$A C D$

Engineering Academy

 Leading Institute for ESE/GATE/PSUsHyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vifayawada | Vizag | Tirupathi|Kolkata

GATE 2017

Electrical Engineering

Questions with Detailed Solutions

AFTERNOON SESSION

All Queries related to GATE - 2017 key are to be send to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418, 19, 20

1. The pole-zero plots of three discrete-time systems P, Q and R on the z -plane are shown below.

Which one of the following is TRUE about the frequency selectivity of these systems?
(a) All three are high-pass filters
(b) All three are band-pass filters
(c) All three are low-pass filters
(d) P is a low-pass filter, Q is a band-pass filter and R is a high-pass filter.

1. Ans: (b)

Sol: Consider 'P':-
$\mathrm{H}(\mathrm{z})=\frac{(\mathrm{z}-1)(\mathrm{z}+1)}{\mathrm{z}-0}=\frac{\mathrm{z}^{2}-1}{\mathrm{z}}$
$H\left(e^{j \omega}\right)=\frac{e^{2 j \omega}-1}{e^{j \omega}}$

It is a band pass filter.

Consider ' Q ' :-

$H(z)=\frac{(z-1)(z+1)}{(z+0.5 j)(z-0.5 j)}=\frac{z^{2}-1}{z^{2}+0.25}$
$H\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{\mathrm{e}^{2 \mathrm{j} \omega}-1}{\mathrm{e}^{2 \mathrm{j} \omega}+0.25}$

ω	$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$	$\left\|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\|$
0	0	0
$\frac{\pi}{2}$	2.66	2.66
π	0	0

It is also band pass filter.

Consider ' \mathbf{R} ' :-

$H(z)=\frac{(z-1)(z+1)}{(z+j)(z-j)}=\frac{z^{2}-1}{z^{2}+1}$
$H\left(e^{j \omega}\right)=\frac{e^{2 j \omega}-1}{e^{2 j \omega}+1}$

ω	$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$	$\left\|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right\|$
0	0	0
$\frac{\pi}{2}$	$-\infty$	∞
π	0	0

It is a band pass filter.
02. The initial charge in the 1 F capacitor present in the circuit shown is zero. The energy in joules transferred from the DC source until steady state condition is reached equals \qquad . (Give the answer up to one decimal place.)

02. Ans: 100

Sol:

Total energy transferred capacitor $=\mathrm{CV}^{2}$
${ }^{=} 1(10)^{2}=100 \mathrm{~J}$
03. The normal - π circuit of a transmission line is shown in the figure.

Impedance $Z=100 \angle 80^{\circ}$ and reactance $\mathrm{X}=3300 \Omega$. The magnitude of the characteristic impedance of the transmission line, in Ω, is \qquad . (Give the answer up to one decimal place.)
03. Ans: 409.2658

Sol: In nominal $-\pi$ circuit
$Z=100 \angle 80^{\circ}$
$\frac{Y}{2}=j \frac{1}{3300} \circlearrowright$
Characterstic impedance $=\sqrt{\frac{A}{C} \cdot \frac{B}{D}}$

$$
=\sqrt{\frac{B}{C}}
$$

Where $\mathrm{B}=\mathrm{Z}=100 \angle 80^{\circ} \Omega$

$$
C=Y\left(1+\frac{Z Y}{4}\right)
$$

$$
=\mathrm{j} \frac{2}{3300}\left(1+\frac{100 \angle 80^{\circ} \cdot \mathrm{j} \frac{2}{3300}}{4}\right)
$$

$$
=\mathrm{j} \frac{1}{1650}\left(1+100 \angle 80^{\circ} \times \mathrm{j} \frac{1}{1650} \times \frac{1}{4}\right)
$$

$$
=\mathrm{j} \frac{1}{1650}\left(1+0.01515 \angle 170^{\circ}\right)
$$

$$
=\mathrm{j} \frac{1}{1650}\left(1+\frac{0.01515}{1650} \angle 260^{\circ}\right)
$$

$$
=\mathrm{j} 6.0606 \times 10^{-4}+9.182 \times 10^{-6}[-0.1736-\mathrm{j} 0.9848]
$$

$$
=-1.594 \times 10^{-6}+\mathrm{j}\left(6.0606 \times 10^{-4}-9.04040 \times 10^{-6}\right)
$$

$$
=-1.594 \times 10^{-6}+\mathrm{j} 5.9702 \times 10^{-4}
$$

$$
\mathrm{C}=5.9702 \times 10^{-4}
$$

$Z_{C}=\sqrt{\frac{B}{C}}$
$\left|Z_{C}\right|=\sqrt{\frac{100}{5.9702} \times 10^{4}}$
$\Rightarrow 409.2658 \Omega$
04. Let $y^{2}-2 y+1=x$ and $\sqrt{x}+y=5$. The value of $x+\sqrt{y}$ equals \qquad . (Given the answer up to three decimal places)
04. Ans: $\mathbf{5 . 7 3 2}$

Sol: Let $\mathrm{y}^{2}-2 \mathrm{y}+1=\mathrm{x}$
$(y-1)^{2}=x$
$y+\sqrt{x}=5$
$\Rightarrow \mathrm{y}=5-\sqrt{\mathrm{x}}$
$\Rightarrow(\mathrm{y}-1)=4-\sqrt{\mathrm{x}}$
$\Rightarrow(\mathrm{y}-1)^{2}=(4-\sqrt{\mathrm{x}})^{2}=16+\mathrm{x}-8 \sqrt{\mathrm{x}}$
$x=16+x-8 \sqrt{x}$
$=16-8 \sqrt{\mathrm{x}}=0$
$=8(2-\sqrt{\mathrm{x}}=0$
$\sqrt{\mathrm{x}}=2 \Rightarrow \mathrm{x}=4$
Also we know that $y=5-\sqrt{x}=3$
$\therefore x+\sqrt{y}=4+\sqrt{3}=4+1.732=5.732$
05. The figure shows the per-phase representation of a phase-shifting transformer connected between buses 1 and 2 where α is a complex number with non-zero real and imaginary parts.

For the given circuit, $\mathrm{Y}_{\mathrm{bus}}$ and $\mathrm{Z}_{\mathrm{bus}}$ are bus admittance matrix and bus impedance matrix, respectively, each of size 2×2. Which one of the following statements is true?
(a) Both $\mathrm{Y}_{\text {bus }}$ and $\mathrm{Z}_{\text {bus }}$ are symmetric
(b) $\mathrm{Y}_{\text {bus }}$ is symmetric and $\mathrm{Z}_{\text {bus }}$ is unsymmetric
(c) $\mathrm{Y}_{\text {bus }}$ is unsymmetric and $\mathrm{Z}_{\text {bus }}$ is symmetric
(d) Both $\mathrm{Y}_{\text {bus }}$ and $\mathrm{Z}_{\text {bus }}$ are unsymmetric
05. Ans: (d)
06. If a synchronous motor is running at a leading power factor, its excitation induced voltage $\left(\mathrm{E}_{\mathrm{f}}\right)$ is
(a) equal to terminal voltage V_{t}
(b) higher than the terminal voltage V_{t}
(c) less than terminal voltage V_{t}
(d) dependent upon supply voltage V_{t}
06. Ans: (b)

Sol: For a synchronous motor

$\mathrm{E}_{\mathrm{t}}=\mathrm{V}_{\mathrm{t}}-\mathrm{jI}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}}$
For a leading pf condition

I_{a}, leading V_{t}
$\therefore \mathrm{E}_{\mathrm{t}}$ magnitude is higher than V_{t}
It is over excited
07. In the circuit shown, the diodes are ideal, the inductance is small, and $\mathrm{I}_{0} \neq 0$. Which one of the following statements is true?

(a) D_{1} conducts for greater than 180° and D_{2} conducts for greater than 180°
(b) D_{2} conducts for more than 180° and D_{1} conducts for 180°
(c) D_{1} conducts for 180° and D_{2} conducts for 180°
(d) D_{1} conducts for more than 180° and D_{2} conducts for 180°

07: Ans: (b)
Sol: DC output voltage $v_{d}(t)$ for the given circuit is shown in the figure below:

D_{1} will conduct from 0 to 180° and D_{2} will conduct from 180° to $(180+\mu)^{\circ}$
Hence, option B is selected
08. Consider a function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ given by
$f(x, y, z)=\left(x^{2}+y^{2}-2 z^{2}\right)\left(y^{2}+z^{2}\right)$
The partial derivative of this function with respect to x at the point $x=2, y=1$ and $z=3$ is
\qquad .
08. Ans: 40

Sol: $f(x, y, z)=\left(x^{2}+y^{2}-2 z^{2}\right)\left(y^{2}+z^{2}\right)$
$\frac{\partial f}{\partial x}=2 x\left(y^{2}+z^{2}\right)$
At $(2,1,3), \frac{\partial \mathrm{f}}{\partial \mathrm{x}}=2(2)(1+9)=40$
09. A stationary closed Lissajous pattern on an oscilloscope has 3 horizontal tangencies and 2 vertical tangencies for a horizontal input with frequency 3 kHz . The frequency of the vertical input is
(a) 1.5 kHz
(b) 2 kHz
(c) 3 kHz
(d) 4.5 kHz
09. Ans: (d)

Sol: $f_{y}=\frac{\text { Horizontal tangencies }}{\text { Vertical tangencies }} \times f_{x}$

$$
=\frac{3}{2} \times 3 \mathrm{kHz}=4.5 \mathrm{kHz}
$$

10. When a unit ramp input is applied to the unity feedback system having closed loop transfer function $\frac{C(s)}{R(s)}=\frac{K s+b}{s^{2}+a s+b},(a>0, b>0, K>0)$, the steady state error will be
(a) 0
(b) $\frac{\mathrm{a}}{\mathrm{b}}$
(c) $\frac{a+K}{b}$
(d) $\frac{a-K}{b}$
11. Ans: (d)

Sol: $\mathrm{OLTF}=\frac{\text { CLTF }}{1-\mathrm{CLTF}}=\frac{\frac{\mathrm{ks}+\mathrm{b}}{\mathrm{s}^{2}+\mathrm{as}+\mathrm{b}}}{1-\frac{\mathrm{ks}+\mathrm{b}}{\mathrm{s}^{2}+\mathrm{as}+\mathrm{b}}}$
$G(s)=\frac{k s+b}{s^{2}+(a-k) s}$
$\mathrm{k}_{\mathrm{v}}=\operatorname{lt}_{\mathrm{s} \rightarrow 0} \mathrm{~s} \cdot \mathrm{G}(\mathrm{s})=\frac{\mathrm{b}}{\mathrm{a}-\mathrm{k}}$
Error $=\frac{1}{\mathrm{k}_{\mathrm{v}}}=\frac{\mathrm{a}-\mathrm{k}}{\mathrm{b}}$
11. Assume that in a traffic junction, the cycle of the traffic signal lights is 2 minutes of green (vehicle does not stop) and 3 minutes of red (vehicle stops). Consider that the arrival time of vehicles at the junction is uniformly distributed over 5 minute cycle. The expected waiting time (in minutes) for the vehicle at the junction is \qquad
11. Ans: 0.9

Sol: Let x be the arrival time at the light (that has $\mathrm{U}(0,5)$ and y be the waiting at the junction.
Then

$$
\left.\begin{array}{rl}
y= & \left\{\begin{array}{cc}
0, & x<2 \\
5-x, & x \geq 2 \Rightarrow 2 \leq x<5
\end{array}\right. \\
\begin{array}{rl}
E(y) & =\int_{0}^{5} y f(y) d y \Rightarrow \int_{2}^{5} y \frac{1}{5} d y
\end{array} \\
& =\int_{2}^{5} \frac{1}{5}(5-x) d x \Rightarrow \frac{1}{5}\left\{5 x-\frac{x^{2}}{2}\right\}_{2}^{5}
\end{array}\right\}
$$

12. Consider a solid sphere, of radius 5 cm made of a perfect electric conductor. If one million electrons are added to this sphere, these electrons will be distributed
(a) uniformly over the entire volume of the sphere
(b) uniformly over the outer surface of the sphere
(c) concentrated around the centre of the sphere
(d) along a straight line passing through the centre of the sphere.

12. Ans: (b)

Sol: Even if we give any number of charges, the charge will resides on its surface only.

13. The mean square value of the given periodic waveform $f(t)$ is \qquad

13: Ans: 6
Sol: One cycle time $=1+2+1=4$ units
Mean square value $=4^{2} \times \frac{1}{4}+2^{2} \times \frac{2}{4}=6$
14. A phase-controlled, single-phase, full-bridge converter is fed from a $230 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source. The fundamental frequency in Hz of the voltage ripple on the DC side is
(a) 25
(b) 50
(c) 100
(d) 300
14. Ans: (c)

Sol: Output ripple frequency of 2 pulse converter, $f_{o}=2 \times f_{i}=2 \times 50=100 \mathrm{~Hz}$
15. Let x and y be integers satisfying the following equations
$2 x^{2}+y^{2}=34$
$x+2 y=11$
The value of $(x+y)$ is \qquad .
15. Ans: 7

Sol: $2 x^{2}+y^{2}=34$
$x+2 y=11$
solving (1) and (2), we have

$$
\begin{aligned}
& x=3, y=4 \\
& \Rightarrow x+y=7
\end{aligned}
$$

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Questions \& Solutions)	
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-I Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-I Obi)	Mechanical Engineering (Volume-I Obi)
Instrumentation Engineering	Electrical Engineering (Volume-II Obi)	Mechanical Engineering (Volume-II Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-I Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-ll Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO / PSUs (Previous Yeors Questions With Solutions \& Useful for BARC, SAIL, BEL, NPCIL, AAI \& OTHER PSUs)		

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years

040-2323 4437 / 011-2953 3467

* Solutions, Chapterwise and Subjectwise

+919397699966
* You can Buy Online also

TESTSERIES

IES (Prelims \& Mains)
Streams : EC, EE, ME, CE

Test Type	Prelims		Mains
	Online	Offline	Offline
	43	-	-
Chapter-wise Tests	31	20	08
Subject-wise Grand Tests	-	-	04
Revision Tests	08	04	04
Full Lenth Mock Tests			

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS ION for conduting Puc-GATE 2018 (Center based MOCK Test) on PAN India basis with Anolytics.

GATE

Streams : EC, EE, ME, CE, CS, IN, PI

Test Type	No. Of Tests (Online)
Chapter-wise Tests	20
Subject-wise Grand Tests	40
Full Lenth Mock Tests	12

Video Solutuions are available for
Selected Objective Questions for Online Exams
16. The transfer function $\mathrm{C}(\mathrm{s})$ of a compensator is given below:
$C(s)=\frac{\left(1+\frac{\mathrm{s}}{0.1}\right)\left(1+\frac{\mathrm{s}}{100}\right)}{(1+\mathrm{s})\left(1+\frac{\mathrm{s}}{10}\right)}$
The frequency range in which the phase (lead) introduce by the compensator reaches the maximum is
(a) $0.1<\omega<1$
(b) $1<\omega<10$
(c) $10<\omega<100$
(d) $\omega>100$
16. Ans: (a)

Sol: Pole zero plot is given below

Lead $G(s)=\frac{s+0.1}{s+1}$
$\angle \mathrm{G}(\mathrm{s})=\angle \tan ^{-1} \frac{\omega}{0.1}-\tan ^{-1} \frac{\omega}{1}$
Phase lead occur from $\omega=0.1$ to $\omega=1$
Range $0.1<\omega<1$
17. For the given 2-port network, the value of transfer impedance z_{21} in ohms is \qquad

17. Ans: 3

Sol: $\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
$\mathrm{Z}_{21}=\left.\frac{\mathrm{V}_{2}}{\mathrm{I}_{1}}\right|_{\mathrm{I}_{2}=0}$
By applying KVL

$$
\begin{aligned}
& -\mathrm{V}_{2}+\mathrm{I}_{1}+2 \mathrm{I}_{1}=0 \\
& \mathrm{~V}_{2}=3 \mathrm{I}_{1} \\
& \mathrm{Z}_{21}=3 \Omega
\end{aligned}
$$

18. An urn contains 5 red balls and 5 black balls. In the first draw, one ball is picked at random and discarded without noticing its colour. The probability to get a red ball in the second draw is
(a) $\frac{1}{2}$
(b) $\frac{4}{9}$
(c) $\frac{5}{9}$
(d) $\frac{6}{9}$
18. Ans: (a)

Sol: Given Urn contains 5 red \& 5 black balls here we come across two cases

1. first drawn ball can be red or black

02 . second drawn ball is red.
Probability of first drawn ball is red and second drawn ball is red $=\frac{5}{10} \times \frac{4}{9}=\frac{20}{90}$
Probability of first drawn ball is black and second drawn ball is red $=\frac{5}{5} \times \frac{5}{9}=\frac{25}{90}$
$\therefore \mathrm{P}=\frac{20}{90}+\frac{25}{90}=\frac{1}{2}$
19. A 3-phase, 4-pole, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ squirrel-cage induction motor is operating at a slip of 0.02 . The speed of the rotor flux in mechanical rad/sec. sensed by a stationary observer, is closest to
(a) 1500
(b) 1470
(c) 157
(d) 154
19. Ans: (c)

Sol: Given
A 3- $\phi, 4$ pole, 50 Hz squirrel cage induction motor operating at a slip of 0.02
Synchronous speed $=\frac{120 \mathrm{~F}}{\mathrm{P}} \mathrm{rpm}$

$$
=\frac{120 \times 50}{4}=1500 \mathrm{rpm}
$$

\therefore rotor speed $=(1-\mathrm{s}) \mathrm{N}_{\mathrm{s}}$

$$
\begin{aligned}
& =(1-0.02)(1500) \\
& =1470 \mathrm{rpm}
\end{aligned}
$$

The speed of rotor field with respect to rotor is $=\frac{120 \times \mathrm{sF}}{\mathrm{P}}=30 \mathrm{rpm}$
The speed of rotor field with respect to stator is $=1470+30=1500 \mathrm{rpm}$

$$
\begin{aligned}
& =\frac{2 \pi(1500))}{60} \mathrm{rad} / \mathrm{sec} \\
& =157.07 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

20. In a load flow problem solved by Newton-Raphson method with polar coordinates, the size of the Jacobian is 100×100. If there are 20 PV buses in addition to PQ buses and a slack bus, the total number of buses in the system is \qquad .
21. Ans: 61

Sol: Size of jacobian matrix is 100×100
PV Buses $\rightarrow 1$ equation
PQ Buses $\rightarrow 2$ equation
Slack Bus $\rightarrow 1$
20 PV Buses $\rightarrow 20$ equations
Total number of equations $\rightarrow 100$
Load Bus equations $\rightarrow 100-20=80$
Number of load Buses $\rightarrow 40$
Total number of buses are $\rightarrow 20+40+1=61$
21. The figures show diagramatic representations of vector fields \vec{X}, \vec{Y}, and \vec{Z}, respectively. Which one of the following choices is true?

(a) $\nabla \cdot \vec{X}=0, \nabla \times \vec{Y} \neq 0, \nabla \times \vec{Z}=0$
(b) $\nabla \cdot \overrightarrow{\mathrm{X}} \neq 0, \nabla \times \overrightarrow{\mathrm{Y}}=0, \nabla \times \overrightarrow{\mathrm{Z}} \neq 0$
(c) $\nabla \cdot \overrightarrow{\mathrm{X}} \neq 0, \nabla \times \overrightarrow{\mathrm{Y}} \neq 0, \nabla \times \overrightarrow{\mathrm{Z}} \neq 0$
(d) $\nabla \cdot \vec{X}=0, \nabla \times \vec{Y}=0, \nabla \times \vec{Z}=0$
21. Ans: (c)

Sol:

$\nabla \cdot \overline{\mathrm{X}} \neq 0$
$\nabla \times \overline{\mathrm{X}} \neq 0$

$\nabla . \bar{Z} \neq 0$
$\nabla \times \bar{Z} \neq 0$
22. A three-phase voltage source inverter with ideal devices operating in 180° conduction mode is feeding a balanced star-connected resistive load. The DC voltage input is V_{dc}. The peak of the fundamental component of the phase voltage is
(a) $\frac{\mathrm{V}_{\mathrm{dc}}}{\pi}$
(b) $\frac{2 \mathrm{~V}_{\mathrm{dc}}}{\pi}$
(c) $\frac{3 V_{\mathrm{dc}}}{\pi}$
(d) $\frac{4 \mathrm{~V}_{\mathrm{dc}}}{\pi}$
22. Ans: (b)

Sol: Peak value of fundamental component of phase voltage is $\frac{6 \times\left(\frac{V_{d c}}{3}\right)}{\pi}=\frac{2 V_{d c}}{\pi}$

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM

HYDERABAD

29th APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM

HYDERABAD \& DELHI

$1^{\text {st }}$ week of July 2017
23. Two resistors with nominal resistance values R_{1} and R_{2} have additive uncertainties ΔR_{1} and ΔR_{2}, respectively. When these resistances are connected in parallel, the standard deviation of the error in the equivalent resistance R is
(a) $\pm \sqrt{\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}} \Delta \mathrm{R}_{1}\right)^{2}+\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}} \Delta \mathrm{R}_{2}\right)^{2}}$
(b) $\pm \sqrt{\left(\frac{\partial \mathrm{R}_{2}}{\partial \mathrm{R}_{2}} \Delta \mathrm{R}_{1}\right)^{2}+\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}} \Delta \mathrm{R}_{2}\right)^{2}}$
(c) $\pm \sqrt{\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}}\right)^{2} \Delta \mathrm{R}_{2}+\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}}\right)^{2} \Delta \mathrm{R}_{1}}$
(d) $\pm \sqrt{\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}}\right)^{2} \Delta \mathrm{R}_{1}+\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}}\right)^{2} \Delta \mathrm{R}_{2}}$
23. Ans: (a)
24. The figure below shows the circuit diagram of a controlled rectifier supplied from a $230 \mathrm{~V}, 50 \mathrm{~Hz}$, 1-phase voltage source and a 10:1 ideal transformer. Assume that all devices are ideal. The firing angles of the thyristors T_{1} and T_{2} are 90° and 270°, respectively.

The RMS value of the current through diode D_{3} in amperes is \qquad -
24. Ans: 0

Sol: D_{3} is freewheeling diode and there is no freewheeling action when load is resistive in nature. Hence, RMS value of current through the diode $D_{3}=0 \mathrm{~A}$
25. For a 3-input logic circuit shown below, the output Z can be expressed as

(a) $\mathrm{Q}+\overline{\mathrm{R}}$
(b) $P \bar{Q}+R$
(c) $\overline{\mathrm{Q}}+\mathrm{R}$
(d) $\mathrm{P}+\overline{\mathrm{Q}}+\mathrm{R}$
25. Ans: (c)

Sol: $Z=\overline{\bar{P} \cdot \overline{\mathrm{Q}} \cdot \mathrm{Q} \cdot \overline{\mathrm{Q} . \mathrm{R}}}$
$=P \cdot \bar{Q}+\bar{Q}+Q \cdot R$
$=\overline{\mathrm{Q}}+\mathrm{Q} \cdot \mathrm{R}$
$=\overline{\mathrm{Q}}+\mathrm{R}$

ESE 2017 MAINS (STAGE - II)

Exclusive Postal Coaching Offer for Prelims Qualified Students

For E\&T / EE / CE / ME

free doubt clearing sessions

Through

Through
Live Video Classes.

This offer is for Those Who Qualified in the PRELIMS only.

26. Let $g(x)=\left\{\begin{array}{ll}-x, & x \leq 1 \\ x+1 & x \geq 1\end{array}\right.$ and $f(x)=\left\{\begin{array}{ll}1-x, & x \leq 0 \\ x^{2,} & x>0\end{array}\right.$.

Consider the composition of f and g , i.e., $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$. The number of discontinuities in $(f \circ g)(x)$ present in the interval $(-\infty, 0)$ is
(a) 0
(b) 1
(c) 2
(d) 4
26. Ans: (a)

Sol: Given

$$
\begin{aligned}
& (f \circ g)(x)=f[g(x)] \\
& \text { In }(-\infty, 0), g(x)=-x \\
& \begin{aligned}
\Rightarrow f[g(x)] & =f(-x) \\
& =1-(-x)
\end{aligned} \\
& \quad \mathrm{f}[g(x)]=1+\mathrm{x} \\
& \Rightarrow \mathrm{f}[\mathrm{~g}(\mathrm{x})] \text { has no discontinuous point in }(-\infty, 0)
\end{aligned}
$$

27. In the circuit shown all elements are ideal and the switch S is operated at 10 kHz and 60% duty ratio. The capacitor is large enough so that the ripple across it is negligible and at steady state acquires a voltage as shown. The peak current in amperes drawn from the 50 V DC source is
\qquad . (Give the answer up to one decimal place.)

28. Ans: 40

Sol: Given circuit is buck boost converter.
Source current is same switch current.
Peak value of switch current means, $i_{\text {sw,peak }}=I_{L, \text { max }}=I_{L}+\frac{\Delta I_{L}}{2}$
$\Delta I_{L}=\frac{V_{d c}}{L} D T=\frac{50}{0.6 \times 10^{-3}} \times 0.6 \times 0.1 \times 10^{-3}=5 \mathrm{~A}$
$I_{L}=\frac{I_{o}}{1-D}=\frac{\left(\frac{75}{5}\right)}{1-0.6}=37.5 \mathrm{~A}$
$\therefore I_{L, \text { max }}=37.5+\frac{5}{2}=40 \mathrm{~A}$
28. For the circuit shown below, assume that the OPAMP is ideal.

Which one of the following is TRUE?
(a) $v_{0}=v_{s}$
(b) $v_{0}=1.5 v_{\mathrm{s}}$
(c) $v_{0}=2.5 v_{\mathrm{s}}$
(d) $v_{0}=5 v_{s}$
28. Ans: (c)

Sol: Given Circuit can be redrawn as

Since $\mathrm{V}_{\mathrm{d}} \approx 0$
$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}$
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{s}}\left(\frac{2 \mathrm{R}}{4 \mathrm{R}}\right)=\frac{\mathrm{V}_{\mathrm{s}}}{2}$
Apply KCL at (a)
$\mathrm{I}_{1}=\mathrm{I}_{2}$

$$
-\frac{V_{a}}{R}=\frac{V_{a}-V_{c}}{R} \Rightarrow V_{c}=2 V_{a}=V_{s}
$$

Apply KCL at (c)

$$
\begin{aligned}
& \mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4} \\
& \frac{\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{c}}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{R}}+\frac{\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{0}}{\mathrm{R}}
\end{aligned}
$$

$$
\mathrm{V}_{0}=3 \mathrm{~V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{a}}
$$

$$
=3 \mathrm{~V}_{\mathrm{s}}-\frac{\mathrm{V}_{\mathrm{s}}}{2}
$$

$\Rightarrow \mathrm{V}_{0}=2.5 \mathrm{~V}_{\mathrm{s}}$
29. In the circuit shown below, the value of capacitor C required for maximum power to be transferred to the load is

(a) 1 nF
(b) $1 \mu \mathrm{~F}$
(c) 1 mF
(d) 10 mF
29. Ans: (d)

Sol: $Z=\frac{j}{2}+\left[1 \|\left(-j X_{C}\right)\right]$

$$
\begin{aligned}
& =\frac{j}{2}+\frac{-j X_{c}}{1-j X_{c}} \\
& \frac{j}{2}+\frac{-j X_{c}\left[1+j X_{c}\right]}{1+X_{c}^{2}} \\
& \frac{j}{2}-j\left[\frac{X_{c}}{1+X_{c}^{2}}\right]+\frac{X_{c}^{2}}{1+X_{c}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}-\frac{X_{c}}{1+X_{c}^{2}}=0 \\
& 1+X_{c}^{2}=2 X_{c} \\
& X_{c}^{2}-2 X_{c}+1=0 \\
& \begin{aligned}
X_{c} & =\frac{2 \pm \sqrt{4-4(1)}}{2} \Rightarrow X_{c}=1 \\
& =\frac{1}{\omega c}=1 \\
\Rightarrow C & =\frac{1}{\omega}=\frac{1}{100} \\
\quad & =0.01 \mathrm{~F}=10 \mathrm{mF}
\end{aligned}
\end{aligned}
$$

30. The output $\mathrm{y}(\mathrm{t})$ of the following system is to be sampled, so as to reconstruct it from its samples uniquely. The required minimum sampling rate is

(a) $1000 \mathrm{samples} / \mathrm{s}$
(b) 1500 samples $/ \mathrm{s}$
(c) $2000 \mathrm{samples} / \mathrm{s}$
(d) 3000 samples/s
31. Ans: (b)

Sol:

Output of multiplier is $=x(t) \cdot \cos (1000 \pi t)$

$$
=\frac{1}{2} \times(\omega-1000 \pi)+\frac{1}{2} \times(\omega+1000 \pi)
$$

$$
h(t)=\frac{\sin (1500 \pi t)}{\pi t}
$$

The maximum frequency in $y(t)=1500 \pi$

$$
\begin{aligned}
\omega_{\mathrm{m}} & =1500 \pi \\
\mathrm{f}_{\mathrm{n}} & =750 \\
\left(\mathrm{f}_{\mathrm{s}}\right)_{\min } & =2 \mathrm{f}_{\mathrm{n}}=1500 \mathrm{~Hz}=1500 \text { samples } / \mathrm{sec}
\end{aligned}
$$

COAL INDIA LIMITED（CIL） Management Trainee \＆Other PSUs

Classroom coaching
（General Knowledge／Awareness，Reasoning，Numerical Ability \＆General English）
Starts on
『 $15^{\text {th }}$ Feb 2017 ＠Delhi

Online Test Series（ EE｜ME｜CE ）

Total Tests ： 20
『 starts from $\mathbf{1 7}^{\text {h }}$ Feb 2017

$$
\text { ESE = } 2017
$$

Classroom Coaching Starts from 15 ${ }^{\text {th }}$ Feb 2017
at Hyderabad，Delhi \＆Pune

Offline Test Series ：Starts from－18 ${ }^{\text {th }}$ March 2017
Number of Tests ： 16
匹 Will Conduct at all Our centers
31. A thin soap bubble of radius $\mathrm{R}=1 \mathrm{~cm}$, and thickness $\mathrm{a}=3.3 \mu \mathrm{~m}(\mathrm{a} \ll \mathrm{R})$, is at a potential of 1 V with respective to a reference point at infinity. The bubble bursts and becomes a single spherical drop of soap (assuming all the soap is contained in the drop) of radius r. The volume of the soap in the thin bubble is $4 \pi R^{2} a$ and that of the drop is $\frac{4}{3} \pi r^{3}$. The potential in volts, of the resulting single spherical drop with respect to the same reference point at infinity is \qquad . (Give the answer up to two decimal places.)

31. Ans: $\mathbf{1 0 . 0 3}$

Sol:

Soap bubble
$\left(4 \pi R^{2} a\right) \rho=\left(\frac{4}{3} \pi r^{3}\right) \rho$
$\rho \rightarrow$ charge density ($\mathrm{c} / \mathrm{m}^{3}$)
$Y=\left(3 R^{2} a\right)^{1 / 3}$
The potential of the bubble.

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{4 \pi \in} \cdot \frac{\mathrm{Q}}{\mathrm{R}} \\
& \mathrm{Q}=(4 \pi \in \mathrm{R}) \mathrm{V} \\
& \mathrm{Q}=4 \pi \epsilon_{0} 1 \times 10^{-2}
\end{aligned}
$$

Potential of the soap drop

$$
\begin{aligned}
& \mathrm{V}^{\prime}=\frac{1}{4 \pi \epsilon} \cdot \frac{\mathrm{Q}}{\mathrm{r}} \\
& \mathrm{~V}^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi \epsilon_{0} 1 \times 10^{-2}}{\left(3 \times 1 \times 10^{-4} \times 3.3 \times 10^{-6}\right)^{1 / 3}} \\
& \mathrm{~V}^{\prime}=10.03
\end{aligned}
$$

32. A cascade system having the impulse responses $h_{1}(n)=\left\{1_{\uparrow},-1\right\}$ and $h_{2}(n)=\{1,1\}$ is shown in the figure below, where symbol \uparrow denotes the time origin.

The input sequence $x(n)$ for which the cascade system produces an output sequence $y(n)=\{1,2,1$, $-1,-2,-1\}$ is
(a) $x(n)=\{1,2,1,1\}$
(b) $x(n)=\{1,1,2,2\}$
(c) $x(n)=\{1,1,1\}$
(d) $x(n)=\left\{\frac{1}{4}, 2,2,1\right\}$
32. Ans: (d)

Sol: $\mathrm{h}(\mathrm{n})=\mathrm{h}_{1}(\mathrm{n}) * \mathrm{~h}_{2}(\mathrm{n})$

$\mathrm{h}(\mathrm{n})=[1,0,-1]$
Given $y(n)=[1,2,1,-1,-2,-1]$
$y(n)=x(n) * h(n)$
$y(z)=x(z) H(z)$
$x(z)=\frac{y(z)}{H(z)}$
$y(z)=1+2 z^{-1}+z^{-2}-z^{-3}-2 z^{-4}-z^{-5}$
$H(z)=1-z^{-2}$

$$
\begin{aligned}
& \left.1-z^{-2}\right) 1+2 z^{-1}+z^{-2}-z^{-3}-2 z^{-4}-z^{-5}\left(1+2 z^{-1}+2 z^{-2}+z^{-3}\right. \\
& \frac{1-z^{-2}}{2 z^{-2}+2 z^{-1}} \\
& \frac{2 z^{-1}-2 z^{3}}{2 z^{-2}+z^{-3}} \\
& \frac{2 z^{-2}-2 z^{-4}}{+} \\
& \frac{z^{-3}-z^{-5}}{0} \\
& \frac{z^{-3}-z^{-5}}{0}
\end{aligned}
$$

$\mathrm{x}(\mathrm{z})=1+2 \mathrm{z}^{-1}+2 \mathrm{z}^{-2}+\mathrm{z}^{-3}$
$x(n)=[1,2,2,1]$
33. Which of the following systems has maximum peak overshoot due to a unit step input?
(a) $\frac{100}{s^{2}+10 s+100}$
(b) $\frac{100}{\mathrm{~s}^{2}+15 \mathrm{~s}+160}$
(c) $\frac{100}{\mathrm{~s}^{2}+5 \mathrm{~s}+100}$
(d) $\frac{100}{\mathrm{~s}^{2}+20 \mathrm{~s}+100}$
33. Ans: (c)

Sol: (a) $\frac{100}{s^{2}+10 s+100}$

$$
\omega_{\mathrm{n}}=10, \xi=\frac{10}{2 \omega_{\mathrm{n}}}=0.5
$$

(b) $\frac{100}{\mathrm{~s}^{2}+15 \mathrm{~s}+160}$

$$
\omega_{\mathrm{n}}=10, \xi=\frac{15}{2 \omega_{\mathrm{n}}}=0.75
$$

(c) $\frac{100}{\mathrm{~s}^{2}+5 \mathrm{~s}+100}$

$$
\omega_{\mathrm{n}}=10, \xi=\frac{5}{2 \omega_{\mathrm{n}}}=0.25
$$

This has maximum peak over shoot.
(d) $\frac{100}{s^{2}+20 \mathrm{~s}+100}$
$\omega_{\mathrm{n}}=10, \xi=\frac{20}{2 \omega_{\mathrm{n}}}=1$
34. A 3-phase, 2-pole, 50 Hz , synchronous generator has a rating of $250 \mathrm{MVA}, 0.8 \mathrm{pf}$ lagging. The kinetic energy of the machine at synchronous speed is 100 MJ . The machine is running steadily at synchronous speed and delivering 60 MW power at a power angle of 10 electrical degrees. If the load is suddenly removed, assuming the acceleration is constant for 10 cycles, the value of the power angle after 5 cycles is \qquad electrical degrees.
34. Ans: $\mathbf{1 2 . 7}^{\circ}$

Sol: $\mathrm{H}=\frac{1000}{250}=4 \mathrm{MJ}$
$\delta=10^{\circ}$
$\mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{e}}=60 \mathrm{MW}$
$\delta=\delta+\Delta \delta$
$\Delta \delta=\delta \frac{(\Delta \mathrm{t})^{2}}{2}=\frac{\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{M}}=\frac{(\Delta \mathrm{t})^{2}}{2}=\frac{60-0}{\frac{5 \mathrm{H}}{180 \mathrm{f}}} \times \frac{(0.1)^{2}}{2}$
$\Delta \delta=\frac{60 \times 186 \times 50}{250 \times 4} \times \frac{(0.1)^{2}}{2}$
$6 \times 180 \times 5 \times \frac{(0.1)^{2}}{2}=2.7^{\circ}$
$\delta=10+2.7=12.7^{\circ}$
35. For the network given in figure below, the Thevenin's voltage V_{ab} is

(a) -1.5 V
(b) -0.5 V
(c) 0.5 V
(d) 1.5 V
35. Ans: (a)

Sol:

$\frac{\mathrm{V}_{\mathrm{TH}}}{10}+\frac{\left(\mathrm{V}_{\mathrm{TH}}-16\right)}{10}+\frac{\left(\mathrm{V}_{\mathrm{TH}}+30\right)}{15}=0$
$\frac{3 \mathrm{~V}_{\mathrm{TH}}+3 \mathrm{~V}_{\mathrm{TH}}-48+2 \mathrm{~V}_{\mathrm{TH}}+60}{6}=0$
$8 \mathrm{~V}_{\mathrm{TH}}=12$
$\mathrm{V}_{\mathrm{TH}}=\frac{-3}{2}=-1.5 \mathrm{~V}$
36. A $10 \frac{1}{2}$ digit timer counter possesses a base clock of frequency 100 MHz . When measuring a particular input, the reading obtained is the same in: (i) Frequency mode of operation with a gating time of one second and (ii) Period mode of operation (in the $\times 10 \mathrm{~ns}$ scale). The frequency of the unknown input (reading obtained) in Hz is \qquad .
36. Ans: 00100000000

Sol: Frequency counter mode of operation :

' n ' number of pulses are counted within a gating time of one second.
i.e., $n=1 s \times f_{x}$

Period mode of operation:

' n ' number of pulses are counted within an unknown period of T_{x}.

$$
\begin{equation*}
\text { i.e, } \mathrm{n}=\mathrm{T}_{\mathrm{x}} \times 100 \mathrm{MHz} \tag{2}
\end{equation*}
$$

Now, equating the expressions(1) and (2).since it is given that same reading is obtained in both modes of operation.

$$
\begin{aligned}
& \Rightarrow 1 \mathrm{~s} \times \mathrm{f}_{\mathrm{x}}=\mathrm{T}_{\mathrm{x}} \times 100 \mathrm{MHz} \\
& \Rightarrow \mathrm{~T}_{\mathrm{x}}=1 \mathrm{~s} \text { and } \mathrm{f}_{\mathrm{x}}=100 \mathrm{MHz} \\
& \Rightarrow \mathrm{n}=1 \mathrm{~s} \times 100 \mathrm{MHz} \\
& \quad=100 \times 10^{6} \\
& \quad=10^{8} \text { pulses }
\end{aligned}
$$

So, the reading is 00100000000
37. If the primary line voltage rating is 3.3 kV (Y side) of a $25 \mathrm{kVA}, \mathrm{Y}-\Delta$ transformer (the per phase turns ratio is $5: 1$), then the line current rating of the secondary side (in Ampere) is \qquad .
37. Ans: $\mathbf{3 7 . 8 8}$

Sol: Given transformer is Y / Δ

$\operatorname{Primary}(\mathrm{Y})$	$\operatorname{Secondary}(\Delta)$
$\mathrm{V}_{\text {line }}=3.3 \mathrm{kV}$	$\mathrm{I}_{\text {line }}=?$
$\mathrm{VA}_{\text {rated }}=25 \mathrm{kVA}$	

$\frac{\mathrm{V}_{1}(\text { phase voltage primary })}{\mathrm{V}_{2}(\text { phase voltage sec ondary })}=\frac{5}{1}$
$\mathrm{V}_{2}=\left(\frac{1}{5}\right)\left(\mathrm{V}_{1}\right)$

$$
=\left(\frac{1}{5}\right)\left(\frac{3300}{\sqrt{3}}\right)=381 \text { Volts }
$$

$\mathrm{VA}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}($ Delta side $)$
$25000=(\sqrt{3})(381) \mathrm{I}_{\mathrm{L}}$

$$
\mathrm{I}_{\mathrm{L}}=37.88 \mathrm{~A}
$$

38. The figure below shows a half-bridge voltage source inverter supplying a RL-load with $\mathrm{R}=40 \Omega$ and $\mathrm{L}=\left(\frac{0.3}{\pi}\right) \mathrm{H}$. The desired fundamental frequency of the load voltage is 50 Hz . The switch control signals of the converter are generated using sinusoidal pulse width modulation with modulation index, $\mathrm{M}=0.6$. At 50 Hz , the RL-load draws an active power of 1.44 kW . The value of $D C$ source voltage $V_{D C}$ in volts is

(a) $300 \sqrt{2}$
(b) 500
(c) $500 \sqrt{2}$
(d) $1000 \sqrt{2}$
39. Ans: (c)

Sol: $\mathrm{R}=40 \Omega$ and $\mathrm{X}_{\mathrm{L}}=100 \pi \times\left(\frac{0.3}{\pi}\right)=30 \Omega$
Load impedance, $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}=\sqrt{40^{2}+30^{2}}=50 \Omega$
$P_{o}=1440 \Rightarrow I_{o 1}^{2} \times 40=1440 \Rightarrow I_{o 1}=6 \mathrm{~A}$

RMS value of fundamental output voltage, $V_{o 1}=\frac{M \times V_{D C}}{\sqrt{2}}=\frac{0.6 \times V_{D C}}{\sqrt{2}}$
But, $\mathrm{I}_{\mathrm{ol}}=\frac{\mathrm{V}_{\mathrm{ol}}}{\mathrm{Z}_{1}}=\frac{0.6 \times \mathrm{V}_{\mathrm{DC}}}{\sqrt{2} \times 50}=6 \Rightarrow \mathrm{~V}_{\mathrm{DC}}=\frac{50 \times 6 \times \sqrt{2}}{0.6}=500 \sqrt{2} \mathrm{~V}$
39. A star-connected, $12.5 \mathrm{~kW}, 208 \mathrm{~V}$ (line), 3-phase, 60 Hz squirrel cage induction motor has following equivalent circuit parameters per phase referred to the stator. $\mathrm{R}_{1}=0.3 \Omega, \mathrm{R}_{2}=0.3 \Omega$, $\mathrm{X}_{1}=0.41 \Omega, \mathrm{X}_{2}=0.41 \Omega$. Neglect shunt branch in the equivalent circuit. The starting current (in Ampere) for this motor when connected to an 80 V (line), $20 \mathrm{~Hz}, 3$-phase, AC source is \qquad
39. Ans: 70.19 A

Sol: Given parameters of star-connected SCIM at 60 Hz are
$\mathrm{r}_{1}=0.3 \Omega, \quad \mathrm{r}_{2}=0.3 \Omega$
$\mathrm{X}_{1}=0.41 \Omega, \quad \mathrm{X}_{2}=0.41 \Omega$
Now, if frequency changed to 20 Hz , leakage reactance magnitude will change.
$\therefore \mathrm{X}_{1(\text { new })}=\frac{20}{60}(0.41)=0.136 \Omega$
$\therefore \mathrm{X}_{2 \text { (new) }}=\frac{20}{60}(0.41)=0.136 \Omega$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{st}}=\frac{80 / \sqrt{3}}{\sqrt{(0.3+0.3)^{2}+(0.136+0+36)^{2}}} \\
=70.19 \mathrm{~A}
\end{gathered}
$$

40. Consider the system described by the following state space representation
$\left[\begin{array}{c}\dot{x}_{1}(t) \\ \dot{x}_{2}(t)\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1}(\mathrm{t}) \\ \mathrm{x}_{2}(\mathrm{t})\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] \mathrm{u}(\mathrm{t})$
$y(t)=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
If $u(t)$ is a unit step input and $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, the value of output $y(t)$ at $t=1 \sec$ (rounded off to three decimal places) is \qquad
40. Ans: 1.284

Sol: $\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ 0 & -2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}1 & 0\end{array}\right], \mathrm{X}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Input $=\frac{1}{\mathrm{~s}}($ unit step $)$
$\mathrm{Y}(\mathrm{t})=\mathrm{c} \mathrm{X}(\mathrm{t})$
$\mathrm{X}(\mathrm{t})=\mathrm{L}^{-1}[\mathrm{X}(\mathrm{s})]$
$\mathrm{X}(\mathrm{s})=(\mathrm{SI}-\mathrm{A})^{-1} \mathrm{X}(0)+(\mathrm{SI}-\mathrm{A})^{-1} \mathrm{BU}(\mathrm{s})$
$[\mathrm{SI}-\mathrm{A}]=\left[\begin{array}{cc}\mathrm{s} & -1 \\ 0 & \mathrm{~s}+2\end{array}\right]$
$[\mathrm{SI}-\mathrm{A}]^{-1}=\left[\begin{array}{cc}\frac{1}{\mathrm{~s}} & \frac{1}{\mathrm{~s}(\mathrm{~s}+2)} \\ 0 & \frac{1}{\mathrm{~s}+2}\end{array}\right]$
$X(s)=\left[\begin{array}{cc}\frac{1}{s} & \frac{1}{\mathrm{~s}(\mathrm{~s}+2)} \\ 0 & \frac{1}{\mathrm{~s}+2}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{cc}\frac{1}{\mathrm{~s}} & \frac{1}{\mathrm{~s}(\mathrm{~s}+2)} \\ 0 & \frac{1}{\mathrm{~s}+2}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right] \frac{1}{\mathrm{~s}}$
$=\left[\begin{array}{c}\frac{1}{s}+\frac{1}{s^{2}(s+2)} \\ \frac{1}{s(s+2)}\end{array}\right]$
$X(t)=L^{-1}[X(s)]=\left[\begin{array}{r}1+0.5 \mathrm{t}-0.25+0.25 \mathrm{e}^{-2 t} \\ 0.5-0.5 \mathrm{e}^{-2 t} \text { Sin }\end{array}\right]$
$\mathrm{Y}(\mathrm{t})=\left[\begin{array}{ll}1 & 0\end{array}\right] \mathrm{X}(\mathrm{t})=\left[1+0.5 \mathrm{t}-0.25+0.25 \mathrm{e}^{-2 \mathrm{t}}\right]$
$\mathrm{Y}(1)=1+0.5-0.25+0.135$
$=1.284$
41. A $220 \mathrm{~V}, 10 \mathrm{~kW}, 900 \mathrm{rpm}$ separately excited DC motor has an armature resistance $\mathrm{R}_{\mathrm{a}}=0.02 \Omega$. When the motor operates at rated speed and with rated terminal voltage, the electromagnetic torque developed by the motor is 70 Nm . Neglecting the rotational losses of the machine, the current drawn by the motor from the 220 V supply is
(a) 34.2 A
(b) 30 A
(c) 22 A
(d) 4.84 A
41. Ans: (b)

Sol: $\mathrm{V}_{\mathrm{t}}=220 \mathrm{~V} ; \quad \mathrm{N}=900 \mathrm{rpm}$
$\mathrm{T}_{\mathrm{e}}=70 \mathrm{~N}-\mathrm{m} \quad \mathrm{T}_{\mathrm{e}}=\mathrm{K}_{\mathrm{a}} \phi \mathrm{I}_{\mathrm{a}}=70 \mathrm{~N}-\mathrm{m}$
\therefore Developed power $=\mathrm{T}_{\mathrm{e}} \omega=\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}$
(70) $\left(\frac{2 \pi \times 900}{60}\right)=\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}$
$\Rightarrow\left(\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}\right) \mathrm{I}_{\mathrm{a}}=6597.3$

$$
\begin{aligned}
& {\left[220-\mathrm{I}_{\mathrm{a}}(0.02)\right] \mathrm{I}_{\mathrm{a}}=6597.3} \\
& 220 \mathrm{I}_{\mathrm{a}}-0.02 \mathrm{I}_{\mathrm{a}}^{2}=6597.3 \\
& 0.02 \mathrm{I}_{\mathrm{a}}^{2}-220 \mathrm{I}_{\mathrm{a}}+6597.3=0
\end{aligned}
$$

Solving above equation

$$
I_{a}=30.06 \mathrm{~A}
$$

42. For the synchronous sequential circuit shown below, the output Z is zero for the initial conditions $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}=\mathrm{Q}^{\prime}{ }_{\mathrm{A}} \mathrm{Q}^{\prime}{ }_{\mathrm{B}} \mathrm{Q}^{\prime}{ }_{\mathrm{C}}=100$.

The minimum number if clock cycles after which the output Z would again become zero is
\qquad .
42. Ans: 6

Sol:

Thus after (6) pulses, Z again becomes 0

Clk	$\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$	$\mathrm{Q}^{\prime} \mathrm{Q}_{\mathrm{B}}^{\prime} \mathrm{Q}_{\mathrm{C}}^{\prime}$
0	100	Q 0
1	010	110
2	001	111
3	100	011
4	010	001
5	001	000
-6:	[1000	9000

43. Two generating units rated 300 MW and 400 MW have governor speed regulation of 6% and 4% respectively from no load to full load. Both the generating units are operating in parallel to share a load of 600 MW . Assuming free governor action, the load shared by the larger units is \qquad MW.

43. Ans: 333.4

Sol: If both are having same full load frequencies.
$\frac{P_{1}}{400}=\frac{4-x}{4} \Rightarrow P_{1}=\frac{400}{4}(4-x)=100(4-x)$
$\frac{P_{2}}{300}=\frac{6-x}{6} \Rightarrow P_{2}=\frac{300}{6}(6-x)=50(6-x)$
$P_{1}=100(4-x)+50(6-x)$
$\Rightarrow 400-100 \mathrm{x}+300-50 \mathrm{x}=600$
$\Rightarrow \mathrm{x}=0.666$
$\mathrm{P}_{1}=100(4-\mathrm{x})=100(4-0.666)=333.4 \mathrm{MW}$
$\mathrm{P}_{2}=50(6-\mathrm{x})=50(6-0.666)=266.7 \mathrm{MW}$

43. Ans: 400

Sol: If both are having same no load frequencies.
From the symmetrical triangles
$\frac{P_{1}}{400}=\frac{x}{4} \Rightarrow P_{1}=100 x$
$\frac{P_{2}}{300}=\frac{x}{6} \Rightarrow P_{2}=50 x$

$P_{1}+P_{2}=100 x+50 x=600$
$\mathrm{x}=4$
\therefore The load shared by larger unit i,e ., 400 MW unit is $\mathrm{P}_{1}=100 \mathrm{x}=100 \times 4=400 \mathrm{MW}$
44. A $25 \mathrm{kVA}, 400 \mathrm{~V}, \Delta$-connected, 3-phase, cylindrical rotor synchronous generator requires a field current of 5 A to maintain the rated armature current under short-circuit condition. For the same field current, the open-circuit voltage is 360 V . Neglecting the armature resistance and magnetic saturation, its voltage regulation (in $\%$ with respect to terminal voltage), when the generator delivers the rated load at 0.8 pf leading at rated terminal voltage is \qquad .
44. Ans: $\mathbf{- 1 4 . 5 6}$

Sol: $25 \mathrm{kVA}, 400 \mathrm{~V}, \Delta$-connected

$$
\begin{aligned}
& \therefore \mathrm{I}_{\mathrm{L}}=\frac{25 \times 1000}{\sqrt{3} \times 400}=36.08 \mathrm{~A} \\
& \Rightarrow \mathrm{I}_{\mathrm{ph}}=\frac{36.08}{\sqrt{3}}=20.83 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{sc}}=20.83 \mathrm{~A} \quad \text { when } \mathrm{I}_{\mathrm{f}}=5 \mathrm{~A} \\
& \mathrm{~V}_{\text {oc }(\text { line })}=360 \mathrm{~V} \quad \text { when } \mathrm{I}_{\mathrm{f}}=5 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
X_{s} & =\left.\frac{V_{o c}}{I_{s c}}\right|_{I_{f}=\text { given }} \\
& =\frac{360(\text { phase voltage })}{20.83(\text { phase current })}=17.28 \Omega
\end{aligned}
$$

For a given leading pf load $[\cos \phi=0.8$ lead]

$$
\begin{aligned}
\Rightarrow \mathrm{E}_{0} & =\sqrt{\left(\mathrm{V} \cos \phi+\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}\right)^{2}+\left(\mathrm{V} \sin \phi-\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}}\right)^{2}} \\
& =\sqrt{[400 \times 0.8]^{2}+[400 \times 0.6-20.83 \times 17.28]^{2}} \\
& =341 . \text { Volts } / \mathrm{ph}
\end{aligned}
$$

$$
\Rightarrow \text { voltage regulation }=\frac{|\mathrm{E}|-|\mathrm{V}|}{|\mathrm{V}|} \times 100
$$

$$
\begin{aligned}
& =\frac{341-400}{400} \times 100 \\
& =-14.56 \%
\end{aligned}
$$

45. The value of the contour integral in the complex-plane $\oint \frac{z^{3}-2 z+3}{z-2} d z$ along the contour $|z|=3$, taken counter-clockwise is
(a) $-18 \pi \mathrm{i}$
(b) 0
(c) $14 \pi \mathrm{i}$
(d) $48 \pi \mathrm{i}$
46. Ans: (c)

Sol:

$Z=2$ lies inside $|Z|=3$
$\oint_{C} \frac{Z^{3}-2 Z+3}{(Z-2)} d z=\oint_{C} \frac{\phi(Z)}{Z-2} d z$

$$
\begin{aligned}
& =2 \pi \mathrm{i} \phi(2)\left[\text { where } \phi(\mathrm{Z})=\mathrm{Z}^{3}-2 \mathrm{Z}+3\right] \\
& =2 \pi \mathrm{i}[8-4+3] \\
& =14 \pi \mathrm{i}
\end{aligned}
$$

46. In the circuit shown in the figure, the diode used is ideal. The input power factor is \qquad (Give the answer up to two decimal places).

47. Ans: $\mathbf{0 . 7 0 7}$

Sol: Input power factor $=\frac{P_{o}}{V_{s} I_{s}}=\frac{\left(\frac{V_{o r}^{2}}{R}\right)}{V_{s} \times \frac{V_{o r}}{R}}=\frac{V_{o r}}{V_{s}}=R / N C$

$$
=\frac{\left(\frac{V_{m}}{2}\right)}{\left(\frac{V_{m}}{\sqrt{2}}\right)}=\frac{\sqrt{2}}{2}=0.707 \mathrm{lag}
$$

47. A person decides to toss a fair coin repeatedly until he gets a head. He will make at most 3 tosses. Let the random variable Y denotes the number of heads. The value of $\operatorname{var}\{\mathrm{Y}\}$, where var $\{$.$\} denotes$ the variance, equal
(a) $\frac{7}{8}$
(b) $\frac{49}{64}$
(c) $\frac{7}{64}$
(d) $\frac{105}{64}$
48. Ans: (c)

Sol: Let $\mathrm{y}=$ number of head

Y	0	1
$\mathrm{P}(\mathrm{Y})$	$\frac{1}{8}$	$\frac{7}{8}$

$$
\mathrm{E}(\mathrm{Y})=\frac{7}{8}
$$

$$
\mathrm{E}\left(\mathrm{Y}^{2}\right)=\frac{7}{8}
$$

$$
\mathrm{V}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}^{2}\right)-\left(\mathrm{E}(\mathrm{Y})^{2}\right.
$$

$$
\begin{aligned}
& =\frac{7}{8}-\left(\frac{7}{8}\right)^{2} \\
& =\frac{7}{8}-\frac{49}{64} \\
& =\frac{7}{64}
\end{aligned}
$$

48. The root locus of the feedback control system having the characteristic equation $\mathrm{s}^{2}+6 \mathrm{Ks}+2 \mathrm{~s}+5$ $=0$ where $\mathrm{K}>0$, enters into the real axis at
(a) $\mathrm{s}=-1$
(b) $s=-\sqrt{5}$
(c) $\mathrm{s}=-5$
(d) $s=\sqrt{5}$
49. Ans: (b)

Sol: $\mathrm{CF}=\mathrm{s}^{2}+6 \mathrm{ks}+2 \mathrm{~s}+5=0$
$1+\frac{6 \mathrm{ks}}{\mathrm{s}^{2}+2 \mathrm{~s}+5}=0$
$1+G(s) H(s)=0$
$G(s) H(s)=\frac{6 k s}{s^{2}+2 s+s}=0$

$\frac{d}{d s}\left[\frac{6 s}{s^{2}+2 s+s}\right]=0$
$\left(s^{2}+2 s+s\right)(6)-6 s(2 s+2)=0$
$6 s+125+30-12 s^{2}-12 s=0$
$-6 s^{2}+30=0$
$\mathrm{s}= \pm \sqrt{5}$
$\mathrm{s}=-\sqrt{5}$ is a breakpoint
49. The range of K for which all the roots of the equation $s^{3}+3 s^{2}+2 s+K=0$ are in the left half of the complex s-plane is
(a) $0<\mathrm{K}<6$
(b) $0<\mathrm{K}<16$
(c) $6<\mathrm{K}<36$
(d) $6<\mathrm{K}<16$
49. Ans: (a)

Sol: | s^{3} | 1 | 2 |
| :---: | :---: | :---: |
| s^{2} | 3 | k |
| s^{1} | $6-k$ | |
| s^{0} | k^{3} | |

$$
\begin{aligned}
& \mathrm{k}>0 \text { and } \mathrm{k}<6 \\
& 0<\mathrm{k}<6
\end{aligned}
$$

50. A 3-phase, 50 Hz generator supplies power of 3 MW at 17.32 kV to a balanced 3-phase inductive load through an overhead line. The per phase line resistance and reactance are 0.25Ω and 3.925Ω respectively. If the voltage at the generator terminal is 17.87 kV , the power factor of the load is
\qquad .
51. Ans: $\mathbf{0 . 8 0 8 3}$

Sol: $\left|\mathrm{V}_{\mathrm{s}}\right|=17.87 \mathrm{kV}$
$\left|\mathrm{V}_{\mathrm{r}}\right|=17.32 \mathrm{kV}$
$\mathrm{R}=0.25 \Omega$
$\mathrm{X}_{\mathrm{L}}=3.925 \Omega$

$$
\begin{aligned}
\mathrm{Z} & =\sqrt{0.25^{2}+3.925^{2}} \\
& =3.933 \Omega
\end{aligned}
$$

$\mathrm{P}_{\mathrm{r}}=\frac{17.87 \times 17.32}{3.933} \cos (\theta-\delta)-\frac{0.25(17.32)^{2}}{3.933^{2}}$

$$
3=\frac{17.87 \times 17.32}{3.933} \cos (\theta-\delta)-\frac{0.25(17.32)^{2}}{3.933^{2}}
$$

$\operatorname{Cos}(\theta-\delta)=0.0997$
$(\theta-\delta)=84.276^{\circ}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{r}} & =\frac{\left|\mathrm{V}_{\mathrm{s}}\right| \mathrm{V}_{\mathrm{r}} \mid}{|\mathrm{Z}|} \sin (\theta-8)-\frac{\mathrm{X}\left|\mathrm{~V}_{\mathrm{r}}\right|^{2}}{|\mathrm{Z}|^{2}} \\
& =\frac{1787 \times 17.32}{3.933} \sin (84.276)-\frac{3.925 \times 17.32^{2}}{3.933^{2} \mathrm{Ce}}
\end{aligned}
$$

$$
=2.18483 \mathrm{VAR}
$$

$$
\mathrm{pf}=\cos \tan ^{-1}\left(\frac{\mathrm{Q}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{r}}}\right)
$$

$$
=\cos \tan ^{-1}\left(\frac{2.18483}{3}\right)
$$

$$
=0.8083 \mathrm{lag}
$$

51. For the balanced Y-Y connected 3-phase circuit shown in the figure below, the line-line voltage is 208 V rms and the total power absorbed by the load is 432 W at a power factor of 0.6 leading.

The approximate value of the impedance Z is
(a) $33 \angle-53.1^{\circ} \Omega$
(b) $60 \angle 53.1^{\circ} \Omega$
(c) $60 \angle-53.1^{\circ} \Omega$
(d) $180 \angle-53.1^{\circ} \Omega$
51. Ans: (c)

Sol: $\mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi$
$\mathrm{I}_{\mathrm{L}}=\frac{432}{\sqrt{3} \times 208 \times 0.6}=2 \angle 53.1^{\circ}$
$\mathrm{Z}_{\text {phase }}=\frac{\mathrm{V}_{\text {phase }}}{\mathrm{I}_{\text {phase }}}=\frac{208}{\frac{\sqrt{3}}{2}}=60 \angle-53.1^{\circ}$
52. For the circuit shown in the figure below, it is given that $\mathrm{V}_{\mathrm{CE}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2}$. The transistor has $\beta=29$ and $V_{B E}=0.7 \mathrm{~V}$ when the $B-E$ junction is forward biased.

For this circuit, the value of $\frac{R_{B}}{R}$ is
(a) 43
(b) 92
(c) 121
(d) 129
52. Ans: (d)

Sol: Given that, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CE}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2}=5 \mathrm{~V}, \beta=29$
$\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$

Apply KCL through C-E

$$
\begin{aligned}
& 10-\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right) 4 \mathrm{R}-5-\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right) \mathrm{R}=0 \\
& 5 \mathrm{R}\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right)=5 \\
& \mathrm{R}(1+\beta) \mathrm{I}_{\mathrm{B}}=1
\end{aligned}
$$

Apply KVL through B-E

$$
\begin{aligned}
& 10-4 \mathrm{R}\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right)-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-0.7-\mathrm{R}\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right)=0 \\
& 9.3-5 \mathrm{R}\left(\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}\right)=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}} \\
& 9.3-5=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}=4.3
\end{aligned}
$$

Then $\frac{I_{B} R_{B}}{R(1+\beta) I_{B}}=\frac{4.3}{1}$

$$
\begin{aligned}
\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}} & =4.3(1+\beta) \\
& =4.3 \times 30=129
\end{aligned}
$$

53. The eigen values of the matrix given below are $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & -4\end{array}\right]$
(a) $(0,-1,-3)$
(b) $(0,-2,-3)$
(c) $(0,2,3)$
(d) $(0,1,3)$
54. Ans: (a)

Sol: $\operatorname{Tr}(A)=0+0+(-4)=-4$
$|A|=0$
$\operatorname{Tr}(A)=$ sum of eigen values
$|A|=$ Product of eigen values
\therefore By verification from options,
The eigen values are $(0,-1,-3)$
54. Consider an overhead transmission line with 3-phase, 50 Hz balanced system with conductors located at the vertices of an equilateral triangle of length $D_{a b}=D_{b c}=D_{c a}=1 \mathrm{~m}$ as shown in figure below. The resistances of the conductors are neglected. The geometric mean radius (GMR) of each conductor is 0.01 m . Neglect the effect of ground, the magnitude of positive sequence reactance in Ω / km (rounded off to three decimal places) is \qquad

54. Ans: $\mathbf{0 . 2 8 9}$

Sol: $L_{\text {phase }}=2 \times 10^{-7} \ln \left(\frac{\text { GMD }}{\text { GMR }}\right) \mathrm{H} / \mathrm{km}$

$$
\begin{aligned}
& =2 \times 10^{-7} \ln \left(\frac{1}{0.01}\right)=2 \times 10^{-4} \times \ln (100) \\
& =0.921 \times 10^{-3} \mathrm{H} / \mathrm{km}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{X} & =2 \pi \mathrm{fL}=314 \times 0.921 \times 10^{-3} \\
& =0.289 \mathrm{ohms}
\end{aligned}
$$

55. A 120 V DC shunt motor takes 2 A at no load. It takes 7 A on full load while running at 1200 rpm . The armature resistance is 0.8Ω and the shunt field resistance is 240Ω. The no load speed, in rpm, is \qquad
56. Ans: 1241.8

Sol: $\mathrm{V}_{\mathrm{t}}=120 \mathrm{~V}$, DC shunt motor

At No-load:

$\mathrm{I}_{\mathrm{L}_{1}}=2 \mathrm{~A}$
$\mathrm{I}_{\mathrm{f}_{1}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{r}_{\mathrm{f}}}=\frac{120}{240}=0.5 \mathrm{~A}$
$\Rightarrow \mathrm{I}_{\mathrm{a}_{1}}=1.5 \mathrm{~A}$;
$\mathrm{E}_{\mathrm{b}_{1}}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}_{1}} \mathrm{r}_{\mathrm{a}}=120-(1.5)(0.8)$
$=118.8 \mathrm{~V}$
$\mathrm{N}_{\text {no-load }}=$?

At Full load:

$$
\mathrm{I}_{\mathrm{L}_{2}}=7 \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{f}_{2}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{r}_{\mathrm{f}}}=\frac{120}{240}=0.5 \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{a}_{2}}=6.5 \mathrm{~A}
$$

$$
\mathrm{E}_{\mathrm{a}_{2}}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}_{2}} \mathrm{r}_{\mathrm{a}}=120-(6.5)(0.8)
$$

$$
=114.8 \mathrm{~V}
$$

$\mathrm{N}_{\text {full-load }}=1200 \mathrm{rpm}$
$\mathrm{E}_{\mathrm{b}}=\mathrm{K}_{\mathrm{a}} \phi \omega ; \quad \phi=\operatorname{const}\left[\because \mathrm{I}_{\mathrm{f}}=\right.$ const $]$
$\Rightarrow \frac{\mathrm{E}_{\mathrm{b}_{1}}}{\mathrm{E}_{\mathrm{b}_{2}}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$
$N_{1}=\left(N_{2}\right)\left(\frac{E_{b_{1}}}{E_{b_{2}}}\right)$
$=(1200)\left(\frac{118.8}{114.8}\right)=1241.8 \mathrm{rpm}$
?
To win the race join $A C E$
hearty congratulations to our GATE 2016 RANKERS

General Aptitude

1. Choose the option with words that are not synonyms.
(A) aversion, dislike
(B) luminous, radiant
(C) plunder, loot
(D) yielding, resistant
2. Ans: (D)

Sol: 'Yielding' means tending to do where as 'resistant' means opposed to something, so both are not synonyms.
02. There are five building called $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z in a row (not necessarily in that order). V is to the West of W, Z is to the East of X and the West of V, W is the West of Y . Which is the building in the middle?
(A) V
(B) W
(C) X
(D) Y
02. Ans: (A)

Sol: From the given data, the following Row is formed

\therefore The building ' V ' is in the middle
03. There are 3 red socks, 4 greed socks and 3 blue socks. You choose 2 socks. The probability that they are of the same colour is
(A) $1 / 5$
(B) $7 / 30$
(C) $1 / 4$
(D) $4 / 15$
03. Ans: (D)

Sol: Red socks $=3$
Green socks $=3$
Blue socks $=3$
\therefore The probability that they are of the same colours of pair $=\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}+\frac{{ }^{4} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}+\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}$

$$
\begin{aligned}
& =\frac{3}{45}+\frac{6}{45}+\frac{3}{45} \\
& =\frac{12}{45}=\frac{4}{15}
\end{aligned}
$$

4. A test has twenty questions worth 100 marks in total. There are two types of questions. Multiple choice questions are worth 3 marks each and essay questions are worth 11 marks each. How many multiple choice questions does the exam have?
(A) 12
(B) 15
(C) 18
(D) 19
5. Ans: (B)

Sol: Total marks in the test $=100$
For multiple choice questions $=3$ marks
For eassy questions $=11$ marks

Option (A)

Marks for multiple choice questions $=12 \times 3=36$
Marks for essay type questions $=100-36=64$
64 is not divisible by 11
\therefore Option (A) is not correct.

Option (B)

Marks for multiple choice questions $=15 \times 3=45$
Marks for essay type questions $=100-45=\frac{55}{11}=5$
Essay type questions are 5 No's
\therefore Option (B) is correct

Option(C)

Marks for multiple choice questions $=18 \times 3=54$
Marks for essay type questions $=100-54=46$
46 is not divisible by 11
\therefore Option (C) is not correct.

Option (D)

Marks for multiple choice questions $=19 \times 3=57$
Marks for essay type questions $=100-57=43$
46 is not divisible by 11
\therefore Option (D) is not correct.
05. Saturn is \qquad to be seen on a clear night with the naked eye.
(A) enough bright
(B) bright enough
(C) as enough bright
(D) bright as enough
05. Ans: (B)

Sol: The word 'enough' as an adverb falts after the adjective so 'bright enough' is the right answer
06. The number of roots or $\mathrm{e}^{\mathrm{x}}+0.5 \mathrm{x}^{2}-2=0$ in the range $[-5,5]$ is
(A) 0
(B) 1
(C) 2
(D) 3
06. Ans: (C)

Sol: $\mathrm{e}^{\mathrm{x}}+0.5 \mathrm{x}^{2}-2=0$ in the range $[-5,5]$
$f(x)=e^{x}+0.5 x^{2}-2$
$f(-5)=10.50$
$\mathrm{f}(-4)=6.01$
$\mathrm{f}(-2)=0.135$
$f(-1)=-1.13$
$f(0)=-1$
$\mathrm{f}(1)=1.21$
(2)
$f(2)=7.38$
As there are 2 sign changes from +ve to $-\mathrm{ve} \&-\mathrm{ve}$ to +ve .
Two roots will be there in the range $[-5,5]$
07. There are three boxes. One contains apples, another contains oranges and the last one contains both apples and oranges. All three are known to be incorrectly labelled. If you are permitted to open just one box and then pull out and inspect only one fruit, which box would you open to determine the contents of all three boxes?
(A) The box labelled 'Apples’
(B) The box labelled 'Apples and Oranges'
(C) The box labelled 'Oranges'
(D) Cannot be determined
07. Ans: (B)

Sol: The person who is opening the boxes, he knew that all 3 are marked wrong.
Suppose if three boxes are labelled as below.

(1) Apples

(2) Oranges

(3) Apples \& Oranges

If he inspected from Box (1), picked one fruit, found orange, then he don't know whether Box contains oranges (or) both apples \& oranges.
Similarly if he picked one fruit from box(2), found apple then he don't know whether box contain apples (or) both apples \& oranges.

But if he picked one fruit from box(3), i.e., labelled as 'apples \& oranges', if he found apple then he can decide compulsorily that box (3) contain apples and as he knew all boxes are labeled as incorrect, he can tell box(2) contains both apples \& oranges, box(1) contain remaining oranges. So, he should open box labelled 'apples \& oranges' to determine contents of all the three boxes.
08. "We lived in a culture that denied any merit to literary works, considering them important only when they were handmaidens to something seemingly more urgent-namely ideology. This was a country where all gestures, even the most private, were interpreted in political terms.

The author's belief that ideology is not as important as literature is revealed by the word:
(A) 'culture'
(B) 'seemingly'
(C) 'urgent'
(D) 'political'
08. Ans: (B)

Sol: It appears to be ' B ', so the right option is ' B '.
09. X is a 30 digit number starting with the digit 4 followed by the digit 7. Then the number X^{3} will have
(A) 90 digits
(B) 91 digits
(C) 92 digits
(D) 93 digits
09. Ans: (A)

Sol: $\mathrm{X}=(47 \ldots \ldots \ldots .)_{30}$ digits
Suppose $(47)^{3}=2+2+2$ digits in $(47)^{3}$
Similarly $(47 \ldots \ldots)^{3}{ }_{30 \text { digits }}=$ contains $30+30+30$ digits

$$
=90 \text { digits }
$$

10. An air pressure contour line joins locations in a region having the same atmospheric pressure. The following is an air pressure contour plot of a geographical region. Contour lines are shown at 0.05 bar intervals in this plot

If the possibility of a thunderstorm is given by how fast air pressure rises or drops over a region. Which of the following regions is most likely to have a thunderstorm?
(A) P
(B) Q
(C) R
(D) S
10. Ans: (C)

Sol:

Region	Air pressure difference
P	$0.95-0.90=0.05$
Q	$0.80-0.75=0.05$
R	$0.85-0.65=0.20$
S	$0.95-0.90=0.05$

In general thunderstorms are occurred in a region where suddenly air pressure changes (i.e.,) sudden rise (or) sudden fall of air pressure. From the given contour map in ' R ' Region only more changes in air pressure so, the possibility of a thunderstorms in this region.
\therefore option(C) is correct.

To win the race join $A C E$

