Ans: (C)

Sol: $M=\left[\begin{array}{ccc}5 & 10 & 10 \\ 1 & 0 & 2 \\ 3 & 6 & 6\end{array}\right]$ $\operatorname{det}(\mathrm{M})=0(\because$ first and third rows are proportional $)$
\Rightarrow Rank of $\mathrm{M}<3$
Let $\left|M_{1}\right|=\left|\begin{array}{cc}5 & 10 \\ 1 & 0\end{array}\right|$ be a submatrix
$\operatorname{det}\left(\mathrm{M}_{1}\right)=-10 \neq 0$
\therefore Rank of $\mathrm{M}=2$
11. The Miller effect in the context of a Common Emitter amplifier explains
(A) an increase in the low-frequency cutoff frequency
(B) an increase in the high-frequency cutoff frequency
(C) a decrease in the low-frequency cutoff frequency
(D) a decrease in the high-frequency cutoff frequency
11. Ans (D)

Sol: Due to miller effect the effective input Capacitance seen through the base terminal will increase which in turn reduces the higher cutoff frequency
12. Let $\left(X_{1}, X_{2}\right)$ be independent random variables, X_{1} has mean 0 and variance 1 , while X_{2} has mean 1 and variance 4 . The mutual information $\mathrm{I}\left(\mathrm{X}_{1} ; \mathrm{X}_{2}\right)$ between X_{1} and X_{2} in bits is \qquad .
12. Ans: 0

Sol: $\mathrm{I}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{H}\left(\mathrm{X}_{1}\right)-\mathrm{H}\left(\mathrm{X}_{1} / \mathrm{X}_{2}\right)$

$$
\begin{aligned}
& =H\left(\mathrm{X}_{1}\right)-\mathrm{H}\left(\mathrm{X}_{1}\right)\left[\mathrm{H}\left(\mathrm{X}_{1} / \mathrm{X}_{2}\right)=\mathrm{H}\left(\mathrm{X}_{1}\right), \text { since } \mathrm{X}_{1} \& \mathrm{X}_{2} \text { are independent }\right] \\
& =0
\end{aligned}
$$

COAL INDIA LIMITED (CIL) Management Trainee \& Other PSUs

Classroom coaching
(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

Starts on

区 $15^{\text {th }}$ Feb 2017 @ Delhi

Online Test Series ($\mathrm{EE}|\mathrm{ME}| \mathrm{CE}$)
Total Tests : 20
starts from 17 ${ }^{\text {th }}$ Feb 2017

ESE - 2017
 Mains (Stage - II)

Classroom Coaching Starts from 15 ${ }^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests: 16
V Will Conduct at all Our centers
13. Consider a single input single output discrete-time system with $\mathrm{x}[\mathrm{n}]$ as input and $\mathrm{y}[\mathrm{n}]$ as output, where the two are related as
$y[n]=\left\{\begin{array}{cc}n|x[n]|, & \text { for } 0 \leq n \leq 10 \\ x[n]-x[n-1], & \text { otherwise, }\end{array}\right.$
Which one of the following statements is true about the system?
(A) It is causal and stable
(B) It is causal but not stable
(C) It is not causal but stable
(D) It is neither causal nor stable

13. Ans: (A)

Sol: The given system is
$y(n)= \begin{cases}n x(n), & 0 \leq n \leq 10 \\ x(n)-x(n-1), & \text { other wise }\end{cases}$
\rightarrow Present output depends on present input and past input, so it is a causal system
\rightarrow For a bounded input, bounded output yields, so it is a stable system
14. In the circuit shown, the positive angular frequency ω (in radians per second) at which the magnitude of the phase difference between the voltages V_{1} and V_{2} equals $\frac{\pi}{4}$ radians, is \qquad .

Sol: $\quad \mathrm{V}_{1}(\mathrm{~s})=\left(\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}{2+\mathrm{s}}\right) 1 \Rightarrow \frac{\mathrm{~V}_{1}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}=\frac{1}{\mathrm{~s}+2} \rightarrow(1)$
$\mathrm{V}_{2}(\mathrm{~s})=\left(\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}{2+\mathrm{s}}\right)(1+\mathrm{s})$
$\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}=\frac{1+\mathrm{s}}{2+\mathrm{s}} \rightarrow(2)$
$\frac{(1)}{(2)} \Rightarrow \frac{\mathrm{V}_{1}(\mathrm{~s})}{\mathrm{V}_{2}(\mathrm{~s})}=\frac{1}{\mathrm{~s}+1}$
$\Rightarrow \frac{V_{1}(j \omega)}{V_{2}(j \omega)}=\frac{1}{1+j \omega}=\frac{1}{\sqrt{1+\omega^{2}}} \angle-\tan ^{-1} \omega$
The given condition is $\left|-\tan ^{-1} \omega\right|=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1} \omega=\frac{\pi}{4}$
$\Rightarrow \omega=\tan \frac{\pi}{4}$
$=1 \mathrm{rad} / \mathrm{sec}$.
15. The voltage of an electromagnetic wave propagating in a coaxial cable with uniform characteristic impedance is $\mathrm{V}(l)=\mathrm{e}^{-\gamma l+\mathrm{j} \omega \mathrm{t}}$ Volts, where l is the distance along the length of the cable in metres, $\gamma=(0.1+j 40) \mathrm{m}^{-1}$ is the complex propagation constant, and $\omega=2 \pi \times 10^{9} \mathrm{rad} / \mathrm{s}$ is the angular frequency. The absolute value of the attenuation in the cable in $\mathrm{dB} /$ metre is \qquad .
15. Ans: 0.8686

Sol: Given $\gamma=(0.1+j 40) \mathrm{m}^{-1}=\alpha+\mathrm{j} \beta$

$$
\begin{aligned}
& \therefore \alpha=0.1 \mathrm{~Np} / \mathrm{m} \quad(1 \mathrm{~Np}=8.686 \mathrm{~dB}) \\
& \alpha_{\mathrm{dB}}=0.1 \times 8.686=0.8686 \mathrm{~dB} / \mathrm{m}
\end{aligned}
$$

16. In a digital communication system, the overall pulse shape $p(t)$ at the receiver before the sampler has the Fourier transform $\mathrm{P}(\mathrm{f})$. If the symbols are transmitted at the rate of 2000 symbols per second, for which of the following cases is the inter symbol interference zero?
(A)

(B)

(C)

(D)

17. Ans: (B)

Sol: Given $\mathrm{f}_{\mathrm{s}}=1 / \mathrm{T}_{\mathrm{s}}=2 \mathrm{k}$ symbols $/ \mathrm{sec}$
Condition for zero ISI is given by

$$
\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{P}\left(\mathrm{f}-\mathrm{n} / \mathrm{T}_{\mathrm{s}}\right)=\mathrm{T}_{\mathrm{s}}(\text { constant })
$$

The above condition is satisfied by only option (b)

$\therefore \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{P}(\mathrm{f}-\mathrm{n} 2 \mathrm{k})=1$
Option (A) is correct if pulse duration is from -1 to +1
Option (C) is correct if the transition is from 0.8 to $1.2,-0.8$ to -1.2
Option (D) is correct if the triangular duration is from -2 to +2
17. Consider a stable system with transfer function

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{s}^{\mathrm{p}}+\mathrm{b}_{1} \mathrm{~s}^{\mathrm{p}-1}+\ldots .+\mathrm{b}_{\mathrm{p}}}{\mathrm{~s}^{\mathrm{q}}+\mathrm{a}_{1} \mathrm{~s}^{\mathrm{q}-1}+\ldots .+\mathrm{a}_{\mathrm{q}}}
$$

where b_{1} \qquad \ldots, b_{p} and $a_{1} \ldots \ldots a_{q}$ are real valued constants. The slope of the Bode log magnitude curve of $\mathrm{G}(\mathrm{s})$ converges to $-60 \mathrm{~dB} /$ decade as $\omega \rightarrow \infty$. A possible pair of values for p and q is
(A) $\mathrm{p}=0$ and $\mathrm{q}=3$
(B) $\mathrm{p}=1$ and $\mathrm{q}=7$
(C) $\mathrm{p}=2$ and $\mathrm{q}=3$
(D) $\mathrm{p}=3$ and $\mathrm{q}=5$
17. Ans: (A)

Sol: To get a slope of $-60 \mathrm{~dB} /$ decade, required $(p-q)=3$
18. The clock frequency of an 8085 microprocessor is 5 MHz . If the time required to execute an instruction is $1.4 \mu \mathrm{~s}$, then the number of T-states needed for executing the instruction is
(A) 1
(B) 6
(C) 7
(D) 8
18. Ans: (C)

Sol: $\mathrm{f}_{\text {clk }}=5 \mathrm{MHz}$
$\mathrm{T}_{\mathrm{clk}}=\frac{1}{\mathrm{f}_{\mathrm{clk}}}=0.2 \mu \mathrm{~s}$
(no. of T-states) $\times\left(\mathrm{T}_{\mathrm{clk}}\right)=1.4 \mu \mathrm{~s}$
Number of T-states $=\frac{1.4 \mu \mathrm{~s}}{0.2 \mu \mathrm{~s}}=7$
19. Which of the following can be the pole-zero configuration of a phase-lag controller (lag compensator)?
(A)

(B)

(C)

(D)

19. Ans: (A)

Sol: TF for lag compensator $=\left(\frac{1+\tau \mathrm{s}}{1+\alpha \tau \mathrm{s}}\right)$
For $\alpha>1$ lag compensator

20. Which one of the following statements about differential pulse code modulation (DPCM) is true?
(A) the sum of message signal sample with its prediction is quantized
(B) The message signal sample is directly quantized, and its prediction is not used
(C) The difference of message signal sample and a random signal is quantized
(D) The difference of message signal sample with its prediction is quantized
20. Ans: (D)

Sol: In DPCM the difference of the message signal sample value and the output of prediction filter block is quantized
21. Consider a wireless communication link between a transmitter and a receiver located in free space, with finite and strictly positive capacity. If the effective areas of the transmitter and the receiver antennas, and the distance between them are all doubled, and everything else remains unchanged, the maximum capacity of the wireless link
(A) increases by a factor of 2
(B) decreases by a factor of 2
(C) remains unchanged
(D) decreases by a factor of $\sqrt{2}$

21. Ans: (C)

Sol: \quad Channel capacity $(\mathrm{C})=\mathrm{B} \log \left(1+\frac{\mathrm{S}}{\mathrm{N}}\right)$
C depends on S
$S=p_{r}($ received signal power $)=\frac{P_{t} G_{t} G_{r}}{\left(\frac{4 \pi d}{\lambda}\right)^{2}}=\frac{P_{t}\left(\frac{4 \pi}{\lambda^{2}} A_{\text {et }}\right)\left(\frac{4 \pi}{\lambda^{2}} A_{\text {er }}\right)}{\left(\frac{4 \pi d}{\lambda}\right)^{2}}$
Given that $\left(\mathrm{A}_{\mathrm{et}}\right)_{2}=2\left(\mathrm{~A}_{\mathrm{et}}\right)_{1}$

$$
\begin{gathered}
\left(\mathrm{A}_{\mathrm{er}}\right)_{2}=2\left(\mathrm{~A}_{\mathrm{er}}\right)_{1} \\
\mathrm{~d}_{2}=2 \mathrm{~d}_{1}
\end{gathered}
$$

$\mathrm{P}_{\mathrm{r}} \propto \frac{\mathrm{A}_{\mathrm{et}} \mathrm{A}_{\mathrm{er}}}{\mathrm{d}^{2}}$
$P_{r 2}=P_{r 1}$ (received power remains unchanged)
$\therefore \mathrm{C}$ remains unchanged
22. The open loop transfer function

$$
G(s)=\frac{(s+1)}{s^{p}(s+2)(s+3)}
$$

where p is an integer, is connected in unity feedback configuration as shown in the figure.

Given that the steady state error is zero for unit step input and is 6 for unit ramp input, the value of the parameter p is \qquad .
22. Ans: 1

Sol: To get steady state error zero for unit step input and 6 for unit ramp input, the type of the system is one.
23. In the latch circuit shown, the NAND gates have non-zero, but unequal propagation delays. The present input condition is: $\mathrm{P}=\mathrm{Q}=$ ' 0 ', If the input condition is changed simultaneously to $\mathrm{P}=\mathrm{Q}=$ ' 1 ', the outputs X and Y are

(A) $\mathrm{X}={ }^{\prime} 1$ ', $\mathrm{Y}={ }^{\prime} 1$ '
(B) either $\mathrm{X}={ }^{\prime} 1$ ', $\mathrm{Y}={ }^{\prime} 0$ ' or $\mathrm{X}={ }^{\prime} 0$, $\mathrm{Y}={ }^{\prime} 1$ '
(C) either $\mathrm{X}=$ ' 1 ', $\mathrm{Y}={ }^{\prime} 1$ ' or $\mathrm{X}=' 0$ ', $\mathrm{Y}=' 0$ '
(D) $\mathrm{X}={ }^{\prime} 0$ ', $\mathrm{Y}={ }^{\prime} 0$ '
23. Ans: (B)

Sol: Take t_{pd} of gate $1<\mathrm{t}_{\mathrm{pd}}$ of gate 2

If we take option (A):

Since output of $1^{\text {st }}$ NAND is 1 , it is input to second NAND, so output of second NAND has to be 0 (but given 1), so not satisfied.

Take option (B):

Since output of $1^{\text {st }}$ NAND is 0 , it is input to second NAND, so output of second NAND has to be ' 1 ' (given also ' 1 ')
Hence satisfied
(Or)

Output of $1^{\text {st }}$ NAND is 1 , it is input to second NAND, so output of second NAND has to be ' 0 ', (given also ' 0 ')
Hence satisfied

Take option C:

Already option (a) is not possible, hence ' c ' is also not possible

Take option D:

Since output of first NAND is taken as ' 0 ', it is input to second, so output of second NAND has to be 1 (but given ' 0 ')

So not satisfied
24. Consider the 5×5 matrix
$\mathrm{A}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1\end{array}\right]$

It is given that A has only one real eigen value. Then the real eigen value of A is
(A) -2.5
(B) 0
(C) 15
(D) 25

24. Ans: (C)

Sol: $A=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1\end{array}\right]$
$|\mathrm{A}-\lambda \mathrm{I}|=0$
$\Rightarrow\left|\begin{array}{ccccc}1-\lambda & 2 & 3 & 4 & 5 \\ 5 & 1-\lambda & 2 & 3 & 4 \\ 4 & 5 & 1-\lambda & 2 & 3 \\ 3 & 4 & 5 & 1-\lambda & 2 \\ 2 & 3 & 4 & 5 & 1-\lambda\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}+\mathrm{C}_{5}$
$\Rightarrow\left|\begin{array}{ccccc}15-\lambda & 2 & 3 & 4 & 5 \\ 15-\lambda & 1-\lambda & 2 & 3 & 4 \\ 15-\lambda & 5 & 1-\lambda & 2 & 3 \\ 15-\lambda & 4 & 5 & 1-\lambda & 2 \\ 15-\lambda & 3 & 4 & 5 & 1-\lambda\end{array}\right|=0$
$\Rightarrow(15-\lambda)\left|\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 1-\lambda & 2 & 3 & 4 \\ 1 & 5 & 1-\lambda & 2 & 3 \\ 1 & 4 & 5 & 1-\lambda & 2 \\ 1 & 3 & 4 & 5 & 1-\lambda\end{array}\right|=0$
$\Rightarrow 15-\lambda=0$
$\therefore \lambda=15$
25. A bar of Gallium Arsenide (GaAs) is doped with Silicon such that the Silicon atoms occupy Gallium and Arsenic sites in the GaAs crystal. Which one of the following statements is true?
(A) Silicon atoms act as p-type dopants in Arsenic sites and n-type dopants in Gallium sites
(B) Silicon atoms act as n-type dopants in Arsenic sites and p-type dopants in Gallium sites
(C) Silicon atoms act as p-type dopants in Arsenic as well as Gallium sites
(D) Silicon atoms act as n-type dopants in Arsenic as well as Gallium sites
25. Ans: (A)

Sol: Substituting a Gallium site by a si atom produces a free electron so n-type Substituting an Arsenic site by a si atom produces a hole so p-type.

26 Let $\mathrm{x}(\mathrm{t})$ be a continuous time periodic signal with fundamental period $\mathrm{T}=1$ seconds, Let $\left\{\mathrm{a}_{\mathrm{k}}\right\}$ be the complex Fourier series coefficients of $\mathrm{x}(\mathrm{t})$, where k is integer valued. Consider the following statement about $\mathrm{x}(3 \mathrm{t})$:
I. The complex Fourier series coefficients of $x(3 t)$ are $\left\{a_{k}\right\}$ where k is integer valued
II. The complex Fourier series coefficients of $x(3 t)$ are $\left\{3 a_{k}\right\}$ where k is integer valued
III. The fundamental angular frequency of $x(3 t)$ is $6 \pi \mathrm{rad} / \mathrm{s}$

For the three statements above, which one of the following is correct?
(A) only II and III are true
(B) only I and III are true
(C) only III is true
(D) only I is true

26. Ans: (B)

Sol: $\quad \mathrm{x}(\mathrm{t}) \rightarrow \mathrm{a}_{\mathrm{k}}, \omega_{\mathrm{o}}=2 \pi$
$x(a t) \rightarrow a_{k}, a \omega_{0}$
$\mathrm{x}(3 \mathrm{t}) \rightarrow \mathrm{a}_{\mathrm{k}}, 3 \omega_{\mathrm{o}}=6 \pi$
so I and III are true

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM
HYDERABAD
29 ${ }^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM HYDERABAD \& DELHI
$7^{\text {st }}$ week of July 2017
27. A 4-bit shift register circuit configured for right-shift operation is $D_{\text {in }} \rightarrow A, A \rightarrow B, B \rightarrow C, C \rightarrow D$, is shown. If the present state of the shift register is $\mathrm{ABCD}=1101$, the number of clock cycles required to reach the state $\mathrm{ABCD}=1111$ is

27. Ans: 10

Sol: \quad Clk A B C D

0	1	1	0	1	
1	0	1	1	0	
2	0	0	1	1	
3	1	0	0	1	
4	0	1	0	0	
5	0	0	1	0	
6	0	0	0	1	
7	1	0	0	0	
8	1	1	0	0	
9	1	1	1	0	
10	1	1	1	$1 \Rightarrow$ required state	

28. Let $\mathrm{h}[\mathrm{n}]$ be the impulse response of a discrete-time linear time invariant (LTI) filter. The impulse response is given by
$\mathrm{h}(0)=\frac{1}{3} ; \mathrm{h}[1]=\frac{1}{3} ; \mathrm{h}[2]=\frac{1}{3} ;$ and $\mathrm{h}[\mathrm{n}]=0$ for $\mathrm{n}<0$ and $\mathrm{n}>2$.
Let $H(\omega)$ be the Discrete-Time Fourier transform (DTFT) of $h[n]$, where ω is the normalized angular frequency in radians. Given that $\mathrm{H}\left(\omega_{0}\right)=0$ and $0<\omega_{0}<\pi$, the value of ω_{0} (in radians) is equal to \qquad .
29. Ans: 2.094

Sol: $\quad h(n)=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$
$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{1}{3}+\frac{1}{3} \mathrm{e}^{-\mathrm{j} \omega}+\frac{1}{3} \mathrm{e}^{-\mathrm{j} 2 \omega}=\frac{1}{3} \mathrm{e}^{-\mathrm{j} \omega}\left[\mathrm{e}^{\mathrm{j} \omega}+\mathrm{e}^{-\mathrm{j} \omega}\right]+\frac{1}{3} \mathrm{e}^{-\mathrm{j} \omega}$

$$
\begin{aligned}
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{2}{3} \mathrm{e}^{-\mathrm{j} \omega} \cos \omega+\frac{1}{3} \mathrm{e}^{-\mathrm{j} \omega} \\
& \quad=\frac{1}{3} \mathrm{e}^{-\mathrm{j} \omega}[1+2 \cos \omega] \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=0 \quad \text { when } \\
& \Rightarrow 1+2 \cos \omega=0 \\
& \Rightarrow \cos \omega=-\frac{1}{2} \\
& \Rightarrow \omega=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ}=\frac{2 \pi}{3}=2.094 \mathrm{rad}
\end{aligned}
$$

29. A finite state machine (FSM) is implemented using the D flip-flops A and B and logic gates, as shown in the figure below. The four possible states of the $F S M$ are $Q_{A} Q_{B}=00,01,10$, and 11 .

Assume that $X_{\text {IN }}$ is held at a logic level throughout the operation of the FSM. When the FSM is initialized to the state $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}}=00$ and clocked, after a few clock cycles, it starts cycling through
(A) all of the four possible states if $\mathrm{X}_{\text {IN }}=1$
(B) three of the four possible states if $\mathrm{X}_{\text {IN }}=0$
(C) only two of the four possible states if $\mathrm{X}_{\text {IN }}=1$
(D) only two of the possible states if $\mathrm{X}_{\mathrm{IN}}=0$
29. Ans: (D)

Sol: If $X_{\text {IN }}=0$
$\mathrm{D}_{\mathrm{B}}=\overline{\mathrm{Q}_{\mathrm{A}} \cdot 0}=1$

Clk	$\mathrm{D}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} \oplus \mathrm{Q}_{\mathrm{B}}$	$\mathrm{D}_{\mathrm{B}}=1$	Q_{A}	Q_{B}
0	-	-	0	0
1	0	1	0	1
2	1	1	1	0
3	0	1	0	1

Thus number of possible states are two

If $\mathrm{X}_{\mathrm{IN}}=1 \Rightarrow \mathrm{D}_{\mathrm{B}}=\overline{\mathrm{Q}_{\mathrm{A}} \cdot 1}=\overline{\mathrm{Q}_{\mathrm{A}}}$

Clk	$\mathrm{D}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} \oplus \mathrm{Q}_{\mathrm{B}}$	$\mathrm{D}_{\mathrm{B}}=\overline{\mathrm{Q}}_{\mathrm{A}}$	Q_{A}	Q_{B}
0			0	0
1	0	1	0	1
2	1	1	1	
3	0	0	0	$=1$

Thus number of possible states are three
30. A linear time invariant (LTI) system with the transfer function

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{K}\left(\mathrm{~s}^{2}+2 \mathrm{~s}+2\right)}{\left(\mathrm{s}^{2}-3 \mathrm{~s}+2\right)}
$$

is connected in unity feedback configuration as shown in the figure .

For the closed loop system shown, the root locus for $0<\mathrm{K}<\infty$ intersects the imaginary axis for $\mathrm{K}=1.5$. The closed loop system is stable for
(A) $\mathrm{K}>1.5$
(B) $1<\mathrm{K}<1.5$
(C) $0<\mathrm{K}<1$
(D) no positive value of K
30. Ans: (A)

Sol: For CL system stability system gain is greater than 1.5

31. Which one of the following gives the simplified sum of products expression for the Boolean function $\mathrm{F}=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{5}$, where $\mathrm{m}_{0}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ and m_{5} are minterms corresponding to the inputs A, B, and C with A as the MSB and C as the LSB?
(A) $\overline{\mathrm{A} B}+\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}$
(B) $\overline{\mathrm{A}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}$
(C) $\bar{A} \bar{C}+A \bar{B}+A \bar{B} C$
(D) $\overline{\mathrm{A}} \mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}$
31. Ans: (B)

Sol: $\quad \mathrm{F}=\Sigma \mathrm{m}(0,2,3,5)$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B} \\
& =\overline{\mathrm{A}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}
\end{aligned}
$$

32. Let $f(x)=e^{x+x^{2}}$ for real x. From among the following. Choose the Taylor series approximation of $f(x)$ around $x=0$, which includes all powers of x less than or equal to 3 .
(A) $1+x+x^{2}+x^{3}$
(B) $1+x+\frac{3}{2} x^{2}+x^{3}$
(C) $1+x+\frac{3}{2} x^{2} \frac{7}{6} x^{3}$
(D) $1+x+3 x^{2}+7 x^{3}$

32. Ans: (C)

Sol: Given $f(x)=e^{x+x^{2}} \rightarrow(1)$
We know that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots$

$$
\begin{aligned}
e^{x+x^{2}} & =1+\left(x+x^{2}\right)+\frac{\left(x+x^{2}\right)^{2}}{2!}+\frac{\left(x+x^{2}\right)^{3}}{3!}=1+x+x^{2}+\frac{\left(x^{2}+2 x^{3}\right)}{2}+\frac{x^{3}}{6} \\
& =1+x+\frac{3}{2} x^{2}+\frac{7}{6} x^{3}
\end{aligned}
$$

33. For the DC analysis of the common-Emitter amplifier shown, neglect the base current and assume that the emitter and collector currents are equal. Given that $\mathrm{V}_{\mathrm{T}}=25 \mathrm{Mv}, \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and the BJT output resistance r_{0} is practically infinite. Under these conditions the midband voltage gain magnitude, $\mathrm{A}_{\mathrm{v}}=\left|\mathrm{v}_{0} / \mathrm{v}_{\mathrm{i}}\right| \mathrm{V} / \mathrm{V}$, is \qquad

34. Ans: 128

Sol:

Figure: DC Analysis

AC analysis

$$
\begin{aligned}
\left|\mathrm{A}_{\mathrm{v}}\right| & =\left|\mathrm{g}_{\mathrm{m}}\left(\mathrm{Rc} / / \mathrm{R}_{\mathrm{L}}\right)\right| \\
& =\frac{2}{25} \times(2 \mathrm{k} / / 8 \mathrm{k})=128
\end{aligned}
$$

34. Let $\mathrm{X}(\mathrm{t})$ be a wide sense stationary random process with the power spectral density $\mathrm{S}_{\mathrm{x}}(\mathrm{f})$ as shown in figure (a), where f is in $\operatorname{Hertz}(\mathrm{Hz})$. The random process $\mathrm{X}(\mathrm{t})$ is input to an ideal low pass filter with the frequency response

$$
\mathrm{H}(\mathrm{f})= \begin{cases}1, & |\mathrm{f}| \leq \frac{1}{2} \mathrm{~Hz} \\ 0, & |\mathrm{f}|>\frac{1}{2} \mathrm{~Hz}\end{cases}
$$

As shown in Figure (b). The output of the low pass filter is $\mathrm{Y}(\mathrm{t})$.

Let E be the expectation operator and consider the following statements:
I. $\quad \mathrm{E}(\mathrm{X}(\mathrm{t}))=\mathrm{E}(\mathrm{Y}(\mathrm{t}))$
II. $E\left(X^{2}(t)\right)=E\left(Y^{2}(t)\right)$
III. $\mathrm{E}\left(\mathrm{Y}^{2}(\mathrm{t})\right)=2$

Select the correct option:
(A) only I is true
(B) only II and III are true
(C) only I and II are true
(D) only I and III are true

34. Ans: (A)

Sol (I) $E[x(t)]=E[y(t)]$

Proof:

$$
\begin{aligned}
\mathrm{E}[\mathrm{y}(\mathrm{t})] & =\mathrm{H}(0) \mathrm{E}[\mathrm{x}(\mathrm{t})] \\
& =\mathrm{E}[\mathrm{x}(\mathrm{t})] \quad[\because \mathrm{H}(0)=1]
\end{aligned}
$$

(II) $\left[\mathbf{x}^{2}(\mathbf{t})\right] \neq \mathrm{E}\left[\mathbf{y}^{2}(\mathrm{t})\right]$

Proof:
$E\left[y^{2}(t)\right]=\int_{-\infty}^{\infty} s_{y}(f) d f=\int_{-\infty}^{\infty} s_{x}(f)|H(f)|^{2} d f=\int_{-1 / 2}^{1 / 2} S_{x}(f) d f=2-2 e^{-0.5}$ \qquad
$E\left[x^{2}(t)\right]=\int_{-\infty}^{\infty} S_{x}(f) d f=2$
(1) $\neq(2)$
(III) $E\left[y^{2}(t)\right] \neq 2$

Proof:
From (II)
$\mathrm{E}\left[\mathrm{x}^{2}(\mathrm{t})\right]=2$ but $\mathrm{E}\left[\mathrm{y}^{2}(\mathrm{t})\right] \neq 2$

ESE - 2017 mass suce ...

Exclusive Postal Coaching Offer for Prelims Qualified Students for CE / ME / EE / E\&T

FREE DOUBT CLEARING SESSIONS THROUGH

Live Video Sessions
35. In the figure shown, the npn transistor acts as a switch.

For the input $\mathrm{V}_{\mathrm{in}}(\mathrm{t})$ as shown in the figure, the transistor switches between the cut-off and saturation regions of operation, when T is large . Assume collector-to-emitter voltage at saturation $\mathrm{V}_{\mathrm{CE}(\text { sat })}=0.2 \mathrm{~V}$ and base-to-emitter voltage $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. The minimum value of the common-base current gain (α) of the transistor for the switching should be \qquad
35. Ans: $\alpha_{\text {min }}=0.902$

Sol: $\quad I_{B}=\frac{2-0.7}{12 \mathrm{k} \Omega}=0.108 \mathrm{~mA}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}-\mathrm{sat}}=\frac{5-0.2}{4.8 \mathrm{k} \Omega}=1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{k}}=\mathrm{I}_{\mathrm{C} \text {-sat }}+\mathrm{I}_{\mathrm{B}} \\
& =1 \mathrm{~mA}+0.108 \mathrm{~mA} \\
& =1.108 \mathrm{~mA}
\end{aligned}
$$

For saturation:

$\mathrm{I}_{\text {C-sat }}<\alpha \mathrm{I}_{\mathrm{E}}$
$\alpha>\frac{\mathrm{I}_{\mathrm{C}-\mathrm{sat}}}{\mathrm{IE}}$
$\alpha>\frac{1 \mathrm{~mA}}{1.108 \mathrm{~mA}}$
$\alpha>0.902$

hearty congratulations to our GATE 2016 RANKERS

36. An optical fiber is kept along the \hat{Z} direction. The refractive indices for the electric fields along \hat{X} and \hat{Y} direction in the fiber are $n_{x}=1.5000$ and $n_{y}=1.5001$, respectively ($n_{x} \neq n_{y}$ due to the imperfection in the fiber cross-section). The free space wavelength of a light wave propagating in the fiber is $1.5 \mu \mathrm{~m}$. If the light wave is circularly polarized at the input of the fiber, the minimum propagation distance after which it becomes linearly polarized, in centimeters, is \qquad .
36. Ans: $\mathbf{0 . 3 7 5}$

Sol: For to have linear polarization, phase difference has to be 0° or 180°. Given the light wave is circularly polarized that is initial phase difference is 90°.
So

$$
\begin{aligned}
& \beta_{1} \mathrm{z} \sim \beta_{2} \mathrm{z}=\frac{\pi}{2} \\
& \Rightarrow \frac{\omega}{v_{\mathrm{px}}} \mathrm{z} \sim \frac{\omega}{v_{\mathrm{py}}} \mathrm{z}=\frac{\pi}{2} \\
& \Rightarrow 2 \pi \mathrm{f}\left(\frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{c}} \sim \frac{\mathrm{n}_{\mathrm{y}}}{\mathrm{c}}\right) \mathrm{z}=\frac{\pi}{2}\left(v_{\mathrm{px}}=\mathrm{c} / \mathrm{n}_{\mathrm{x}} \text { and } v_{\mathrm{py}}=\mathrm{c} / \mathrm{n}_{\mathrm{y}}\right) \\
& \Rightarrow \frac{2 \pi \mathrm{f}}{\mathrm{c}}\left(\mathrm{n}_{\mathrm{x}} \sim \mathrm{n}_{\mathrm{y}}\right) \mathrm{z}=\frac{\pi}{2} \\
& \Rightarrow \frac{2 \pi}{\lambda}\left(\mathrm{n}_{\mathrm{x}} \sim \mathrm{n}_{\mathrm{y}}\right) \mathrm{z}=\frac{\pi}{2} \\
& \Rightarrow \mathrm{z}=\pi / 2 \times \lambda / 2 \pi\left(\mathrm{n}_{\mathrm{x}} \sim \mathrm{n}_{\mathrm{y}}\right)=\lambda / 4\left(\mathrm{n}_{\mathrm{x}} \sim \mathrm{n}_{\mathrm{y}}\right)=\frac{1.5 \times 10^{-6}}{4 \times 0.0001}=0.375 \mathrm{~cm}
\end{aligned}
$$

37. A three dimensional region R of finite volume is described by

$$
x^{2}+y^{2} \leq z^{3} ; 0 \leq z \leq 1
$$

Where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are real. The volume of R (up to two decimal places) is \qquad
37. Ans: π

Sol: Given: $x^{2}+y^{2} \leq z^{3} ; 0 \leq z \leq 1$
Put $x=r \cos \theta, y=r \sin \theta, z=z$
$\therefore \mathrm{dxdydz}=\mathrm{rdrd} \theta \mathrm{dz}$

Volume $V=\iiint_{R} d x d y d z$, where $R: x^{2}+y^{2} \leq z^{3} ; 0 \leq z \leq 1 \rightarrow(1)$
The region of integration is
$0 \leq \mathrm{r} \leq 1$
$0 \leq \mathrm{z} \leq 1$

$$
\begin{aligned}
(1) \Rightarrow \mathrm{V} & =\int_{\mathrm{r}=0}^{1} \int_{\theta=0}^{2 \pi} \int_{\mathrm{z}=0}^{1} \mathrm{rdrd} \theta \mathrm{dz} \\
& =\left(\frac{\mathrm{r}^{2}}{2}\right)_{0}^{1}(\theta)_{0}^{2 \pi}(\mathrm{z})_{0}^{1} \\
& =\frac{1}{2}(2 \pi) \\
& =\pi
\end{aligned}
$$

38. For the circuit shown, assume that the NMOS transistor is in saturation. Its threshold voltage $\mathrm{V}_{\mathrm{tn}}=1 \mathrm{~V}$ and its trans-conductance parameter $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)=1 \mathrm{~mA} / \mathrm{V}^{2}$. Neglect channel length modulation and body bias effects. Under these conditions the drain current I_{D} in $m A$ is \qquad

39. Ans: $\mathbf{2} \mathbf{~ m A}$

Sol: $\quad \mathrm{V}_{\mathrm{G}}=8 \times \frac{5}{5+3}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{s}}=\mathrm{I}_{\mathrm{D}} .1 \mathrm{k} \Omega$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GS}}=5-\mathrm{I}_{\mathrm{D}} 1 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{tn}}\right)^{2} \\
& \mathrm{I}_{\mathrm{D}}=\frac{1}{2} \times 10^{-3}\left(5-\mathrm{I}_{\mathrm{D}} \cdot 1 \mathrm{k}-1\right)^{2} \\
& 2000 \mathrm{I}_{\mathrm{D}}=\left(4-\mathrm{I}_{\mathrm{D}} \cdot 1 \mathrm{k}\right)^{2} \\
& 2000 \mathrm{I}_{\mathrm{D}}=16+\mathrm{I}_{\mathrm{D}}^{2} \cdot 10^{6}-8 \mathrm{I}_{\mathrm{D}} \cdot 1 \mathrm{k} \\
& 10^{6} \mathrm{I}_{\mathrm{D}}^{2}-10^{4} \mathrm{I}_{\mathrm{D}}+16=0 \\
& \mathrm{I}_{\mathrm{D}}=\frac{10^{4} \pm \sqrt{10^{8}-\left(4 \times 16 \times 10^{6}\right)}}{2 \times 10^{6}} \\
& \frac{10^{4} \pm 6 \times 10^{3}}{2 \times 10^{6}}=8 \mathrm{~mA} / 2 \mathrm{~m} \mathrm{~A} \\
& \mathrm{I}_{\mathrm{D}}=8 \mathrm{~mA} \text { when } \mathrm{V}_{\mathrm{s}}=8 \mathrm{~V} \text { (not possible) } \\
& \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA} \text { when } \mathrm{V}_{\mathrm{s}}=2 \mathrm{~V} \text { (possible) }
\end{aligned}
$$

39. The Nyquist plot of the transfer function

$$
G(S)=\frac{K}{\left(s^{2}+2 s+2\right)(s+2)}
$$

does not encircle the point $(-1+j 0)$ for $K=10$ but does encircle the point $(-1+j 0)$ for $K=100$. Then the closed loop system (having unity gain feedback) is
(A) stable for $\mathrm{K}=10$ and stable for $\mathrm{K}=100$
(B) stable for $\mathrm{K}=10$ and unstable for $\mathrm{K}=100$
(C) unstable for $\mathrm{K}=10$ and stable for $\mathrm{K}=100$
(D) unstable for $\mathrm{K}=10$ and unstable for $\mathrm{K}=100$

39. Ans: (B)

Sol: For given system, $\mathrm{P}=0$
For stability $\mathrm{N}=0$
For $\mathrm{k}=10$, No encirclements about $(-1, \mathrm{j} 0)$. Hence the system is stable
For $K=100$, encircles the point $(-1, j 0)$. Hence the system is unstable.

40. In binary frequency shift keying (FSK), the given signal wave forms are
$\mathrm{u}_{0}(\mathrm{t})=5 \cos (20000 \pi \mathrm{t}) ; 0 \leq \mathrm{t} \leq \mathrm{T}$, and
$\mathrm{u}_{1}(\mathrm{t})=5 \cos (22000 \pi \mathrm{t}) ; 0 \leq \mathrm{t} \leq \mathrm{T}$,
where T is the bit-duration interval and t is in seconds. Both $u_{0}(t)$ and $u_{1}(t)$ are zero outside the interval $0 \leq \mathrm{t} \leq \mathrm{T}$. With a matched filter (correlator) based receiver, the smallest positive value of T (in milliseconds) required to have $u_{0}(t)$ and $u_{1}(t)$ uncorrelated is
(A) 0.25 ms
(B) 0.5 ms
(C) 0.75 ms
(D) 1.0 ms
40. Ans: (B)

Sol: Method - I

$$
\begin{aligned}
& \mathrm{f}_{1}=\frac{20000 \pi}{2 \pi}=10 \mathrm{k} \\
& \mathrm{f}_{2}=\frac{22000 \pi}{2 \pi}=11 \mathrm{k} \\
& \mathrm{f}_{2}-\mathrm{f}_{1}=\frac{1}{2 \mathrm{~Tb}} \text { [Condition for un-correlation in coherent FSK] } \\
& \mathrm{T}_{\mathrm{b}}=\frac{1}{2\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)} \\
& \mathrm{T}_{\mathrm{b}}=0.5 \mathrm{~ms}
\end{aligned}
$$

Method - II

$$
\begin{aligned}
& \int_{0}^{\mathrm{T}} \mathrm{u}_{0}(\mathrm{t}) \mathrm{u}_{1}(\mathrm{f})=0 \quad \text { [If two signals are un-correlated] } \\
& \int_{0}^{\mathrm{T}} \frac{1}{2}[25 \cos (42000 \pi \mathrm{t})+25 \cos (2000 \pi \mathrm{t})] \mathrm{dt}=0 \\
& \frac{25}{2} \frac{\sin (42000 \pi \mathrm{~T})}{42000 \pi}+\frac{25}{\frac{25}{2} \frac{\sin (2000 \pi \mathrm{~T})}{2000 \pi}}=0
\end{aligned} \underbrace{}_{(1)}=0
$$

$\sin 2000 \pi \mathrm{~T}=0$ when $2000 \pi \mathrm{~T}=\pi$
$\Rightarrow \mathrm{T}=\frac{1}{2000}$

$$
\begin{aligned}
& \text { At } \mathrm{T}=\frac{1}{2000},(1=2=0 \\
& \therefore \mathrm{T}=0.5 \mathrm{~ms}
\end{aligned}
$$

41. Which one of the following is the general solution of the first order differential equation

$$
\frac{d y}{d x}=(x+y-1)^{2}
$$

where x, y are real ?
(A) $y=1+x+\tan ^{-1}(x+c)$, where c is a constant
(B) $y=1+x+\tan (x+c)$, where c is a constant
(C) $y=1-x+\tan ^{-1}(x+c)$, where c is a constant
(D) $y=1-x+\tan (x+c)$, where c is a constant
41. Ans: (D)

Sol: $\frac{d y}{d x}=(x+y-1)^{2} \rightarrow(1)$
Put $\mathrm{x}+\mathrm{y}-1=\mathrm{t}$
$1+\frac{d y}{d x}=\frac{d t}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}-1$
(1) $\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}-1=\mathrm{t}^{2}$
$\Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=1+\mathrm{t}^{2}$
$\Rightarrow \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=\mathrm{dx}$
Integrating both sides
$\int \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=\int \mathrm{dx}$
$\Rightarrow \tan ^{-1} \mathrm{t}=\mathrm{x}+\mathrm{c}$
$\therefore \tan ^{-1}(\mathrm{x}+\mathrm{y}-1)=\mathrm{x}+\mathrm{c}$
(or) $\mathrm{x}+\mathrm{y}-1=\tan (\mathrm{x}+\mathrm{c})$
(or) $y=1-x+\tan (x+c)$ is the solution.
42. Let $\mathrm{I}=\int_{\mathrm{c}}(2 \mathrm{zdx}+2 \mathrm{y} d y+2 \mathrm{xdz})$ where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are real, and let C be the straight line segment from point $A:(0,2,1)$ to point $B:(4,1,-1)$. The value of I is \qquad
42. Ans: - $\mathbf{1 1}$

Sol: Given:

$$
\begin{aligned}
I & =\int_{C}[2 z d x+2 y d y+2 x d z] \\
I & =\int_{A}^{B}[2 d(x z)+2 y d y] \\
& =\int_{(0,2,1)}^{(4,1,-1)}[2 d(x z)+2 y d y] \\
& =\left[2 x z+y^{2}\right]_{(0,2,1)}^{(4,1)-1)} \\
& =(-8+1)-(4) \\
& =-11
\end{aligned}
$$

43. Two discrete-time signals $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ are both non-zero only for $\mathrm{n}=0,1,2$, and are zero otherwise. It is given that
$\mathrm{x}[0]=1, \quad \mathrm{x}[1]=2, \quad \mathrm{x}[2]=1, \mathrm{~h}[0]=1$,
Let $y[n]$ be the linear convolution of $x[n]$ and $h[n]$. Given that $y[1]=3$ and $y[2]=4$, the value of the expression $(10 y[3]+y[4])$ is \qquad
44. Ans: 31

Sol: $x(n)=\{1,2,1\}$
$h(n)=\{1, \mathrm{x}, \mathrm{y}\}$
$\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})$

$$
\begin{aligned}
& y(n)=\{1,2+x, 2 x+y+1, x+2 y, y\} \\
& y(1)=3=2+x \Rightarrow x=1 \\
& y(2)=4=2 x+y+1 \Rightarrow y=1 \\
& y(n)=\{1,3,4,3,1\} \\
& 10 y(3)+y(4)=10 \times 3+1=31
\end{aligned}
$$

44. The amplifier circuit shown in the figure is implemented using a compensated operational amplifier (op-amp), and has an open-loop voltage gain, $\mathrm{A}_{0}=10^{5} \mathrm{~V} / \mathrm{V}$ and an open-loop cutoff frequency, $\mathrm{f}_{\mathrm{c}}=8 \mathrm{~Hz}$. The voltage gain of the amplifier at 15 kHz in V / V, is \qquad
45. Ans: 44.36

Sol:

Method-I:

$A(s)=\frac{A_{o}}{1+\frac{s}{\omega_{p}}}=\frac{10^{5}}{1+\frac{s}{2 \pi f_{c}}}$
$\mathrm{V}_{-}=\mathrm{V}_{\mathrm{o}} \times \frac{1}{80}=\frac{\mathrm{V}_{\mathrm{o}}}{80}$
$\mathrm{~V}_{\mathrm{o}}=\left(\mathrm{V}_{\mathrm{I}}-\frac{\mathrm{V}_{\mathrm{o}}}{80}\right) \mathrm{A}(\mathrm{s})$
$\mathrm{V}_{\mathrm{o}}\left(1+\frac{\mathrm{A}(\mathrm{s})}{80}\right)=\mathrm{V}_{\mathrm{I}} \mathrm{A}(\mathrm{s})$
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{I}}}=\frac{\mathrm{A}(\mathrm{s})}{1+\frac{\mathrm{A}(\mathrm{s})}{80}}=\frac{10^{5} / 1+\frac{\mathrm{s}}{\omega_{\mathrm{c}}}}{1+\frac{10^{5}}{80} \cdot \frac{1}{1+\frac{\mathrm{s}}{\omega_{\mathrm{c}}}}}$
$=\frac{80 \times 10^{5}}{80+\frac{80 \mathrm{~s}}{\omega_{c}}+10^{5}}$
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{1}}=\frac{80 \times 10^{5}}{10^{5}+80+\frac{80 \mathrm{~s}}{\omega_{\mathrm{c}}}}$

$$
|A|=\frac{80 \times 10^{5}}{\sqrt{\left(80+10^{5}\right)^{2}+\left(\frac{80 \times 15 \times 10^{3}}{8}\right)^{2}}}
$$

$$
\approx 44.36
$$

Method-II:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CL}}=\frac{\mathrm{A} / 1+\mathrm{A} \beta}{1+\mathrm{jf} / \mathrm{f}_{\mathrm{c}}(1+\mathrm{A} \beta)} \\
& \mathrm{f}_{\mathrm{c}}(1+\mathrm{A} \beta)=8 \times\left(1+10^{5} \times \frac{1}{80}\right) \approx 10 \mathrm{kHz}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{CL}} \approx \frac{80}{1+\mathrm{jf} / 10 \mathrm{k}}$
$\left|A_{C L}\right|_{(\mathrm{f}=15 \mathrm{k})}=\left|\frac{80}{1+\mathrm{j} \frac{15 \mathrm{k}}{10 \mathrm{k}}}\right|=\frac{80}{\sqrt{1+(1.5)^{2}}}=44.37$
45. In the circuit shown the voltage $\mathrm{V}_{\mathrm{IN}}(\mathrm{t})$ is described by:

$$
V_{\text {IN }}(t)=\left\{\begin{array}{cc}
0, & \text { for } t<0 \\
15 \text { Volts, } & \text { for } t \geq 0
\end{array}\right.
$$

where ' t ' is in seconds. The time (in seconds) at which the current I in the circuit will reach the value 2 Ampere is \qquad

45. Ans: 0.3405

Sol: By applying the laplace transform with initial conditions

Nodal in S-D \Rightarrow

$$
\begin{aligned}
& \frac{\mathrm{V}(\mathrm{~s})-\frac{15}{\mathrm{~s}}}{1}+\frac{\mathrm{V}(\mathrm{~s})}{\mathrm{s}}+\frac{\mathrm{V}(\mathrm{~s})}{2 \mathrm{~s}}=0 \\
& \Rightarrow \mathrm{~V}(\mathrm{~s})=\frac{30}{2 \mathrm{~s}+3} \\
& \rightarrow \mathrm{I}(\mathrm{~s})=\frac{\mathrm{V}(\mathrm{~s})}{\mathrm{z}(\mathrm{~s})}=\frac{\mathrm{V}(\mathrm{~s})}{2 \mathrm{~s}}=\frac{30}{2 \mathrm{~s}(2 \mathrm{~s}+3)}
\end{aligned}
$$

$$
\Rightarrow \mathrm{I}(\mathrm{~s})=5\left[\frac{1}{5}-\frac{1}{\mathrm{~s}+\frac{3}{2}}\right]
$$

$$
\Rightarrow \mathrm{i}(\mathrm{t})=5\left(1-\mathrm{e}^{-\frac{3 \mathrm{t}}{2}}\right) \mathrm{A} \text { for } 0 \leq \mathrm{t} \leq \infty
$$

when $\mathrm{i}(\mathrm{t})=2 \mathrm{~A}$, then
$2=5\left(1-\mathrm{e}^{-\frac{3 t}{2}}\right)$
$\Rightarrow \mathrm{t}=\frac{2}{3} \log _{\mathrm{e}} \frac{5}{3}=0.3405 \mathrm{sec}$
46. As shown a uniformly doped silicon (Si) bar of length $\mathrm{L}=0.1 \mu \mathrm{~m}$ with a donor concentration $\mathrm{N}_{\mathrm{D}}=10^{16} \mathrm{~cm}^{-3}$ is illuminated at $\mathrm{x}=0$ such that electron and hole pairs are generated at the rate of $\mathrm{G}_{\mathrm{L}}=\mathrm{G}_{\mathrm{Lo}}\left(1-\frac{\mathrm{x}}{\mathrm{L}}\right), 0 \leq \mathrm{x} \leq \mathrm{L}$, where $\mathrm{G}_{\mathrm{Lo}}=10^{17} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$, Hole lifetime is $10^{-4} \mathrm{~s}$, electronic charge $q=1.6 \times 10^{-19} C$, hole diffusion coefficient $D_{P}=100 \mathrm{~cm}^{2} / \mathrm{s}$ and low level injection condition prevails. Assuming a linearly decaying steady state excess hole concentration that goes to 0 at $\mathrm{x}=\mathrm{L}$, the magnitude of the diffusion current density at $\mathrm{x}=\mathrm{L} / 2$, in $\mathrm{A} / \mathrm{cm}^{2}$ is
\qquad

46. Ans: 16

Sol: $J=-D_{p} q \frac{d p(x)}{d x}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\mathrm{G}_{\mathrm{Lo}}\left(1-\frac{\mathrm{x}}{\mathrm{~L}}\right) \tau_{\mathrm{po}}+\mathrm{p}_{\mathrm{no}}=10^{17}\left(1+\frac{\mathrm{x}}{\mathrm{~L}}\right) 10^{-4}+\mathrm{p}_{\mathrm{no}} \\
& \mathrm{~J}=(+) 10^{2} \times 1.6 \times 10^{-19} \times 10^{13}(+) \frac{1}{\mathrm{~L}} \mathrm{~L}=10^{-5} \mathrm{~cm} \\
& =\frac{1.6 \times 10^{-4}}{10^{-5}} \\
& \quad=1.6 \times 10 \mathrm{~A} / \mathrm{cm}^{2} \\
& \quad=16 \mathrm{~A} / \mathrm{cm}^{2}
\end{aligned}
$$

47. As shown, two Silicon (Si) abrupt p-n junction diodes are fabricated with uniform donor doping concentrations of $\mathrm{N}_{\mathrm{D} 1}=10^{14} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D} 2}=10^{16} \mathrm{~cm}^{-3}$ in the n -regions of the diodes, and uniform acceptor doping concentrations of $\mathrm{N}_{\mathrm{A} 1}=10^{14} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{A} 2}=10^{16} \mathrm{~cm}^{-3}$ in the p-regions of the diodes, respectively. Assuming that the reverse bias voltage is \gg built-in potentials of the diodes, the ratio $\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}$ of their reverse bias capacitances for the same applied reverse bias, is
\qquad .

Diode $1 \quad$ Diode 2
47. Ans: 10

Sol: $\quad C=\frac{\varepsilon A}{\omega}$
For abrupt junction, $\omega=\sqrt{\frac{2 \varepsilon\left(\mathrm{v}_{\mathrm{o}}+\mathrm{V}_{\mathrm{R}}\right)}{\mathrm{q}}\left(\frac{1}{\mathrm{~N}_{\mathrm{A}}}+\frac{1}{\mathrm{~N}_{\mathrm{D}}}\right)}$
Since $V_{o} \ll V_{R} \Rightarrow V_{o}+V_{R}=V_{R}$
48. The expression for an electric field in free space is $E=E_{0}(\hat{x}+\hat{y}+j 2 \hat{z}) e^{-j(\omega t-k x+k y)}$, where x, y, z represent the spatial coordinates, t represents time, and ω, k are constants. This electric field
(A) does not represent a plane wave.
(B) represents a circularly polarized plane wave propagating normal to the z-axis.
(C) represents an elliptically polarized plane wave propagating along the $x-y$ plane.
(D) represents a linearly polarized plane wave.

48. Ans: (C)

Sol: $\quad E=E_{0}(\hat{x}+\hat{y}+j 2 \hat{z}) \mathrm{e}^{-\mathrm{j}(\omega t-\mathrm{kx}+\mathrm{ky})}$
$e^{-j k r}=e^{-j(-k x+k y)}$
$\therefore \mathrm{kr}=\mathrm{k}(-\mathrm{x}+\mathrm{y})$
propagation vector $\hat{a}_{\mathrm{P}}=\frac{\nabla(\mathrm{kr})}{|\nabla(\mathrm{kr})|}$
$\nabla(\mathrm{kr})=\mathrm{k}(-\hat{\mathrm{x}}+\hat{\mathrm{y}})$
$|\nabla(\mathrm{kr})|=\mathrm{k} \sqrt{2}$
$\hat{\mathrm{a}}_{\mathrm{p}}=\frac{\nabla(\mathrm{kr})}{|\nabla(\mathrm{kr})|}=\frac{-\hat{\mathrm{x}}+\hat{\mathrm{y}}}{\sqrt{2}}$
For plane wave $\hat{a}_{p} \cdot \hat{E}=0$

$$
\begin{aligned}
\hat{a}_{p} \cdot \hat{E} & =\left[\frac{-\hat{x}+\hat{y}}{\sqrt{2}}\right] \cdot E_{o}[\hat{x}+\hat{y}+j 2 \hat{z}] \\
& =-\frac{E_{o}}{\sqrt{2}}+\frac{E_{o}}{\sqrt{2}}+j 0
\end{aligned}
$$

$\hat{a}_{p} \cdot \hat{\mathrm{E}}=0 \therefore$ given is a plane wave.
As $E=E_{0}(\hat{x}+\hat{y}+j 2 \hat{z}) \mathrm{e}^{-\mathrm{j}(\omega t-\mathrm{kx}+\mathrm{ky})}$
For the given wave, plane of incidence is xy-plane.
E in $x y$ plane is parallel polarized
and along z is perpendicular polarized
$\mathrm{E} \|=|\mathrm{E}|_{\mathrm{xy}}=\sqrt{1+1}=\sqrt{2}$
$E \|=|E|_{z}=\sqrt{2^{2}}=2$
$\left|\mathrm{E}_{\mathrm{T}}\right|=|\mathrm{E}|| |+\left|\mathrm{E}_{\perp \mathrm{r}}\right|$

$$
=\sqrt{2}+2
$$

$\left|\mathrm{E}\left\|\| \neq\left|\mathrm{E}_{\llcorner\mathrm{r}}\right|\right.\right.$ and phase difference is 90°; i.e. given is a
Elliptically polarized plane wave
49. Which one of the following options correctly describes the locations of the roots of the equation $\mathrm{s}^{4}+\mathrm{s}^{2}+1=0$ on the complex plane?
(A) Four left half plane (LHP) roots
(B) One right half plane (RHP) root, one LHP root and two roots on the imaginary axis
(C) Two RHP roots and two LHP roots
(D) All four roots are on the imaginary axis
49. Ans: (C)

Sol: $\mathrm{CE} \mathrm{S}^{4}+\mathrm{S}^{2}+1=0$

$\Rightarrow 2$ sign changes and 1 ROZ
$\Rightarrow 2$ poles in right half of S-plane
And symmetrical poles in the LHS-plane.
50. The following FIVE instructions were executed on an 8085 microprocessor.

MVI A, 33H
MVI B, 78 H
ADD B
CMA

ANI 32H

The Accumulator value immediately after the execution of the fifth instruction is
(A) 00 H
(B) 10 H
(C) 11 H
(D) 32 H
50. Ans: (B)

Sol: MVI A, $33 \mathrm{H}: \quad \mathrm{A} \leftarrow 33_{\mathrm{H}}$

MVI B, $78 \mathrm{H}: \quad \mathrm{B} \leftarrow 78_{\mathrm{H}}$

ADD B:

$$
\begin{array}{r}
33 \\
+\quad 7 \quad 8 \\
\hline \mathrm{AB}_{\mathrm{H}}
\end{array}
$$

$$
\mathrm{A} \leftarrow \mathrm{AB}_{\mathrm{H}}
$$

CMA: $\mathrm{A}=10101011$

$$
\begin{aligned}
& \overline{\mathrm{A}}=01010100 \\
& \mathrm{~A} \leftarrow 54_{\mathrm{H}}
\end{aligned}
$$

ANI 32H:

0	1	0	1	0	1	0	0
0	0	1	1		0	0	1

10_{H}

$$
\mathrm{A} \leftarrow 10_{\mathrm{H}}
$$

51. Starting with $\mathrm{x}=1$, the solution of the equation $\mathrm{x}^{3}+\mathrm{x}=1$, after two iterations of NewtonRaphson's method (up to two decimal places) is \qquad
52. Ans: 0.6861

Sol: Let $f(x)=x^{3}+x-1, x_{0}=1$
$f^{\prime}(x)=3 x^{2}+1$

The first approximation is

$$
\begin{aligned}
\mathrm{x}_{1} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)}=1-\frac{\mathrm{f}(1)}{\mathrm{f}^{\prime}(1)} \\
& =1-\frac{1}{4} \\
& =\frac{3}{4} \\
& =0.75
\end{aligned}
$$

The second approximation is

$$
\begin{aligned}
\mathrm{x}_{2} & =\mathrm{x}_{1}-\frac{\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)} \\
& =0.75-\frac{\mathrm{f}(0.75)}{\mathrm{f}^{\prime}(0.75)} \\
& =0.75-\frac{0.1718}{2.6875} \\
& =0.75-0.0639 \\
\mathrm{x}_{2} & =0.6861
\end{aligned}
$$

52. A half wavelength dipole is kept in the $x-y$ plane and oriented along 45° from the x-axis. Determine the direction of null in the radiation pattern for $0 \leq \phi \leq \pi$. Here the angle $\theta(0 \leq \theta \leq \pi)$ is measured from the z-axis, and the angle $\phi(0 \leq \phi \leq 2 \pi)$ is measured from the x -axis in the $\mathrm{x}-\mathrm{y}$ plane.
(A) $\theta=90^{\circ}, \phi=45^{\circ}$
(B) $\theta=45^{\circ}, \phi=90^{\circ}$
(C) $\theta=90^{\circ}, \phi=135^{\circ}$
(D) $\theta=45^{\circ}, \phi=135^{\circ}$
53. Ans: (A)

Sol: As the antenna is placed in xy - plane which is horizontal plane i.e $\theta=\frac{\pi}{2}$

\therefore Antenna in $\theta=\frac{\pi}{2}$

As there is no field along antenna i.e null along antenna, $\phi=45^{\circ}$ as $0 \leq \phi \leq \pi$ given
\therefore for the given antenna null is at $\theta=90, \phi=45^{\circ}$
53. The dependence of drift velocity of electrons on electric field in a semiconductor is shown below.

The semiconductor has a uniform electron concentration of $\mathrm{n}=1 \times 10^{16} \mathrm{~cm}^{-3}$ and electronic charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$. If a bias of 5 V is applied across a $1 \mu \mathrm{~m}$ region of this semiconductor, the resulting current density in this region, in $\mathrm{kA} / \mathrm{cm}^{2}$, is \qquad .

53. Ans: 1.6

Sol: $\quad E=\frac{V}{d}=\frac{5}{10^{-6} \mathrm{~m}}=5 \times 10^{4} \mathrm{~V} / \mathrm{cm}$

At $\mathrm{E}=5 \times 10^{4} \mathrm{v} / \mathrm{cm} \Rightarrow \mathrm{V}_{\mathrm{d}}=10^{6} \mathrm{~cm} / \mathrm{s}$
$\mathrm{J}=\sigma \mathrm{E}=\mathrm{nq} \mu_{\mathrm{n}} \mathrm{E}=\mathrm{nq} \mathrm{V}_{\mathrm{d}}$
$=10^{16} \times 1.6 \times 10^{-19} \times 10^{6}$
$=1.6 \mathrm{KA} / \mathrm{cm}^{2}$
54. A continuous time signal $\mathrm{x}(\mathrm{t})=4 \cos (200 \pi \mathrm{t})+8 \cos (400 \pi \mathrm{t})$, where t is in seconds, is the input to a linear time invariant (LTI) filter with the impulse response
$h(t)=\left\{\begin{array}{cc}\frac{2 \sin (300 \pi t)}{\pi \mathrm{t}}, & \mathrm{t} \neq 0 \\ 600, & \mathrm{t}=0\end{array}\right.$
Let $y(t)$ be the output of this filter. The maximum value of $|y(t)|$ is \qquad

54. Ans: 8

Sol: $\quad x(t)=4 \cos (200 \pi t)+8 \cos (400 \pi t)$

$$
\mathrm{h}(\mathrm{t})=\left\{\begin{array}{cl}
\frac{2 \sin (300 \pi \mathrm{t})}{\pi \mathrm{t}} ; & \mathrm{t} \neq 0 \\
600 ; & \mathrm{t}=0
\end{array}\right.
$$

The input signal frequencies are $100,200 \mathrm{~Hz}$
The o/p signal is $=2 \times 4 \cos (200 \pi t)=8 \cos (200 \pi t)$
The maximum value $|y(t)|$ is 8
55. The figure shows an RLC circuit excited by the sinusoidal voltage $100 \cos (3 t)$ Volts, where t is in seconds. The ratio $\frac{\text { amplitude of } V_{2}}{\text { amplitude of } V_{1}}$ is \qquad .

55. Ans: 2.6

Sol: $\rightarrow V_{1}(s)=\left(\frac{V_{i}(s)}{4+s+5+\frac{36}{s}}\right)(4+s)$

$$
\Rightarrow \frac{\mathrm{V}_{1}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\left(\frac{\mathrm{s}+4}{\mathrm{~s}+\frac{36}{\mathrm{~s}}+9}\right) \rightarrow(1)
$$

$$
\rightarrow \mathrm{V}_{2}(\mathrm{~s})=\left(\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}{4+\mathrm{s}+5+\frac{36}{\mathrm{~s}}}\right)\left(5+\frac{36}{\mathrm{~s}}\right)
$$

$$
\Rightarrow \frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\left(\frac{5+\frac{36}{\mathrm{~s}}}{\mathrm{~s}+\frac{36}{\mathrm{~s}}+9}\right) \rightarrow(2)
$$

$$
\frac{2}{1}=\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\left(\frac{5+\frac{36}{\mathrm{~s}}}{\mathrm{~s}+4}\right)
$$

$$
\Rightarrow \frac{\left|V_{2}(\mathrm{j} \omega)\right|}{\left|\mathrm{V}_{1}(\mathrm{j} \omega)\right|}=\frac{\left|5+\frac{36}{\mathrm{j} \omega}\right|}{|4+\mathrm{j} \omega|}
$$

$$
\left.\rightarrow \frac{\left|\mathrm{V}_{2}(\mathrm{j} \omega)\right|}{\left|\mathrm{V}_{1}(\mathrm{j} \omega)\right|}\right|_{\omega=3 \mathrm{rad} / \mathrm{sec}}=\frac{\left|5+\frac{36}{\mathrm{j} 3}\right|}{|4+\mathrm{j} 3|}
$$

$$
=\frac{|5-\mathrm{j} 12|}{|4+\mathrm{j} 3|}
$$

$$
=\frac{13}{5}
$$

$$
=2.6
$$

General Aptitude

56. In the summer, water consumption is known to decrease overall by 25%. A water Board official states that in the summer household consumption decreases by 20% while other consumption increases by 70%.

Which of the following statements is correct?
(A) The ratio of household to other consumption is $\frac{8}{17}$
(B) The ratio of household to other consumption is $\frac{1}{17}$
(C) The ratio of household to other consumption is $\frac{17}{8}$
(D) There are errors in the officials statement.
56. Ans: (D)

Sol: $\mathrm{H}=$ house hold consumption
$\mathrm{P}=$ other consumption
House hold consumption decreases by $20 \%=\frac{80}{100} \mathrm{H}$
Other consumption increases by $70 \%=\frac{170}{100} \mathrm{P}$
$\frac{80 \mathrm{H}}{100}+\frac{170 \mathrm{P}}{100}=\frac{75}{100}(\mathrm{H}+\mathrm{P})$
$80 \mathrm{H}+170 \mathrm{P}=75 \mathrm{H}+75 \mathrm{P}$
$80 \mathrm{H}-75 \mathrm{H}=75 \mathrm{P}-170 \mathrm{P}$
$5 \mathrm{H}=-95 \mathrm{P}$
There is a negative ratio so, there are errors in the official's statement.
57. 40% of deaths on city roads may be attributed to drunken driving. The number of degrees needed to represent this as a slice of a pie chart is
(A) 120
(B) 144
(C) 160
(D) 212

57. Ans: (B)

Sol: Sum of angles in a pie chart $=360^{\circ}$
The relation between angle and percentage is
$100 \%=360^{\circ}$
$\%=3.6^{\circ}$
$\therefore 40 \%=$?
$40 \times 3.6=144^{\circ}$
58. Some tables are shelves. Some shelves are chairs. All chairs are benches. Which of the following conclusions can be deduced from the preceding sentences?
(i) At least one bench is a table
(ii) At least one shelf is a bench
(iii) At least one chair is a table
(iv) All benches are chairs
(A) Only i
(B) Only ii
(C) Only ii and iii
(D) Only iv
58. Ans: (B)

Sol: From given statements the following venn diagrams are possible $\mathrm{T}=$ tables, $\mathrm{S}=$ shelves, $\mathrm{C}=$ chairs and $\mathrm{B}=$ benches

(a)

(b)

(c)

From all of the above diagrams, conclusion (ii) only deduced from the statements.
59. I \qquad made arrangements had I \qquad informed earlier.
(A) could have, been
(B) would have, being
(C) had, have
(D) had been, been
59. Ans: (A)

Sol: Conditional tense Type 3 - Past perfect (could have) + perfect conditional (had $+\mathrm{V}_{3}$)
60. She has a sharp tongue and it can occasionally turn \qquad $-$
(A) hurtful
(B) left
(C) methodical
(D) vital
60. Ans: (A)

Sol: Hurtful \rightarrow It is a supporting sentence. The word 'sharp tongue' strengthens the latter part of the sentence 'it can occasionally turn hurtful'
61. "If you are looking for a history of India, or for an account of the rise and fall of the British Raj, Or for the reason of the cleaving of the subcontinent into two mutually antagonistic parts and the effects this mutilation will have in the respective sections, and ultimately on Asia, you will not find it in these pages; for though I have spent a lifetime in the country, I lived too near the seat of events, and was too intimately associated with the actors, to get the perspective needed for the impartial recording of these matters".

Here, the word 'antagonistic' is closest in meaning to
(A) impartial
(B) argumentative
(C) separated
(D) hostile
61. Ans: (D)

Sol: 'Antagonistic' means showing dislike or opposition. So the word closest in meaning is 'hostile' (not friendly, having or showing unfriendly feelings, unpleasant or harsh)
62. S, T, U, V, W, X, Y, and Z are seated around a circular table. T's neighbours are Y and $\mathrm{V} . \mathrm{Z}$ is seated third to the left of T and second to the right of S . U's neighbours are S and Y ; and T and W are not seated opposite each other. Who is third to the left of V?
(A) X
(B) W
(C) U
(D) T
62. Ans: (A)

Sol: From the given data, eight persons are seated around a circular table as follows

Y	T	V	S	U	Y
	(or)			(or)	
V	T	Y	Y	U	S

$S-\mathrm{Z}-\mathrm{T}$

$\therefore \mathrm{X}$ is third to the left of V
63. A contour line joins locations having the same height above the mean sea level. The following is a contour plot of a geographical region. Contour lines are shown at 25 m intervals in this plot.

The path from P to Q is best described by
(A) Up-Down-Up-Down
(B) Down-Up-Down-Up
(C) Down-Up-Down
(D) Up-Down-Up
63. Ans: (C)

Sol: Contour lines can be observed to cross region with height from P to Q is as follows

\therefore The path from P to Q is Down-Up-Down option (C) is satisfies this path
64. Trucks (10 m long) and cars (5 m long) go on a single lane bridge. There must be a gap of at least 20 m after each truck and a gap of at least 15 m after each car. Trucks and cars travel at a speed of $36 \mathrm{~km} / \mathrm{h}$. If cars and trucks go alternately, what is the maximum number of vehicles that can use the bridge in one hour?
(A) 1440
(B) 1200
(C) 720
(D) 600
64. Ans: (A)

Sol: Length of truck + gap required $=10+20=30 \mathrm{~m}$
Length of car + gap required $=5+15=20 \mathrm{~m}$
Total distance is need for truck and car for passing alternatively $=30+20=50 \mathrm{~m}$
Given, speed $=36 \mathrm{kmph}=36 \times \frac{5}{18}=10 \mathrm{~m} / \mathrm{sec}$
Let ' x ' be the number of repetitions of (Truck + car) in one hour

$$
\begin{aligned}
& \frac{50 \times x}{60 \times 60}=10 \mathrm{~m} / \mathrm{s} \\
& x=\frac{10 \times 60 \times 60}{50}=720 \text { numbers of (Trucks + cars) }
\end{aligned}
$$

\therefore The maximum number of vehicles $=720+720=1440$
65. There are 3 Indians and 3 Chinese in a group of 6 people. How many subgroups of this group can we choose so that every subgroup has at least one Indian?
(A) 56
(B) 52
(C) 48
(D) 44
65. Ans: (A)

Sol: Sub group has at least one Indian means minimum one Indian and maximum three (or) more

Sub groups containing only Indians $=3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}=3+3+1=7$
In the sub group one Indian and remaining are Chinese

$$
\begin{aligned}
& =3 \mathrm{C}_{1}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]=3[3+3+1] \\
& =3 \times 7=21
\end{aligned}
$$

In the sub group two Indians and remaining are Chinese

$$
\begin{aligned}
& =3 \mathrm{C}_{2}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]=3[3+3+1] \\
& =3 \times 7=21
\end{aligned}
$$

In the sub group three Indians and remaining are Chinese $=3 \mathrm{C}_{3}\left[3 \mathrm{C}_{1}+3 \mathrm{C}_{2}+3 \mathrm{C}_{3}\right]$

$$
\begin{aligned}
& =1[3+3+1] \\
& =7
\end{aligned}
$$

\therefore Total number of sub groups $=7+21+21+7$

Engineering Publications
(A Sister Concern of ACE Engineering Academy, Hyderabad)

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Que	\& Solutions)
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-1 Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-11 Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-1 Obi)	Mechanical Engineering (Volume-I Obi)
Instrumentation Engineering	Electrical Engineering (Volume-II Obi)	Mechanical Engineering (Volume-II Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-1 Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-II Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO / PSUs (Previous Years Questions With Solutions \& Usoful for BARC, SAIL, BEL, NPCIL, AAI \& OTHER PSUs)		

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise
(+919397699966
* You can Buy Online also

TESTSERIES

IES (Prelims \& Mains)

Streams: EC, EE, ME, CE

Test Type	Prelims		Mains
Chapter-wise Tests	Online	Offline	Offline
	43	-	-
	31	20	08
Revision Tests	-	-	04
Full Lenth Mock Tests	08	04	04

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS ION for conduting Pro-GATE 2018 (Center based MOCK Test) on PAN India basis with Anolytics.

Technology Powered by

Video Solutuions are available for Selected Objective Questions for Online Exams

