Δ
Engineering Academy Leading Institute for ESE/GATE/PSUs

Hyderabad | Kukatpally | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vifayawada | Vizag | Tirupathi | Kolkata

GATE 2017

 Instrumentation Engineering
Questions with Detailed Solutions

AFTERNOON SESSION

1. A series R-L-C circuit is excited with a $50 \mathrm{~V}, 50 \mathrm{~Hz}$ sinusoidal source. The voltages across the resistance and the capacitance are shown in the figure. The voltage across the inductor $\left(\mathrm{V}_{\mathrm{L}}\right)$ is
\qquad V.

2. Ans: 50

Sol:

02. The term hysteresis is associated with
(A) ON-OFF control
(B) P-I control
(C) Feed-forward control
(D) Ratio control
02. Ans: (A)

Sol: Hysteresis term is associated with ON-OFF controller only.
03. A system is described by the following differential equation: $\frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}+x(t)$, $\mathrm{x}(0)=\mathrm{y}(0)=0$ Where $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ are the input and output variables respectively. The transfer function of the inverse system is
(A) $\frac{\mathrm{s}+1}{\mathrm{~s}-2}$
(B) $\frac{\mathrm{s}+2}{\mathrm{~s}+1}$
(C) $\frac{s+1}{s+2}$
(D) $\frac{s-1}{s-2}$

03. Ans: (B)

Sol: Given $\frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}+x(t)$
Apply laplace transform to above equation
$\mathrm{SY}(\mathrm{s})+2 \mathrm{Y}(\mathrm{s})=\mathrm{SX}(\mathrm{s})+\mathrm{X}(\mathrm{s})$
$\mathrm{Y}(\mathrm{s})[\mathrm{s}+2]=\mathrm{X}(\mathrm{s})(\mathrm{s}+1)$
$\mathrm{H}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{X}(\mathrm{s})}=\frac{\mathrm{S}+1}{\mathrm{~S}+2}$
$\mathrm{H}_{\mathrm{inv}}(\mathrm{s})=\frac{\mathrm{S}+2}{\mathrm{~S}+1}$
04. A circuit consisting of dependent and independent sources is shown in the figure. If the voltage at Node-1 is -1 V , then the voltage at Node-2 is \qquad V.

04. Ans: 2

Sol:

Given that $V_{1}=-1$ Volts then find V_{2}
By KCL at (1) $V_{R_{1}}=V_{1}=-1$
$1=\frac{\mathrm{V}_{\mathrm{R}_{1}}}{1}+\frac{\mathrm{V}_{\mathrm{R}_{1}}-4 \mathrm{~V}_{\mathrm{R}_{1}}-\mathrm{V}_{2}}{0.5}$
$1=\mathrm{V}_{\mathrm{R}_{1}}-6 \mathrm{~V}_{\mathrm{R}_{1}}-2 \mathrm{~V}_{2}$
$1=-5 \mathrm{~V}_{\mathrm{R}_{1}}-2 \mathrm{~V}_{2}$
$1=-5(-1)-2 \mathrm{~V}_{2}$
$2 \mathrm{~V}_{\mathrm{R}_{2}}=4$
$\Rightarrow \mathrm{V}_{\mathrm{R}_{2}}=2$ Volts
05. The most suitable pressure gauge to measure pressure in the range of 10^{-4} to 10^{-3} torr is
(A) Bellows
(B) Barometer
(C) Strain gauge
(D) Pirani gauge
05. Ans: (D)

Sol: Gauge is the suitable pressure gauge to measure vacuum pressure up to the range of 10^{-4} torr
06. The differential amplifier, shown in the figure, has a differential gain of $\mathrm{A}_{\mathrm{d}}=100$ and common mode gain of $\mathrm{A}_{\mathrm{c}}=0.1$. If $\mathrm{V}_{1}=5.01 \mathrm{~V}$ and $\mathrm{V}_{2}=5.00 \mathrm{~V}$, the V_{0}, in Volt (u p to one decimal place) is

Sol: $\mathrm{V}_{0}=\mathrm{A}_{\mathrm{d}} \mathrm{V}_{\mathrm{d}}+\mathrm{A}_{\mathrm{cm}} \mathrm{V}_{\mathrm{cm}}$

$$
\begin{aligned}
& =100(0.01)+0.1(5.005) \\
& =1+0.5005 \\
& =1.5005
\end{aligned}
$$

COAL INDIA LIMITED (CIL) Management Trainee \& Other PSUs

Classroom coaching

(General Knowledge / Awareness, Reasoning, Numerical Ability \& General English)

Starts on

■ $15^{\text {th }}$ Feb 2017 © Delhi

Online Test Series (EE \| ME \| CE)

Total Tests : 20
区 starts from $\mathbf{1 7}^{\text {h }}$ Feb 2017

$$
\text { ESE } \underset{\text { Mains (Stage - II) }}{2017}
$$

Classroom Coaching Starts from $15^{\text {th }}$ Feb 2017
at Hyderabad, Delhi \& Pune

Offline Test Series : Starts from - 18 ${ }^{\text {th }}$ March 2017
Number of Tests: 16
$\boxed{\square}$ Will Conduct at all Our centers
07. A current waveform, $\mathrm{i}(\mathrm{t})$, shown in the figure, is passed through a Permanent Magnet Moving Coil (PMMC) type ammeter. The reading of the ammeter up to two decimal places is

07. Ans: (A)

Sol: PMMC always measures average value

$$
\begin{aligned}
\mathrm{I}_{\text {avg }} & =\frac{\text { Area }}{\mathrm{T}} \\
& =\frac{1}{2 \mathrm{~m}} \times\left[\left(\frac{1}{2} \times 1 \mathrm{~m} \times 1\right)+(-1 \times 1 \mathrm{~m})\right] \\
& =\frac{1}{2}\left[\frac{1}{2}-1\right] \\
& =\frac{1}{2}\left[\frac{1}{2}\right] \\
& =-\frac{1}{4} \\
& =-0.25(\mathrm{~A})
\end{aligned}
$$

8. The Region of Convergence (ROC) of the Z-transform of a causal unit step discrete-time sequence is
(A) $|z|<1$
(B) $|z| \leq 1$
(C) $|z|>1$
(D) $|z| \geq 1$
9. Ans: (C)

Sol: Given $x(n)=u(n)$
$X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}=\sum_{n=0}^{\infty} z^{-n}=\sum_{n=0}^{\infty}\left(z^{-1}\right)^{n}=\frac{1}{1-2^{-1}} \quad\left|z^{-1}\right|<1$
$\mathrm{ROC}=|\mathrm{z}|>1$
09. The eigen values of the matrix $A=\left[\begin{array}{ccc}1 & -1 & 5 \\ 0 & 5 & 6 \\ 0 & -6 & 5\end{array}\right]$ are
(A) $-1,5,6$
(B) $1,-5 \pm \mathrm{j} 6$
(C) $1,5 \pm \mathrm{j} 6$
(D) $1,5,5$
09. Ans: (C)

Sol: Given $A=\left[\begin{array}{ccc}1 & -1 & 5 \\ 0 & 5 & 6 \\ 0 & -6 & 5\end{array}\right]$
$\operatorname{tr}(\mathrm{A})=11$
$\operatorname{det}(\mathrm{A})=(25+36)+(0)+5(0)=61=$ product of eigen values
only option (C) satisfies these conditions
10. For a first order low pass filter with unity d.c. gain and -3 dB corner frequency of $2000 \pi \mathrm{rad} / \mathrm{s}$, the transfer function $\mathrm{H}(\mathrm{j} \omega)$ is
(A) $\frac{1}{1000+\mathrm{j} \omega}$
(B) $\frac{1}{1+\mathrm{j} 1000 \omega}$
(C) $\frac{2000 \pi}{2000 \pi+\mathrm{j} \omega}$
(D) $\frac{1000 \omega}{1+\mathrm{j} 1000 \omega}$

10. Ans: (c)

Sol: For -3 dB corner frequency
We equate

$$
\begin{align*}
& \left.\frac{2000 \pi}{\sqrt{(2000 \pi)^{2}+\omega^{2}}}\right|_{\omega=2000 \pi}=\frac{1}{\sqrt{2}} \\
& \text { LHS }=\frac{2000 \pi}{\sqrt{(2000 \pi)^{2}+(2000 \pi)^{2}}} \\
& \quad=\frac{1}{\sqrt{2}}
\end{align*}
$$

RHS $=$ LHS
Hence option (c) is the required LPF
11. The figure shows a shape $A B C$ and its mirror image $A_{1} B_{1} C_{1}$ across the horizontal axis (x-axis). The coordinate transformation matrix that maps ABC to $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ is

(A) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(B) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
(C) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

11. Ans: (D)

Sol: The required transformation matrix for reflection of given original image about X -axis is $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\left[\begin{array}{ll}\mathrm{x} & \mathrm{y}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}\mathrm{x} & -\mathrm{y}\end{array}\right]$
12. The figure shows a phase locked loop. The output frequency is locked at $f_{0}=5 \mathrm{kHz}$. The value of f_{i} in kHz is \qquad

12. Ans: 1

Sol: $\mathrm{f}_{\mathrm{i}}=\frac{\mathrm{f}_{0}}{\mathrm{n}}=\frac{5}{5}=1 \mathrm{kHz}$
13. The output V_{0} shown in the figure, in Volt, is close to

(A) -20
(B) -15
(C) -5
(D) 0

13. Ans: (B)

Sol: $\mathrm{V}_{0}=\left(\frac{-2 \mathrm{k}}{1 \mathrm{k}}\right) 10=-20$
Since op-amp is saturated $\mathrm{V}_{0}=-15 \mathrm{~V}$
14. If a continuous-time signal $x(t)=\cos (2 \pi t)$ is sampled at $4 H z$, the value of the discrete time sequence $x(n)$ at $n=5$ is
(A) -0.707
(B) -1
(C) 0
(D) 1
14. Ans: (C)

Sol: The distance time signal obtained by sampling continuous time signal $x(t)=\cos (2 \pi t)$ is
$\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right)=\cos \left(2 \pi \times \mathrm{n} \times \mathrm{T}_{\mathrm{s}}\right)$
Given $f_{s}=4 H z$
$\mathrm{T}_{\mathrm{s}}=\frac{1}{\mathrm{f}_{\mathrm{s}}}=\frac{1}{4}$
$x(n)=\cos \left(2 \pi \times n \times \frac{1}{4}\right)=\cos \left(\frac{n \pi}{2}\right)$
$x(5)=\cos \left(\frac{5 \pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0$
15. Let $\mathrm{z}=\mathrm{x}+$ iy where $\mathrm{j}=\sqrt{-1}$. Then $\overline{\cos \mathrm{z}}=$
(A) cosz
(B) $\cos \bar{z}$
(C) $\sin z$
(D) $\sin \bar{z}$
15. Ans: (A)

Sol: $\overline{\cos \mathrm{z}}=\overline{\cos (\mathrm{x}+\mathrm{iy})}=\cos (\mathrm{x}-\mathrm{iy})=\cos \overline{\mathrm{z}}$
16. The condition for oscillation in a feedback oscillator circuit is that at the frequency of oscillation, initially the loop gain is greater than unity while the total phase shift around the loop in degree is
(A) 0
(B) 90
(C) 180
(D) 270
16. Ans: 0°
17. A and B are the logical inputs and X is the logical output shown in the figure. the output X is related to A and B by

(A) $\mathrm{X}=\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{B}} \mathrm{A}$
(B) $\mathrm{X}=\mathrm{AB}+\overline{\mathrm{B}} \mathrm{A}$
(C) $\mathrm{X}=\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{B}}$
(D) $\mathrm{X}=\overline{\mathrm{A}} \overline{\mathrm{B}}+\overline{\mathrm{B}} \mathrm{A}$
17. Ans: (C)

Sol: $X=\bar{A} \bar{B}+A B$

SHORT TERM BATCHES FOR GATE+PSUs -2018 STARTING FROM
HYDERABAD
29 ${ }^{\text {th }}$ APRIL 2017 onwards

GENERAL STUDIES BATCHES FOR ESE-2018 STARTING FROM

HYDERABAD \& DELHI
1st week of July 2017
18. If V is a non-zero vector of dimension 3×1, then the matrix $\mathrm{A}=\mathrm{VV}^{\mathrm{T}}$ has a rank $=$ \qquad
18. Ans: 1

Sol: Let $V=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]_{3 \times 1}$ be a non-zero vector $\rho(V)=1, \rho\left(V^{T}\right)=1$
$\mathrm{A}=\left(\mathrm{V} \mathrm{V}^{\mathrm{T}}\right)_{3 \times 3}$
$\rho(\mathrm{A})=\rho\left(\mathrm{V}^{\mathrm{T}}\right)=1$
19. The standard for long distance analog signal transmission in process control industry is
(A) 4-20 mV
(B) $0-20 \mathrm{~mA}$
(C) 4-20 mA
(D) $0-5 \mathrm{~V}$
19. Ans: (C)

Sol: $4-20 \mathrm{~mA}$ is the standard for long distance analog signal transmission in process control industry.
20. An 8 -bit microcontroller with 16 address lines has 3 fixed interrupts i.e., Int1, Int2 and Int3 with corresponding interrupt vector addresses as $0008 \mathrm{H}, 0010 \mathrm{H}$ and 0018 H . To execute a 32 -byte long interrupt service subroutine for Int1 staring at the address ISS1, the location 0008 H onwards should ideally contain
(A) a CALL to ISS1
(B) an unconditional JUMO to ISS1
(C) a condition JUMP to ISS1
(D) only ISS1
20. Ans: (B)
21. A periodic signal $x(t)$ is shown in the figure. the fundamental frequency of the signal $x(t)$ in $H z$ is
\qquad

21. Ans: 1

Sol: The fundamental period of given signal is $\mathrm{T}_{0}=1 \mathrm{sec}$
Fundamental frequency $\mathrm{f}_{0}=\frac{1}{\mathrm{~T}_{0}}=1 \mathrm{~Hz}$
22. The pressure drop across an orifice plate for a particular flow rate is $5 \mathrm{~kg} / \mathrm{m}^{2}$. If the flow rate is doubled (within the operating range of the orifice), the corresponding pressure drop in $\mathrm{kg} / \mathrm{m}^{2}$ is
(A) 2.5
(B) 5.0
(C) 20.0
(D) 25.0
22. Ans: (C)

Sol: We know for orifice plate
$\mathrm{Q} \alpha \sqrt{\Delta \mathrm{P}}$
$\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\sqrt{\frac{\Delta \mathrm{P}_{1}}{\Delta \mathrm{P}_{2}}}$
$\mathrm{Q}_{2}=2 \mathrm{Q}_{1}, \Delta \mathrm{P}_{1}=5\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$

$$
\begin{aligned}
& \frac{\mathrm{Q}_{1}}{2 \mathrm{Q}_{1}}=\sqrt{\frac{5}{\Delta \mathrm{P}_{2}}} \\
& \frac{1}{2}=\sqrt{\frac{5}{\Delta \mathrm{P}_{2}}} \\
& \frac{1}{4}=\frac{5}{\Delta \mathrm{P}_{2}} \\
& \Delta \mathrm{P}_{2}=20\left(\mathrm{~kg} / \mathrm{m}^{2}\right)
\end{aligned}
$$

ESE - 2017 mans strace-ıl)

Exclusive Postal Coaching Offer for Prelims Qualified Students

For E\&T / EE / CE / ME

FREE DOUBT CLEARING SESSIONS
23. The connection of two 2-port networks is shown in the figure. The ABCD parameter of N1 and N2 networks are given as
$\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]_{\mathrm{N} 1}=\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]_{\mathrm{N} 2}=\left[\begin{array}{cc}1 & 0 \\ 0.2 & 1\end{array}\right]$

The ABCD parameters of the combined 2-port network are
(A) $\left[\begin{array}{cc}2 & 5 \\ 0.2 & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & 2 \\ 0.5 & 1\end{array}\right]$
(C) $\left[\begin{array}{cc}5 & 2 \\ 0.5 & 1\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & 2 \\ 0.5 & 5\end{array}\right]$
23. Ans: (A)

Sol:

$[\mathrm{T}]=\left[\mathrm{T}_{1}\right] \times\left[\mathrm{T}_{2}\right]$
$\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]=\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right] \mathrm{X}\left[\begin{array}{cc}1 & 0 \\ 0.2 & 1\end{array}\right]=\left[\begin{array}{cc}2 & 5 \\ 0.2 & 1\end{array}\right]$
24. Identify the instrument that does not exist:
(A) Dynamometer-type ammeter
(B) Dynamometer-type wattmeter
(C) Moving-iron voltmeter
(D) Moving-iron wattmeter
24. Ans: (D)

Sol: Moving-iron wattmeter does not exist
25. The silicon diode, shown in the figure, has a barrier potential of 0.7 V . There will be no forward current flow through the diode, if V_{dc}, in volt, is greater than

(A) 0.7
(B) 1.3
(C) 1.8
(D) 2.6
25. Ans: (D)

Sol: $2-\frac{V_{\mathrm{dc}}}{2} \geq 0.7$
$\mathrm{V}_{\mathrm{dc}_{\text {min }}}=2.6 \mathrm{~V}$
26. The magnetic flux density of an electromagnetic flowmeter is $100 \mathrm{mWb} / \mathrm{m}^{2}$. The electrodes are wall-mounted inside the pipe having a diameter of 0.25 m . A voltage of 1 V is generated when a conducting fluid is passed through the flowmeter. The volumetric flow rate of the fluid in $\mathrm{m}^{3} / \mathrm{s}$ is
\qquad .
26. Ans: 1.9634

Sol: $\mathrm{e}=\mathrm{B} / \mathrm{V}=100 \times 10^{-3} \times 0.25 \times \mathrm{V}$
$1=0.25 \times 10^{-1} \mathrm{~V}$
$\mathrm{V}=40(\mathrm{~m} / \mathrm{sec})$
$\mathrm{Q}=\mathrm{AV}=\frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{V}=\frac{\pi}{4} \times(0.25)^{2} \times 40=1.9634\left(\mathrm{~m}^{3} / \mathrm{sec}\right)$
27. Quantum efficiency of a photodiode (ratio between the number of liberated electrons and the number of incident photons) is 0.75 at 830 nm . Given Planck's constant $\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}$, the charge of an electron $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and the velocity of light in the photodiode $\mathrm{C}_{\mathrm{m}}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. For an incident optical power of $100 \mu \mathrm{~W}$ at 830 nm , the photocurrent in $\mu \mathrm{A}$ is \qquad

27. Ans: $\mathbf{7 5 . 1 8}$

Sol: $\frac{I}{P}=\frac{\eta e \lambda}{h c}$

$$
\begin{aligned}
\mathrm{I} & =\frac{\eta \mathrm{e} \lambda}{\mathrm{hc}} \times \mathrm{P} \\
& =\frac{0.75 \times 1.6 \times 10^{-19} \times 830 \times 10^{-9} \times 100 \times 10^{-6}}{6.624 \times 10^{-34} \times 2 \times 10^{8}}
\end{aligned}
$$

$\mathrm{I}=75.18 \mu \mathrm{~A}$
28. The two-input voltage multiplier, shown in the figure, has a scaling factor of 1 and produces voltage output. If $\mathrm{V}_{1}=+15 \mathrm{~V}$ and $\mathrm{V}_{2}=+3 \mathrm{~V}$, the value of V_{0} in volt is \qquad
28. Ans: $\mathbf{- 5}$

Sol: Given $\mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=+3 \mathrm{~V}$

KCL at inverting terminal

$$
\begin{gathered}
\frac{0-\mathrm{V}_{1}}{\mathrm{R}}+\frac{0-\left(1 . \mathrm{V}_{2} \mathrm{~V}_{0}\right)}{\mathrm{R}}=0 \\
\mathrm{~V}_{0}=-\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=-5 \mathrm{~V}
\end{gathered}
$$

HEARTY CONGRATULATIONS TO OUR GATE 2016 RANKERS

29. The circuit of a Schmitt trigger is shown in the figure. The zener-diode combination maintains the output between $\pm 7 \mathrm{~V}$. The width of the hysteresis band is \qquad V.

29. Ans: 0.667

Sol: $\mathrm{UTP}=\frac{7 \times 0.5+2 \times 10}{10.5}=\frac{23.5}{10.5}=2.238$

$$
\mathrm{LTP}=\frac{-7 \times 0.5+2 \times 10}{10.5}=1.57142
$$

Hysteresis width $=\mathrm{V}_{\mathrm{UTP}}-\mathrm{V}_{\mathrm{LTP}}$

$$
=0.667 \mathrm{~V}
$$

30. The angle between two vectors $x_{1}=\left[\begin{array}{lll}2 & 6 & 14\end{array}\right]^{\mathrm{T}}$ and $\mathrm{x}_{2}=\left[\begin{array}{lll}-12 & 8 & 16\end{array}\right]^{\mathrm{T}}$ in radian is
\qquad
31. Ans: 0.7235

Sol: Given $\mathrm{X}_{1}=\left[\begin{array}{c}2 \\ 6 \\ 14\end{array}\right] \& \mathrm{X}_{2}=\left[\begin{array}{c}-12 \\ 8 \\ 16\end{array}\right]$ angle between two vectors is

$$
\begin{aligned}
\cos \theta & =\frac{X_{1} X_{2}}{\left|X_{1}\right|\left|X_{2}\right|}=\frac{-24+48+224}{\sqrt{4+36+196} \sqrt{144+64+256}}=\frac{248}{\sqrt{236} \sqrt{466}}=\frac{248}{\sqrt{109976}} \\
& =\frac{248}{331.626}=0.74783 \\
\theta & =41.45^{\circ}=0.7235 \mathrm{rad}
\end{aligned}
$$

HEARTY CONGRATULATIONS TO OUR ESE 2016 RANKERS

31. The Laplace transform of a causal signal $y(t)$ is $Y(s)=\frac{s+2}{s+6}$. The value of the signal $y(t)$ at $t=0.1 s$ is \qquad unit.
31. Ans: $\mathbf{- 2 . 1 9}$

Sol: The laplace transform $\mathrm{Y}(\mathrm{s})=\frac{\mathrm{s}+2}{\mathrm{~s}+6}$ then $\mathrm{y}(\mathrm{t})$ at $\mathrm{t}=0.1$ is

$$
\begin{aligned}
& Y(s)=\frac{s+2}{s+6}=\frac{s+6-4}{s+6} \\
& y(t)=L^{-1}\left[1-\frac{4}{s+6}\right] \\
& y(t)=\left[\delta(t)-4 e^{-6 t}\right] \\
& t=0.1 \quad y(0.1)=\delta(0.1)-4 e^{-6(0.1)} \\
& y(0.1)=-2.19
\end{aligned}
$$

32. A closed-loop system is shown in the figure. The system parameter α is not known. The condition for asymptotic stability of the closed loop system is

(A) $\alpha<-0.5$
(B) $-0.5<\alpha<0.5$
(C) $0<\alpha<0.5$
(D) $\alpha>0.5$
33. Ans: (D)

Sol: Characteristics equation

$$
C \cdot E=s^{3}+2 \alpha s^{2}+(\alpha+1) s+1+\alpha=0
$$

Condition for stability

$$
\begin{aligned}
& 2 \alpha(\alpha+1)>1+\alpha \\
& 2 \alpha^{2}+2 \alpha-\alpha-1>0 \\
& 2 \alpha^{2}+\alpha-1>0 \\
& 2 \alpha^{2}+2 \alpha-\alpha-1>0
\end{aligned}
$$

$(2 \alpha-1)(\alpha+1)>0$
$2 \alpha-1>0$
$\alpha+1>0$
$\alpha>1 / 2$
$\alpha>-1$
$\alpha>0.5$
33. The unbalanced voltage of the Wheatstone bridge, shown in the figure, is measured using a digital voltmeter having infinite input impedance and a resolution of 0.1 mV . If $\mathrm{R}=1000 \Omega$. Then the minimum value of $\Delta \mathrm{R}$ in Ω to create a detectable unbalanced voltage is \qquad

33. Ans: 0.2

Sol: $0.1 \times 10^{-3}=2 \times\left(\frac{R+\Delta R}{2 R+\Delta R}-\frac{R}{2 R}\right)$

$$
\begin{aligned}
& =2 \times\left(\frac{1}{1+\frac{\mathrm{R}}{\mathrm{R}+\Delta \mathrm{R}}}-\frac{1}{2}\right) \\
& =2 \times\left(\frac{1}{1+\frac{1000}{1000+\Delta \mathrm{R}}}-\frac{1}{2}\right)
\end{aligned}
$$

> Let $\frac{1000}{1000+\Delta \mathrm{R}}=\mathrm{x}$
> $0.5 \times 10^{-4}=\left(\frac{1}{1+\mathrm{x}}-\frac{1}{2}\right)$
> $0.50005=\frac{1}{1+\mathrm{x}}$
$1+\mathrm{x}=1.9998$
$\mathrm{x}=0.9998$
$\frac{1000}{1000+\Delta \mathrm{R}}=0.9998$
$1000+\Delta \mathrm{R}=1000.2$
$\Delta \mathrm{R}=0.2 \Omega$
34. In the a.c. bridge, shown in the figure, $R=10^{3} \Omega$ and $C=10^{-7} \mathrm{~F}$. If the bridge is balanced at a frequency ω_{0}, the value of ω_{0} in rad/s is \qquad

34. Ans: 10000

Sol: $\omega_{0}=\frac{1}{\mathrm{RC}}=\frac{1}{10^{3} \times 10^{-7}}$

$$
=\frac{1}{10^{-4}}=10000(\mathrm{rad} / \mathrm{sec})
$$

35. The loop transfer function of a closed-loop system is given by $G(s) H(s)=\frac{k(s+6)}{s(s+2)}$.

The breakaway point of the root-loci will be
35. Ans: - $\mathbf{1 . 0 1}$

Sol: $G(s)=\frac{k(s+6)}{s(s+2)}$

$$
\begin{aligned}
& \frac{\mathrm{k}(\mathrm{~s}+6)}{\mathrm{s}(\mathrm{~s}+2)}=-1 \\
& \mathrm{k}=\frac{-\left(\mathrm{s}^{2}+2 \mathrm{~s}\right)}{\mathrm{s}+6} \\
& \frac{\mathrm{dk}}{\mathrm{ds}}=-\frac{\left((\mathrm{s}+6)(2 \mathrm{~s}+2)-\left(\mathrm{s}^{2}+2 \mathrm{~s}\right)\right)}{(\mathrm{s}+6)^{2}} \\
& 2 \mathrm{~s}^{2}+2 \mathrm{~s}+12 \mathrm{~s}+12-\mathrm{s}^{2}-2 \mathrm{~s}=0 \\
& \mathrm{~s}^{2}+12 \mathrm{~s}+12=0
\end{aligned}
$$

$$
\mathrm{s}=-1.01
$$

$$
\mathrm{s}=-10.8
$$

The break away point $\mathrm{s}=-1.01$
36. The current response of a series R-L circuit to a unit step voltage is given in the table. The value of L is \qquad H.

t in s	0	0.25	0.5	0.75	1.0	\ldots	∞
$\mathrm{i}(\mathrm{t})$ in A	0	0.197	0.316	0.388	0.432	\ldots	0.5

36. Ans: 1

Sol: The current response of a series R-L to a unit step voltage

$i(t)=\frac{V}{R}\left(1-e^{-t / \tau}\right)$
$\tau=\frac{L}{R}$
From the table $t=\infty$

$$
\mathrm{i}(\infty)=\frac{\mathrm{V}}{\mathrm{R}}=0.5
$$

$$
\mathrm{R}=\frac{1}{0.5}=2 \Omega
$$

$$
\text { At } t=\tau
$$

$i(t)=\frac{V}{R}\left(1-e^{-t / \tau}\right)$

$$
\begin{aligned}
\text { At } \mathrm{t} & =\tau ; \\
\mathrm{i}(\mathrm{t}) & =0.5\left(1-\mathrm{e}^{-1}\right) \\
& =0.5(0.632) \\
& =0.316
\end{aligned}
$$

From the table $\tau=0.5$
$\Rightarrow \mathrm{i}(\mathrm{t})=0.316$
$\frac{\mathrm{L}}{\mathrm{R}}=0.5$
$\mathrm{L}=1 \mathrm{H}$
37. Consider two discrete-time signals
$X_{1}(n)=\{1,1\}$ and $\{1,2\}$, for $n=0,1$

The Z - transform of the convoluted sequence $\mathrm{x}(\mathrm{n})=\mathrm{x}_{1}(\mathrm{n}) * \mathrm{x}_{2}(\mathrm{n})$ is
(A) $1+2 z^{-1}+3 z^{-1}$
(B) $z^{2}+3 z+2$
(C) $1+3 z^{-1}+2 z^{-2}$
(D) $z^{-2}+3 z^{-3}+2 z^{-4}$
37. Ans: (C)

Sol: $\mathrm{x}_{1}(\mathrm{n})=[1,1]$

$$
\mathrm{x}_{2}(\mathrm{n})=[1,2]
$$

$$
\mathrm{x}(\mathrm{n})=\mathrm{x}_{1}(\mathrm{n}) * \mathrm{x}_{2}(\mathrm{n})
$$

	1	2
1	1	2
1	1	2

$$
\mathrm{x}(\mathrm{n})=[1,3,2]
$$

$$
X(z)=\sum_{n=-\infty}^{\infty}=1+3 z^{-1}+2 z^{-2}
$$

38. In the circuit, shown in the figure, the MOSFET is operating in the saturation zone. The characteristics of the MOSFET is given by $I_{D}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{GS}}-1\right)^{2} \mathrm{~mA}$, where V_{GS} is in V . If $V_{s}=+5 \mathrm{~V}$, then the value of R_{s} in $k \Omega$ is \qquad

$$
\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}
$$

38. Ans: 10

Sol: $I_{D}=\frac{1}{2}\left(V_{G S}-1\right)^{2}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{G}}=\frac{15 \times 7}{15}=7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GS}}=2 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D}}=\frac{1}{2}(1)=0.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}=\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{S}} \\
& \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega
\end{aligned}
$$

39. An angle modulated signal with carrier frequency $\omega_{c}=2 \pi \times 10^{6} \mathrm{rad} / \mathrm{s}$ is given by $\varphi_{\mathrm{m}}(\mathrm{t})=\cos \left(\omega_{\mathrm{c}} \mathrm{t}+5 \sin (1000 \pi \mathrm{t})+10 \sin (2000 \pi \mathrm{t})\right.$. The maximum deviation of the frequency in the angle modulated signal from that of the carriers is \qquad

39. Ans: 12.5 kHz

Sol: $\phi(\mathrm{t})=\cos \left[\omega_{\mathrm{c}} \mathrm{t}+5 \sin 1000 \pi \mathrm{t}+10 \sin 2000 \pi \mathrm{t}\right]$
$\phi(t)=\cos \left[\omega_{c} t+\beta_{1} \sin 2 \pi f_{1} t+\beta_{2} \sin 2 \pi f_{2} t\right]$
$\beta_{1}=5, \mathrm{f}_{1}=500 \mathrm{~Hz}$
$\beta_{2}=10, \mathrm{f}_{2}=1000 \mathrm{~Hz}$
The maximum frequency deviation is

$$
\begin{aligned}
(\Delta \mathrm{f})_{\max } & =\beta_{1} \mathrm{f}_{1}+\beta_{2} \mathrm{f}_{2} \\
& =5 \times 500+10 \times 1000 \\
& =2500+10,000 \\
& =12.5 \mathrm{kHz}
\end{aligned}
$$

40. Assuming the op-amp shown in the figure to be ideal, the frequency at which the magnitude of V_{0} will be 95% of the magnitude of $\mathrm{V}_{\text {in }}$ is \qquad kHz

41. Ans: 2.9

Sol: $\mathrm{V}_{0}=2 \mathrm{~V}_{+}$

$$
\begin{gathered}
=\frac{2 \mathrm{~V}_{\text {in }}}{1+\mathrm{SCR}} \\
\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\text {in }}}=\frac{2}{1+\mathrm{j} \omega 10^{4} 10^{-8}}=0.95 \\
0.95 \mathrm{~V}_{\mathrm{i}}=2 \mathrm{~V}_{\mathrm{i}} \frac{1}{\sqrt{1+(2 \pi \mathrm{fRC})^{2}}}
\end{gathered}
$$

$$
\sqrt{1+(2 \pi \mathrm{fRC})^{2}}=\frac{2}{0.95}=2.10526
$$

$1+(2 \pi \mathrm{fRC})^{2}=4.432$
$(2 \pi f R C)^{2}=3.432$
$\mathrm{f}=2.9485 \mathrm{kHz}$
41. A series R-L-C circuit is excited with an a. c. voltage source. The quality factor (Q) of the circuit is given as $\mathrm{Q}=30$. The amplitude of current in ampere at upper half-power frequency will be \qquad

41. Ans: 6.365

Sol:

$\mathrm{Q}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
$30=\frac{1}{\mathrm{R}} \sqrt{\frac{10 \times 10^{-3}}{4 \times 10^{-6}}}$
$30=\frac{1}{\mathrm{R}} \sqrt{\frac{10000}{4}}=\frac{50}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{5}{3} \Omega$
$\mathrm{f}_{2} \& \mathrm{f}_{1} \rightarrow \mathrm{I}=\mathrm{I}_{\mathrm{RMS}}=\frac{\mathrm{I}_{\text {max }}}{\sqrt{2}}$
$I=\frac{V}{\sqrt{2} R}=\frac{15}{\sqrt{2} \times \frac{5}{3}}=\frac{9}{\sqrt{2}}$
$\mathrm{I}=6.365 \mathrm{~A}$
42. The block diagram of a closed-loop control system is shown in the figure. The values of k and k_{p} are such that the system has a damping ration of 0.8 and an undamped natural frequency ω_{n} of 4 $\mathrm{rad} / \mathrm{s}$ respectively. The value of k_{p} will be \qquad

42. Ans: 0.3375

Sol:
$\frac{C(s)}{R(s)}=$ $\frac{\mathrm{k}}{\frac{\mathrm{s}(\mathrm{s}+1)}{\left.\frac{1+\mathrm{k}\left(1+\mathrm{k}_{\mathrm{p}} \mathrm{s}\right.}{}\right)} \mathrm{s(s+1)}}$
$\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{\mathrm{k}}{\mathrm{s}^{2}+\mathrm{s}+\mathrm{kk}_{\mathrm{p}} \mathrm{s}+\mathrm{k}}$
By comparing with standard second order system
$\mathrm{k}=\omega_{\mathrm{n}}^{2}=16$
$\left(1+\mathrm{kk}_{\mathrm{p}}\right)=2 \xi \omega_{\mathrm{n}}$
$1+16\left(\mathrm{k}_{\mathrm{p}}\right)=2(0.8) 4$
$\mathrm{k}_{\mathrm{p}}=0.3375$
43. For the circuit, shown in the figure, the total real power delivered by the source to the loads is \qquad kW

43. Ans: 1.866

Sol: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$

$$
\begin{aligned}
& =5 \angle 0^{\circ}+5 \angle 30^{\circ} \\
& =5+5 \frac{\sqrt{3}}{2}+\mathrm{j} \frac{5}{2} \\
I & =5\left(1+\frac{\sqrt{3}}{2}\right)+\mathrm{j} \frac{5}{2} \\
& =5(1.866)+\mathrm{j} \frac{5}{2}
\end{aligned}
$$

So, $\mathrm{S}=\mathrm{VI}^{*}$

$$
=\left(200 \angle 0^{\circ}\right)(9.33-\mathrm{j} 2.5)
$$

$P+j Q=1866-j 5000$
Real power $\mathrm{P}=1866 \mathrm{~W}=1.866 \mathrm{~kW}$
44. The following table lists an $n^{\text {th }}$ order polynomial $f(x)=a_{n} x^{n}+a_{n-1}+\ldots \ldots+a_{1} x+a_{0}$ and the forward differences evaluated at equally spaced values of x. The order of the polynomial is

x	$\mathrm{f}(\mathrm{x})$	$\Delta \mathrm{f}$	$\Delta^{2} \mathrm{f}$	$\Delta^{3} \mathrm{f}$
-0.4	1.7648	-0.2965	0.089	-0.03
-0.3	1.4683	-0.2075	0.059	-0.0228
-0.2	1.2608	-0.1485	0.0362	-0.0156
-0.1	1.1123	-0.1123	0.0206	-0.0084
0	1	-0.0917	0.0122	-0.0012
0.1	0.9083	-0.0795	0.011	0.006
0.2	0.8288	-0.0685	0.017	0.0132

(A) 1
(B) 2
(C) 3
(D) 4

44. Ans: (B)

Sol: All the third order differences are approximately zero hence the given function can be approximated as $2^{\text {nd }}$ order polynomial.
45. The two inputs A and B connected to an R-S latch via two AND gates as shown in the figure. If $A=1$ and $B=0$, the output $Q \bar{Q}$ is

(A) 00
(B) 10
(C) 01
(D) 11
45. Ans: (B)

Sol: It is similar to JKFF where $\mathrm{A}=\mathrm{J}, \mathrm{B}=\mathrm{K}$
46. Three DFT coefficients, out of five DFT coefficients of a five-point real sequence are given as: $X(0)=4, X(1)=1-j 1$ and $X(3)=2+j 2$. The zero-th value of the sequence $x(n) x(0)$ is.
(A) 1
(B) 2
(C) 3
(D) 4
46. Ans: (B)

Sol: Given $\mathrm{N}=5$
$\mathrm{X}(\mathrm{n})$ is real, so $\mathrm{X}(\mathrm{k})=\mathrm{X}(\mathrm{N}-\mathrm{k})$
Given that $\mathrm{X}(0)=4, \mathrm{X}(1)=1-\mathrm{j} 1, \mathrm{X}(3)=2+\mathrm{j} 2$
$X(4)=X(5-4)=X(1)=1+j 1$
$X(2)=X(5-2)=X(3)=2-j 2$
$\mathrm{x}(0) \frac{1}{\mathrm{~N}} \sum_{\mathrm{k}=0}^{4} \mathrm{X}(\mathrm{k})=\frac{1}{5}[4+1-\mathrm{j} 1+2-\mathrm{j} 2+2+\mathrm{j} 2+1+\mathrm{j} 1]$
$x(0)=\frac{1}{5}[10]=2$
47. In a sinusoidal amplitude modulation scheme (with carrier) the modulated signal is given by $\mathrm{A}_{\mathrm{m}}(\mathrm{t})=100 \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right)+50 \cos \left(\omega_{\mathrm{m}} \mathrm{t}\right) \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right)$, where ω_{c} is the carrier frequency an ω_{m} is the modulation frequency. The power carried by the sidebands in $\%$ of total power is \qquad \%
47. Ans: 11.1

Sol: $\mathrm{S}(\mathrm{t})=100 \cos \omega_{\mathrm{c}} \mathrm{t}+50 \cos \omega_{\mathrm{m}} \mathrm{t} \cos \omega_{\mathrm{c}} \mathrm{t}$
$=100\left[1+0.5 \cos \omega_{\mathrm{m}} \mathrm{t}\right] \cos \omega_{\mathrm{c}} \mathrm{t}$
$\mathrm{A}_{\mathrm{C}}=100 \mu=0.5$
$\eta=\frac{P_{S B}}{P_{t}}=\frac{\mu^{2}}{2+\mu^{2}}=\frac{0.25}{2.25}$
$\frac{\mathrm{P}_{\mathrm{SB}}}{\mathrm{P}_{\mathrm{t}}}=11.1 \%$
$\mathrm{P}_{\mathrm{SB}}=11.1 \% \mathrm{P}_{\mathrm{t}}$
48. In the circuit diagram, shown in the figure, S_{1} was closed and S_{2} was open for a very long time. At $t=0, S_{1}$ is opened and S_{2} is closed. The voltage across the capacitor, in voltage, at $t=5 \mu \mathrm{~s}$ is \qquad
48. Ans: $\mathbf{1 . 5 2 7 6}$

Sol:

For $\mathrm{t}<0, \mathrm{~S}_{1}$ is closed $\& \mathrm{~S}_{2}$ is opened
$\mathrm{C} \rightarrow 1 \mathrm{~V}$ source at $\mathrm{t}=0$, (steady state) $\mathrm{C} \rightarrow \mathrm{O} . \mathrm{C}$

$$
\mathrm{V}=\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{V}_{0}(\text { Initial value })
$$

For $t>0, S_{1}$ is opened $\& S_{2}$ is closed
$\mathrm{C} \rightarrow 3 \mathrm{~V}$ source $\mathrm{t}=\infty$, (steady state) $\mathrm{C} \rightarrow \mathrm{O} . \mathrm{C}$
For final value

$\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}=\frac{2 \times 1}{2+1} \times 10 \mu \mathrm{~F}=\frac{20}{3} \mu \mathrm{sec}$
$V_{C}(t)=V_{C}(\infty)+\left(V_{C}(0)-V_{C}(\infty)\right) e^{-t / \tau}$

$$
=2+(1-2) \mathrm{e}^{-3 t / 20 \times 10^{-6}}
$$

$V_{C}(t)=\left(2-e^{-3 t / 20 \times 10^{-6}}\right)$
$\mathrm{t}=5 \mu \mathrm{sec}$,
$V_{C}(t)=2-e^{-\frac{3\left(5 \times 10^{-6}\right)}{20 \times 10^{-6}}}=2-e^{-3 / 4}$
$\mathrm{V}_{\mathrm{C}}(\mathrm{t})=1.5276$ Volts
49. When the voltage across a battery is measured using a d .c. potentiometer, the reading shows 1.08 V. But when the same voltage is measured using a Permanent Magnet Moving Coil (PMMC) voltmeter, the voltmeter reading shows 0.99 V . If the resistance of the voltmeter is 1100Ω is \qquad
\qquad
49. Ans: 100

Sol:

$\mathrm{R}_{\mathrm{V}}=$ voltmeter resistance
$\mathrm{R}_{\mathrm{m}}=$ battery internal resistance
$0.99=1.08 \times \frac{1100}{1100+\mathrm{R}_{\mathrm{m}}}$
$1100+\mathrm{R}_{\mathrm{m}}=1200$
$\mathrm{R}_{\mathrm{m}}=100 \Omega$
50. The overall closed loop transfer function $\frac{C(s)}{R(s)}$, represented in the figure, will be

(A) $\frac{\left(\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{2}(\mathrm{~s})\right) \mathrm{G}_{3}(\mathrm{~s})}{1+\left(\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{2}(\mathrm{~s})\right)\left(\mathrm{H}_{1}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})\right)}$
(B) $\frac{\left(\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})\right)}{1+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s})+\mathrm{G}_{2}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s})}$
(C) $\frac{\left(\mathrm{G}_{1}(\mathrm{~s})-\mathrm{G}_{2}(\mathrm{~s})\right) \mathrm{H}_{1}(\mathrm{~s})}{1+\left(\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{3}(\mathrm{~s})\right)\left(\mathrm{H}_{1}(\mathrm{~s})+\mathrm{G}_{1}(\mathrm{~s})\right)}$
(D) $\frac{\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s})}{1+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{H}_{1}(\mathrm{~s})+\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{3}(\mathrm{~s})}$
50. Ans: (A)

Sol: $\frac{C(s)}{R(s)}$

$$
\begin{aligned}
\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})} & =\frac{\mathrm{G}_{3}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)}{\left[1-\left(-\mathrm{H}_{1}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)-\mathrm{G}_{3}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)\right)\right]} \\
& =\frac{\mathrm{G}_{3}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)}{1+\mathrm{H}_{1}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)+\mathrm{G}_{3}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)} \\
& =\frac{\mathrm{G}_{3}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)}{1+\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)\left(1+1+\mathrm{G}_{3}\right)}
\end{aligned}
$$

51. The hot junction of a bare thermocouple, initially at room temperature $\left(30^{\circ} \mathrm{C}\right)$, is suddenly dipped in molten metal at $t=0 \mathrm{~s}$. The cold junction is kept at room temperature. The thermocouple can be modeled as first-order instrument with a time constant of 1.0 s and a static sensitivity of $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. If the voltage across the thermocouple indicates 10.0 mV at $\mathrm{t}=1.0 \mathrm{~s}$, then the temperature of the molten metal in ${ }^{\circ} \mathrm{C}$ is \qquad
52. Ans: 1564.52

Sol: For first order system

$$
\begin{aligned}
& \theta(\mathrm{t})=\theta_{\text {final }}+\left(\theta_{\text {initial }}-\theta_{\text {final }}\right) \mathrm{e}^{-\mathrm{t} / \tau} \\
& \frac{10 \times 10^{-3}}{10 \times 10^{-6}}=\mathrm{T}_{\text {molten metal }}+\left(30-\mathrm{T}_{\text {molten metal }}\right) \mathrm{e}^{-\mathrm{t} / \tau} \\
& \mathrm{t}=1 \mathrm{sec}, \mathrm{~T}=1 \mathrm{sec} \\
& 10^{3}=\mathrm{T}_{\text {moltenmetal }}+\left(30-\mathrm{T}_{\text {moltenmetal }}\right) \mathrm{e}^{-1} \\
& 1000=\mathrm{T}_{\text {moltenmetal }}\left(1-\mathrm{e}^{-1}\right)+30 \mathrm{e}^{-1} \\
& \mathrm{~T}_{\text {moltenmeal }}=1564.52^{\circ} \mathrm{C}
\end{aligned}
$$

52. A resistance temperature detector (RTD) is connected to a circuit, as shown in the figure. Assume the op-amp to be ideal. If $\mathrm{V}_{0}=+2.0 \mathrm{~V}$, then the value of x is \qquad

53. Ans: 0.2

Sol: KCL at inverting terminal:-
$\frac{0-12}{\mathrm{R}(1+\mathrm{x})}+\frac{0+12}{\mathrm{R}}+\frac{0-\mathrm{V}_{0}}{\mathrm{R}}=0 \quad\left\{\right.$ Given $\left.\mathrm{V}_{0}=+2\right\}$
$\mathrm{x}=0.2$
53. The probability that a communication system will have high fidelity is 0.81 . The probability that the system will have both high fidelity and high selectivity is 0.18 . The probability that a given system with high fidelity will have selectivity is
(A) 0.181
(B) 0.191
(C) 0.222
(D) 0.826
53. Ans: 0.222

Sol: $\mathrm{P}(\mathrm{HF})=0.81, \mathrm{P}(\mathrm{HF} \cap \mathrm{HS})=0.18$

$$
\begin{aligned}
\mathrm{P}(\mathrm{HS} \mid \mathrm{HF}) & =\frac{\mathrm{P}(\mathrm{HS} \cap \mathrm{HF})}{\mathrm{P}(\mathrm{HF})} \\
& =\frac{2}{9}
\end{aligned}
$$

$$
=0.222
$$

54. The power delivered to a single phase inductive load is measured with a dynamometer type wattmeter using a potential transformer (PT) of turns ratio 200: 1 and the current transformer (CT) of turns ration 1:5. Assume both transformers to be ideal. The power factor of the load is 0.8 . If the wattmeter reading is 200 W , then the apparent power of the load in kVA is \qquad

54. Ans: 250

Sol: Given,
Turns ratio of potential transformer (PT) $\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)_{\mathrm{PT}}=200: 1$
Turns ratio of current transformer $(\mathrm{CT})\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)_{\mathrm{CT}}=1: 5$
Let ' V ' be the voltage across the given load.
'I' be the current through the given load.
Similarly let V_{d} be the voltage across the wattmeter and I_{d} be the current through the wattmeter
Given power factor $=0.8$ lag $[\because$ inductive load $]$
Given wattmeter reading $=\mathrm{W}_{1}=200 \mathrm{~W}$
But,
$\mathrm{W}_{1}=\mathrm{V}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}} \times$ power factor
$200=\mathrm{V}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}} \times 0.8$
$\Rightarrow \mathrm{V}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}}=250 \mathrm{~V}_{\mathrm{A}} \rightarrow$ (1)
From the turns ratio of PT,
$\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{d}}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)_{\mathrm{PT}}=\frac{200}{1}$
$\Rightarrow \mathrm{V}_{\mathrm{d}}=\frac{\mathrm{V}}{200} \rightarrow(2)$
From the turns ratio of CT_{1}
$\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{d}}}=\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}\right)_{\mathrm{CT}}=\frac{5}{1}$
$\Rightarrow \mathrm{I}_{\mathrm{d}}=\frac{\mathrm{I}}{5} \rightarrow$ (3)
Substituting (2) and (3) in (1) we get,
$\left(\frac{\mathrm{V}}{200}\right)\left(\frac{\mathrm{I}}{5}\right)=250 \mathrm{VA}$
$\mathrm{VI}=250 \times 10^{3} \mathrm{VA}$
\therefore apparent power of load $=250 \mathrm{KVA}$
55. The junction semiconductor temperature sensor shown in the figure is used to measure the temperature of hot air . The output voltage V_{0} is 2.1 V . The current output of the sensor is given by $\mathrm{I}=\mathrm{T} \mu \mathrm{A}$ where T is the temperature in K . Assuming the op-amp to be ideal, the temperature of the hot air in ${ }^{\circ} \mathrm{C}$ is approximately \qquad -

55. Ans: 77

Sol: $\mathrm{V}_{0}\left(\frac{1 \mathrm{k}}{2 \mathrm{k}+1 \mathrm{k}}\right)=\frac{\mathrm{V}_{0}}{3}=\frac{2.1}{3}=0.7=\mathrm{V}_{+}$(virtual and concept)

$$
\mathrm{I}=\frac{\mathrm{V}_{+}}{2 \mathrm{k}}=0.35 \mathrm{~mA}=\mathrm{T} \mu \mathrm{~A}
$$

$T=350 \mathrm{~K}$

$$
\text { since } 1995
$$

$\mathrm{T}=77^{\circ} \mathrm{C}$

General Aptitude

1. Two dice are thrown simultaneously. The probability that the product o the numbers appearing on the top faces of the dice is a perfect square is
(A) $1 / 9$
(B) $2 / 9$
(C) $1 / 3$
(D) $4 / 9$

01. Ans: (B)

Sol: Total chances $=6 \times 6=36$ events
Product of numbers on 2 dice have to perfect square $=$ Favourable chances
$=(1,1),(2,2),(1,4),(3,3),(4,1),(5,5),(4,4),(6,6)=8$
Probability $=\frac{\text { Favourable chances }}{\text { Totalchances }}=\frac{8}{36}=\frac{2}{9}$
\therefore Option (B) is correct
02. Four cards lie on a table. Each card has a number printed on one side and a colour on the other. The faces visible on the cards are 2,3, red, and blue.

Proposition: If a card has an even value on one side, then its opposite face is red.
The cards which MUST be turned over to verify the above proposition are
(A) 2, red
(B) 2,3 , red
(C) 2, blue
(D) 2 red, blue

02. Ans: (C)

Sol: Total number of cards $=4$
Visible numbers on the cards $=2$ and 3
Visible colours on the cards = red and blue
If numbers on the cards $=1,2,3$ and 4 then possible colours are blue, red, blue and red respectively. In order to verify the proposition, we have to turn to card 2 then opposite must be red. In all options except ' C ' 2 and red are present
\therefore Option ' C ' is correct.
03. What is the value of x when $81 \times\left(\frac{16}{25}\right)^{x+2}+\left(\frac{3}{5}\right)^{2 x+4}=144$?
(A) 1
(B) -1
(C) -2
(D) Cannot be determined
03. Ans: (B)

Sol: $81 \times\left(\frac{16}{25}\right)^{x+2} \div\left(\frac{3}{5}\right)^{2 x+4}=144$
$\frac{\left(\frac{16}{25}\right)^{x+2}}{\left(\frac{3}{5}\right)^{2 x+4}}=\frac{144}{81}=\frac{(12)^{2}}{(9)^{2}}=\left(\frac{12}{9}\right)^{2}$
$\frac{\left(\frac{4}{5}\right)^{2 x+4}}{\left(\frac{3}{5}\right)^{2 x+4}}=\left(\frac{12}{9}\right)^{2}$
$\frac{(4)^{2 x+4}}{(5)^{2 x+4}} \times \frac{(5)^{2 x+4}}{(3)^{2 x+4}}=\left(\frac{12}{9}\right)^{2}$
$\frac{(4)^{2 x+4}}{(3)^{2 x+4}}=\left(\frac{12}{9}\right)^{2}=\left(\frac{4}{3}\right)^{2}$
$\left(\frac{4}{3}\right)^{2 x+4}=\left(\frac{4}{3}\right)^{2}$
$2 \mathrm{x}+4=2$
$2 \mathrm{x}=-2$
$\mathrm{x}=-1$
04. The event would have been successful if you \qquad able to come.
(A) are
(B) had been
(C) have been
(D) Would have been
04. Ans: (B)

Sol: Conditional tense type (3 had+V3 +would have +V3)
05. There was no doubt that their work was thorough

Which of the words below is closet in meaning to the underlined word above?
(A) pretty
(B) complete
(C) sloppy
(D) haphazard
05. Ans: (B)

Sol: Through means including every possible detail, parts or complete or absolute.
06. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and U are seated around a circular table, R is seated two places to the right of Q, P is seated three places to the left of R.S is seated opposite U. If P and U now switch seats, which of the following must necessarily be true?
(A) P is immediately to the right of R
(B) T is immediately to the left of P
(C) T is immediately to the left of P or P is immediately to the right of Q
(D) U is immediately to the right of R or P is immediately to the left of T

06. Ans: (C)

Sol: From the given data, all are seated around a circular table as follows P Q - R

S is opposite to U

P and U are switch seated means, they are interchange their places

In option (C), before interchange T is immediately to the left of P and After interchange P is immediately to the right of Q
\therefore Option ' C ' is correct
07. Budhan covers a distance of 19 km in 2 hours by cycling one fourth of the time and walking the rest. The next day he cycles (at the same speed as before) for half the time and walks the rest (at the same speed as before) and covers 26 km in 2 hours. The speed in km/h at which Budhan walks is
(A) 1
(B) 4
(C) 5
(D) 6
07. Ans: (D)

Sol:

$$
19 \mathrm{~km} \rightarrow 2 \mathrm{hrs} \text { Cycling } \Rightarrow \frac{1}{4} \text { th }=2 \times \frac{1}{4}=\frac{1}{2}
$$

Let cycling speed $=\mathrm{C}$
Walking speed $=\mathrm{W}$

$$
\begin{equation*}
\frac{C}{2}+\frac{3 W}{2}=19 . \tag{i}
\end{equation*}
$$

$\mathrm{C}+\mathrm{W}=26$.
By solving equation no (i) and (ii)
$\mathrm{W}=6 \mathrm{~km} / \mathrm{hr}$
\therefore The speed at which Budhan walks $=6 \mathrm{kmph}$
08. A map shows the elevation of Darjeeling, Gangtok, Kalimpong, Pelling, and Siliguri, Kalimpong is at a lower elevation than Gangtok. Pelling is at a lower elevation than Gangtok. Pelling is at a higher elevation than siliguri. Darjeeling is at a higher elevation than Gangtok.

Which of the following statements can be inferred from the paragraph above?
i. Pelling is at a higher elevation than Kalimpong
ii. Kalimpong is at a lower elevation than Darjeeling
iii. Kalimpong is at a higher elevation than Siliguri
iv. Siliguri is at lower elevation than Gangtok
(A) Only ii
(B) Only ii and iii
(C) Only ii and iv
(D) Only iii and iv
08. Ans: (C)
09. Bhaichung was observing the pattern of people entering and leaving a car service centre. There was a single window where customers were being served. He saw that people inevitably came out of the centre in the order that they went in. However, the time they spent inside seemed to vary a lot:

Some people came out in a matter of minutes while for others it took much longer.
From this, what can one conclude?
(A) The centre operates on a first-come - first-served basis, but with variable service times, depending on specific customer needs.
(B) Customers were served in an arbitarary order, since they took varying amounts of time for service completion in the centre.
(C) Since some people came out within a few minutes of entering the centre, the system is likely to operate on a last-come-first-served basis.
(D) Entering the centre early ensured that one would have shorter service times and most people attempted to do this.

09. Ans: (A)

Sol: The key sentence is "the order that they went in"
10. The points in the graph below represent the halts of a lift for durations of 1 minute, over a period of 1 hour.

Which of the following statements are correct?

i. The elevator never moves directly from any non-ground floor to another non-ground floor over the one hour period
ii. The elevator stays on the fourth floor for the longest duration over the one hour period
(A) Only I
(B) Only ii
(C) Both i and ii
(D) Neither i nor ii
10. Ans: (D)

Sol: (i) is in correct as it has move directly
(ii) is incorrect as it stayed for maximum duration on the ground floor

USEFUL BOOKS FOR ESE(IES), GATE, PSUs

GATE (Previous Questions \& Solutions)	IES (Previous Questions \& Solutions)	
Electronics \& Communication Engineering	Electronics \& Telecommunication Engineering (Volume-I Obi)	Civil Engineering (Volume-I Obi)
Electrical Engineering	Electronics \& Telecommunication Engineering (Volume-II Obi)	Civil Engineering (Volume-II Obi)
Mechanical Engineering	Electronics \& Telecommunication Engineering (Paper-I Conv)	Civil Engineering (Paper-I Conv)
Civil Engineering	Electronics \& Telecommunication Engineering (Paper-II Conv)	Civil Engineering (Paper-II Conv)
Computer Science \& Information Engineering	Electrical Engineering (Volume-I Obi)	Mechanical Engineering (Volume-1 Obi)
Instrumentation Engineering	Electrical Engineering (Volume-ll Obi)	Mechanical Engineering (Volume-ll Obi)
General Aptitude (Numerical \& Verbal)	Electrical Engineering (Paper-I Conv)	Mechanical Engineering (Paper-I Conv)
GATE Practice Booklet (Vol-I),(Vol-II)	Electrical Engineering (Paper-II Conv)	Mechanical Engineering (Paper-II Conv)
Engineering Mathematics Solutions	General Studies \& Engineering Aptiude	
Special Books For ISRO / PSUs (Previous Years Questions With Solutions \& Useful for BARC, SAlL, BEL, NPCIL, AAI \& OTHER PSUs)		

* GATE Solutions for more than $\mathbf{3 0}$ years
* IES Solutions for more than 32years
* Solutions, Chapterwise and Subjectwise
(ย) +919397699966
* You can Buy Online also

TESTSERIES

IES (Prelims \& Mains)

Streams: EC, EE, ME, CE

Test Type	Prelims		Mains
Online	Offline	Offline	
	43	-	-
	31	20	08
Revision Tests	-	-	04
Full Lenth Mock Tests	08	04	04

GATE

Streams : EC, EE, ME, CE, CS, IN, PI

	No. Of Tests (Online)
Streams : EC, EE, ME, CE, CS, IN, PI	
Test Type	20
Chapter-wise Tests	40
Subject-wise Grand Tests	12
Full Lenth Mock Tests	

Video Solutuions are available for Selected Objective Questions for Online Exams

Pre-GATE Exam (Center Based Test)

ACE uses technology powered by TCS ION for conduting Pre-GATE 2018 (Center based MOCK Test) on PAN India basis with Analytics.

