

ACE

Engineering Academy

Hyderabad | Delhi | Bhopal |Pune | Bhubaneswar | Bengaluru |Lucknow | Patna | Chennai | Vijayawada | Visakhapatnam | Tirupati| Kukatpally| Kolkata
H.O: 204, II Floor, Rahman Plaza, Opp. Methodist School, Abids, Hyderabad-500001,

Ph: 040-23234418, 040-23234419, 040-23234420, 040-24750437

ESE-2018 (Prelims) - Offline Test Series
 Test-9
 ELECTRICAL ENGINEERING

SUBJ ECT: ELECTRIC CIRCUITS AND FIELDS + MATERIAL SCIENCE SOLUTIONS

01. Ans: (a)

Sol: The dots indicate that when current entering the dotted terminal of one coil, voltage induced is positive at the dotted terminal of other coil.

Given circuit,

Here current entering the dotted terminal of coil 1.
\Rightarrow induced voltage is positive at the dotted terminal of coil2.
$\therefore \mathrm{V}_{2}=\mathrm{M} \frac{\mathrm{di}}{\mathrm{dt}}$

$$
\text { But, } \mathrm{V}=-\mathrm{V}_{2}=-\mathrm{M} \frac{\mathrm{di}}{\mathrm{dt}}
$$

2. Ans: (c)

Sol: Given circuit,

Applying KVL,

$$
\begin{aligned}
& \Rightarrow-\mathrm{V}+5(\mathrm{I}-10)+40=0 \\
& \Rightarrow \mathrm{~V}=5 \mathrm{i}-10
\end{aligned}
$$

03. Ans: (c)

Sol: Given graph

Number of possible trees $=\left|\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}\right|$ Where,
[A_{r}] is the reduced incidence matrix
Incidence matrix, for the given graph is

$$
\begin{aligned}
\mathrm{A}
\end{aligned} \begin{array}{r}
(1) \\
(2) \\
(3) \\
(4)
\end{array}\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 1 & 0 & 0 & 0 & 1 & -1 \\
-1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 1
\end{array}\right]
$$

By taking the (4) node as reference,
Reduced incidence matrix,

$$
\begin{gathered}
{\left[\mathrm{A}_{\mathrm{r}}\right]=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 1 & -1 \\
-1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]} \\
{\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}} \\
=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 1 & -1 \\
-1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
\left.\begin{array}{l}
=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \\
\therefore\left|\left[\mathrm{A}_{\mathrm{r}}\right]\left[\mathrm{A}_{\mathrm{r}}\right]^{\mathrm{T}}\right|
\end{array}=\left|\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right|\right] 口 \begin{array}{ll}
\\
& =4(9-1)+1(-3-1)-1(1+3) \\
& =32-4-4=24
\end{array}
$$

\therefore Number of possible trees $=24$
04. Ans: (a)

Sol: Given networks,

Fig. 1

Fig. 2

Applying reciprocity theorem to Fig (1)

By using linearity principle,

Fig. 3

$$
\mathrm{I}^{\prime}=\frac{30}{20} \times 2=3 \mathrm{~A}
$$

With respect to the terminals a and b the short circuit current $\mathrm{I}_{\mathrm{SC}}=\mathrm{I}^{\prime}=3 \mathrm{~A}$

Similarly with respect to the terminals a and b the Norton's equivalent resistance R_{N} is

Fig (1) is the energized version of Fig. (4)

$\Rightarrow \mathrm{R}_{\mathrm{N}}=\frac{20}{5}=4 \Omega$
The Notron's equivalent of Fig. (3) with respect to terminals a and b is

Then the Fig. (2) becomes

$\Rightarrow \mathrm{i}=\mathrm{I}_{\mathrm{SC}} \times \frac{4}{2+4}$
$\Rightarrow \mathrm{i}=3 \times \frac{4}{6}=2 \mathrm{~A}$
05. Ans: (a)

Sol: Given network,

Assume a voltage source of value $1 \angle 0^{\circ}$ having a frequency of $4 \mathrm{rad} / \mathrm{sec}$ is applied across the circuit then

$\frac{\mathrm{V}_{\mathrm{x}}}{1}=\mathrm{I} \Rightarrow \mathrm{I}=\mathrm{V}_{\mathrm{x}}$
Applying KVL in the loop,
$\Rightarrow-1 \angle 0^{\circ}+\mathrm{V}_{\mathrm{x}}+\mathrm{j} 3.5 \mathrm{I}+3 \mathrm{~V}_{\mathrm{x}}=0$
$\Rightarrow-1 \angle 0^{\circ}+\mathrm{I}+\mathrm{j} 3.5 \mathrm{I}+3 \mathrm{I}=0$
$\Rightarrow \mathrm{I}=\frac{1 \angle 0^{\circ}}{4+\mathrm{j} 3.5}=0.1881 \angle-41.185^{\circ} \mathrm{A}$
\therefore Circuit power factor $=\cos (41.185)$

$$
=0.7525 \text { lagging }
$$

Precate-2018 COMPUIER BASED TEST

Date of Exam : 20h Jan 2018

www.aceenggacademy.com

6. Ans: (a)

Sol: Given network,

When A and B terminals are open circuited
$\Rightarrow \mathrm{i}=0$
Then the equivalent network becomes

As there is no source to drive the above circuit
$\Rightarrow \mathrm{V}_{\mathrm{th}}=0 \mathrm{~V}$
07. Ans: (b)

Sol: Given network,

B
Here the power is consumed only in the 100Ω resistor and its value is
$P_{D}=\frac{V_{R Y}^{2}}{100}$.

Now connect a balanced star load, each of resistance value R as shown below

Power consumed $P_{s}=3 \frac{V_{R N}^{2}}{R}$

$$
\begin{equation*}
P_{s}=\frac{\left(\sqrt{3} V_{R N}\right)^{2}}{R}=\frac{V_{R Y}^{2}}{R} \tag{2}
\end{equation*}
$$

As (1) = (2)
$\Rightarrow \frac{\mathrm{V}_{R Y}^{2}}{100}=\frac{\mathrm{V}_{\mathrm{RY}}^{2}}{\mathrm{R}}$
$\Rightarrow \mathrm{R}=100 \Omega$
08. Ans: (d)

Sol: Given network,

$$
\mathrm{D}=\left.\frac{\mathrm{I}_{1}}{-\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}
$$

Applying KVL,

$$
\Rightarrow-10\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)-12 \mathrm{I}_{2}=0 \Rightarrow-10 \mathrm{I}_{1}=22 \mathrm{I}_{2}
$$

$$
\Rightarrow \frac{\mathrm{I}_{1}}{-\mathrm{I}_{2}}=2.2
$$

$$
\therefore \mathrm{D}=2.2
$$

9. Ans: (a)

Sol: Given network,

Initial charge in $\mathrm{C}_{0}=500 \mu \mathrm{C}$
\Rightarrow Initial voltage across capacitor C_{0} is
$\mathrm{V}_{0}=\frac{\mathrm{q}}{\mathrm{C}_{0}}=\frac{500 \mu}{5 \mu}=100 \mathrm{~V}$
The equivalent, circuit after the switch is closed is

Convert into Laplace domain

$\Rightarrow I(s)=\frac{100 / s}{R+\frac{2}{C s}}$
$I(s)=\frac{100}{R\left(s+\frac{2}{R C}\right)}$
And $\mathrm{V}(\mathrm{s})=\frac{1}{\mathrm{Cs}} \mathrm{I}(\mathrm{s})$

$$
=\frac{1}{\mathrm{Cs}} \cdot \frac{100}{\mathrm{R}\left(\mathrm{~s}+\frac{2}{\mathrm{RC}}\right)}
$$

Steady state value of $v(t)$ is $=\underset{s \rightarrow 0}{\mathrm{Lt}} \mathrm{sV}(\mathrm{s})$

$$
\begin{aligned}
& =\operatorname{Lt}_{\mathrm{s} \rightarrow 0} \mathrm{~s} \cdot \frac{100}{\mathrm{~s}(\mathrm{RCs}+2)} \\
& =50 \mathrm{~V}
\end{aligned}
$$

\therefore Steady state voltage across $1 \mu \mathrm{~F}$ capacitor
$=50 \mathrm{~V}$
\therefore Charge in the $1 \mu \mathrm{~F}$ capacitor $\mathrm{q}=\mathrm{CV}$

$$
\begin{aligned}
& =1 \mu \times 50 \\
& =50 \mu \mathrm{C}
\end{aligned}
$$

10. Ans: (c)

Sol: Given network

The dual of the above network is

11. Ans: (b)

Sol: The wave form is as shown below

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}}^{2}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(4)^{2} \mathrm{dt} \\
& \Rightarrow \mathrm{~V}_{\mathrm{rms}}^{2}=\frac{1}{\mathrm{~T}} \times 16 \times \mathrm{T} / 2=8 \\
& \Rightarrow \mathrm{~V}_{\mathrm{rms}}=2 \sqrt{2} \mathrm{~V}
\end{aligned}
$$

12. Ans: (b)

Sol: Given circuit

The above circuit can be redrawn as

\Rightarrow Total power delivered by the sources $=$ $18 \times 18=324 \mathrm{~W}$
$\Rightarrow\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}=\mathrm{R}^{2} \Rightarrow\left(\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right)= \pm \mathrm{R}$
At the lower cut off frequency ω_{1},
$\omega_{1} \mathrm{~L}<\frac{1}{\omega_{1} \mathrm{C}}$
$\therefore \omega_{1} L-\frac{1}{\omega_{1} C}=-R$
\Rightarrow Net reactance $=-\mathrm{R}$

14. Ans: (a)

Sol:

Under steady state condition $\mathrm{V}_{\mathrm{c}}=\mathrm{V}=100 \mathrm{~V}$ And $i(t)=\frac{V}{R} e^{-t / R C}$

Energy dissipated by the resistor

$$
\mathrm{E}_{\mathrm{R}}=\int_{0}^{\infty} \mathrm{i}^{2} \mathrm{R} d t
$$

$$
\mathrm{E}_{\mathrm{R}}=\int_{0}^{\infty} \frac{\mathrm{V}^{2}}{\mathrm{R}^{2}} \mathrm{e}^{-2 \mathrm{t} / \mathrm{RC}} \cdot \mathrm{R} \quad \mathrm{dt}
$$

$$
=\frac{\mathrm{V}^{2}}{\mathrm{R}}\left[\frac{\mathrm{e}^{-2 \mathrm{t} / \mathrm{RC}}}{-2 / \mathrm{RC}}\right]_{0}^{\infty}=\frac{-1}{2} \mathrm{CV}^{2}[0-1]=\frac{1}{2} \mathrm{CV}^{2}
$$

$$
\Rightarrow \mathrm{E}_{\mathrm{R}}=\frac{1}{2} \mathrm{CV}^{2}
$$

$$
=\frac{1}{2} \times 1 \times 10^{-6} \times(100)^{2}=5 \mathrm{~mJ}
$$

13. Ans: (d)

Sol: At the cut off frequency $I=\frac{I_{m}}{\sqrt{2}}$

$$
\Rightarrow \frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}=\frac{V}{\sqrt{2} R}
$$

15. Ans: (a)

Sol: We know, when two, 2-port networks are connected in parallel, their individual Y parameters gets added.
\therefore First, we need to convert given ABCD parameters to Y-parameters.

For 2-port network
Y-parameters are
$\left.\begin{array}{l}\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}+\mathrm{Y}_{12} \mathrm{~V}_{2} \\ \mathrm{I}_{2}=\mathrm{Y}_{21} \mathrm{~V}_{1}+\mathrm{Y}_{22} \mathrm{~V}_{2}\end{array}\right\}$
ABCD parameters

$$
\left.\begin{array}{l}
\mathrm{V}_{1}=\mathrm{AV}_{2}-\mathrm{BI}_{2} \\
\mathrm{I}_{1}=\mathrm{CV}_{2}-\mathrm{DI}_{2} \tag{2}
\end{array}\right\}
$$

Make $\mathrm{V}_{2}=0$ to find $\mathrm{Y}_{11} \& \mathrm{Y}_{21}$
Equation (2) becomes $\quad \mathrm{V}_{1}=-\mathrm{BI}_{2}$

$$
\therefore \mathrm{Y}_{11}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{1}=-\mathrm{DI}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{\mathrm{D}}{\mathrm{~B}} \quad \mathrm{Y}_{21}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}=\frac{-1}{\mathrm{~B}}
$$

Similarly, $\mathrm{V}_{1}=0$, to find $\mathrm{Y}_{12} \& \mathrm{Y}_{22}$
\therefore From equation (2) $\mathrm{AV}_{2}=\mathrm{BI}_{2}$
$\Rightarrow V_{2}=\frac{\mathrm{B}}{\mathrm{A}} \mathrm{I}_{2}$
$\mathrm{I}_{1}=\mathrm{CV}_{2}-\mathrm{DI}_{2}$
$\mathrm{I}_{1}=\mathrm{C} \frac{\mathrm{B}}{\mathrm{A}} \mathrm{I}_{2}-\mathrm{DI}_{2}=\frac{\mathrm{CB}-\mathrm{DA}}{\mathrm{A}} \mathrm{I}_{2}$
$\mathrm{I}_{1}=\frac{\mathrm{BC}-\mathrm{AD}}{\mathrm{A}} \mathrm{I}_{2}$
But $I_{2}=\frac{A}{B} V_{2}$

$$
\begin{align*}
& \Rightarrow I_{1}=\frac{B C-A D}{A} \frac{A}{B} V_{2} \\
& \Rightarrow I_{1}=\left(\frac{B C-A D}{B}\right) V_{2} \ldots \ldots \\
& \therefore Y_{12}=\left.\frac{I_{1}}{V_{2}}\right|_{\mathrm{V}_{1}=0}=\frac{B C-A D}{B}
\end{align*}
$$

And $I_{1}=\frac{B C-A D}{B} I_{2}$ put this value in equation (3)

$$
\begin{aligned}
& \frac{B C-A D}{A} I_{2}=\frac{B C-A D}{B} V_{2} \\
& I_{2}=\frac{A}{B} V_{2} \Rightarrow Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}=\frac{A}{B}
\end{aligned}
$$

Y-parameter matrix in terms of ABCD parameter is

$$
Y_{T}=\left[\begin{array}{cc}
\frac{D}{B} & \frac{B C-A D}{B} \\
\frac{-1}{B} & \frac{A}{B}
\end{array}\right]
$$

$$
\begin{aligned}
& Y_{T} \text { or } Y_{e q}=Y_{A}+Y_{B} \\
& =\left[\begin{array}{cc}
\frac{D}{B} & \frac{B C-A D}{B} \\
\frac{-1}{B} & \frac{A}{B}
\end{array}\right]+\left[\begin{array}{cc}
\frac{D}{B} & \frac{B C-A D}{B} \\
\frac{-1}{B} & \frac{A}{B}
\end{array}\right]
\end{aligned}
$$

Y_{T} or $Y_{\text {eq }}=\left[\begin{array}{cc}2 \frac{D}{B} & 2 \frac{(B C-A D)}{B} \\ \frac{-2}{B} & \frac{2 A}{B}\end{array}\right]$
Now, again connect back to ABCD parameters

$$
\left.\begin{array}{c}
\mathrm{I}_{1}=\frac{2 \mathrm{D}}{\mathrm{~B}} \mathrm{~V}_{1}+2 \frac{(\mathrm{BC}-\mathrm{AD})}{\mathrm{B}} \mathrm{~V}_{2} \\
\mathrm{I}_{2}=-\frac{2}{\mathrm{~B}} \mathrm{~V}_{1}+\frac{2 A}{\mathrm{~B}} \mathrm{~V}_{2} \tag{4}
\end{array}\right\}
$$

Make $\mathrm{V}_{2}=0 \quad \mathrm{I}_{1}=\frac{2 \mathrm{D}}{\mathrm{B}} \mathrm{V}_{1}$

$$
I_{2}=-\frac{2}{B} V_{1}
$$

$\mathrm{B}_{\mathrm{T}}=-\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{\mathrm{B}}{2}=0.5 \mathrm{~B}$
$\mathrm{D}_{\mathrm{T}}=-\left.\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{2 \mathrm{D} / \mathrm{B}}{2 / \mathrm{B}}=\mathrm{D}$
Make $I_{2}=0$, equation (4) becomes

$$
\begin{aligned}
V_{1}=A V_{2} & \& I_{1}=\frac{2 D}{B} V_{1}+2 \frac{(B C-A D)}{B} V_{2} \\
& =\frac{2 D}{B} A V_{2}+\frac{(2 B C-2 A D)}{B} V_{2} \\
& =\left(\frac{2 A D+2 B C-2 A D}{B}\right) V_{2}
\end{aligned}
$$

$\mathrm{I}_{1}=2 \mathrm{CV}_{2}$
$\therefore \mathrm{A}_{\mathrm{T}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\mathrm{A}$
$\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}=2 \mathrm{C}$

$$
[\mathrm{T}]=\left[\begin{array}{ll}
\mathrm{A}_{\mathrm{T}} & \mathrm{~B}_{\mathrm{T}} \\
\mathrm{C}_{\mathrm{T}} & \mathrm{D}_{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A} & 0.5 \mathrm{~B} \\
2 \mathrm{C} & \mathrm{D}
\end{array}\right]
$$

16. Ans: (c)

Sol: Given network function

$$
F(s)=\frac{(s+2)}{(s+1)(s+3)}
$$

The pole zero pattern for the above network function is as shown below

As we can see from above pole zero plot poles and zeros alternate on negative real axis and nearest to the origin is a pole.
\therefore It can be realized as RC impedance function or RL admittance function.

17. Ans: (a)

Sol: Assume the circuit is in steady state before the switch opens.
\Rightarrow The inductor will acts as short circuit. Then the circuit at $\mathrm{t}=0^{-}$is

Equivalent resistance seen by the 10 V voltage source is $=30 \| 10$

$$
=\frac{30 \times 10}{40}=7.5 \Omega
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{i}=\frac{10}{7.5}=\frac{4}{3} \mathrm{~A} \\
& \therefore \mathrm{i}_{\mathrm{x}}\left(0^{-}\right)=\mathrm{i} \times \frac{30}{40}
\end{aligned}
$$

$$
=\frac{4}{3} \times \frac{3}{4}=1 \mathrm{~A}
$$

18. Ans: (a)

Sol: $Y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0}$

The equivalent network becomes

Equivalent resistance seen by the port 1 is $=$
$1\left|\left\lvert\, \frac{1}{2}\right. \| \frac{1}{3}=\frac{1}{6} \Omega\right.$
$\Rightarrow \mathrm{V}_{1}=\frac{1}{6} \mathrm{I}_{1} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{~V}_{1}}=6 \mho \Rightarrow \mathrm{Y}_{11}=6 \mho$
19. Ans: (d)

Sol: Given network

As we are unable to write I_{1} interms of V_{1} and V_{2} therefore Y parameters doesn't exist.
20. Ans: (a)

Sol: For parallel resonant circuit,
Admittance, $Y=\frac{1}{R}+j\left(\omega C-\frac{1}{\omega L}\right)$
Susceptance B $=\omega \mathrm{C}-\frac{1}{\omega \mathrm{~L}}$
The plot of susceptance is as shown below

21. Ans: (c)

Sol: Assume the circuit is in steady state before the switch is changed from a to b \Rightarrow inductor will acts as short circuit. Then the circuit is

$\Rightarrow \mathrm{i}\left(0^{-}\right)=\frac{100}{1000}=0.1 \mathrm{~A}$
And initial voltage across the capacitor is
$\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=0 \mathrm{~V}$
At $t=0^{+}$the equivalent circuit is

$$
\begin{aligned}
& \Rightarrow \mathrm{V}_{\mathrm{L}} \text { at } \mathrm{t}=0^{+} \text {is }=-100 \\
& \Rightarrow \mathrm{~L} \frac{\mathrm{di}}{\mathrm{dt}}=-100 \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=-100 \\
& \therefore \frac{\mathrm{di}}{\mathrm{dt}} \text { at } \mathrm{t}=0^{+} \text {is }=-100 \mathrm{~A} / \mathrm{sec} .
\end{aligned}
$$

22. Ans: (b)

Sol: For

RC driving point impedance function
RC driving point admittance function RL driving point impedance function
RL driving point admittance function
Poles and zeros should alternate only on negative real axis
23. Ans: (b)

Sol: Given $Z(S)=\frac{(s+1)(s+3)}{s(s+2)}$
The pole zero pattern is as shown below

As we can see the poles and zeros alternate on negative real axis and nearest to the origin is a pole.
\therefore It can be realized as RC driving point impedance

$$
Z(S)=1+\frac{2 s+3}{s(s+2)}=1+\frac{3 / 2}{s}+\frac{1 / 2}{s+2}
$$

The network for the above impedance function is as shown below

\therefore Two energy storage elements are present.

24. Ans: (d)

Sol: At $\mathrm{t}=0^{+}$the circuit is

Convert into Laplace domain

$\Rightarrow \mathrm{V}_{\mathrm{C}}(\mathrm{s})=\frac{5}{\mathrm{~s}}+\frac{1}{\mathrm{~s}} \times 10=\frac{15}{\mathrm{~s}}$
$\Rightarrow \mathrm{v}_{\mathrm{C}}(\mathrm{t})=15 \mathrm{u}(\mathrm{t})$
At $\mathrm{t}=0^{+} \Rightarrow \mathrm{u}\left(\mathrm{t}=0^{+}\right)=1$
$\Rightarrow \mathrm{v}_{\mathrm{C}}\left(0^{+}\right)=15 \mathrm{~V}$
25. Ans: (b)

Sol: The equivalent network at $\mathrm{t}=0^{-}$is

$$
\Rightarrow \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{10}{10}=1 \mathrm{~A}
$$

At $t=0^{+}$the network is

$\Rightarrow \mathrm{V}_{\mathrm{S}}\left(\mathrm{t}=0^{+}\right)=5 \times 1=5 \mathrm{~V}$
26. Ans: (d)

Sol: At $t=0^{-}$the network is

$\Rightarrow \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{10}{1}=10 \mathrm{~A}$
At $\mathrm{t}=0^{+}$the network is

Convert the above circuit into Laplace domain

Applying KCL at node ' A '
$\Rightarrow \frac{\mathrm{V}_{\mathrm{R}}(\mathrm{s})+10}{\mathrm{~s}}+\frac{\mathrm{V}_{\mathrm{R}}(\mathrm{s})}{3}+\frac{\mathrm{V}_{\mathrm{R}}(\mathrm{s})}{2 \mathrm{~s}}=0$
$\Rightarrow \mathrm{V}_{\mathrm{R}}(\mathrm{s})\left[\frac{3}{2 \mathrm{~s}}+\frac{1}{3}\right]=-\frac{10}{\mathrm{~s}}$
$\Rightarrow \mathrm{V}_{\mathrm{R}}(\mathrm{s})=\frac{-30}{\mathrm{~s}+\frac{9}{2}} \Rightarrow \mathrm{~V}_{\mathrm{R}}(\mathrm{t})=-30 \mathrm{e}^{-4.5 \mathrm{t}}$
As $\mathrm{t} \rightarrow \infty \Rightarrow \mathrm{V}_{\mathrm{R}}(\mathrm{t})=0 \mathrm{~V}$

27. Ans: (a)

Sol: Statement-1 is correct because in case of charged bodies of arbitrary shape, it is difficult to find the actual distance between them.

Statement-2 is incorrect as Coulomb's law is valid only when the point charges are at rest.
28. Ans: (b)

Sol:

Consider string AB , the net force on string $A B$ is given as,
$\mathrm{F}=\mathrm{F}_{\mathrm{AB}}+\mathrm{F}_{\mathrm{BC}} \cos \theta$
Where,

$$
\begin{align*}
\mathrm{F}_{\mathrm{AB}} & =\mathrm{F}_{\mathrm{BC}}=\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}} \text { and } \theta=60^{\circ} \\
\Rightarrow \mathrm{F} & =\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}\left(1+\cos 60^{\circ}\right) \\
& =\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}\left(1+\frac{1}{2}\right) \\
& =\frac{3 \mathrm{Q}^{2}}{8 \pi \varepsilon_{0} \mathrm{a}^{2}} \ldots \ldots . . \tag{1}
\end{align*}
$$

For string $A B$ to break due to electrostatic force,
$\mathrm{F} \geq 3$
From equation -1,
$\frac{3 \mathrm{Q}^{2}}{8 \pi \varepsilon_{0} \mathrm{a}^{2}} \geq 3 \Rightarrow \mathrm{Q}^{2} \geq 8 \pi \varepsilon_{0} \mathrm{a}^{2}$
or, $\mathrm{Q}_{\min }=\sqrt{8 \pi \varepsilon_{0}} \mathrm{a}$,

Start Early, Gain Surely

Pioneer to Leader

Dedicated Service

Experienced Faculty from Central Pool

Admissions are open at all our centers
H. O. : Hyderabad : Ph : 040-23234418,19,20

Bangalore
9341290966

Kukatpally	Delhi
040-6597 4465	9205282121

Bhopal	Pune
0755-2554512	$020-25535950$

Bhubaneswar 0674-2540340

Lucknow
808199966

Patna
9308699966

Chennai
$044-42123289$

Vijayawada
$0866-2490001$

Vishakapatnam 0891-6616001

Tirupathi
0877-2244388

Kolkata 8297899966
29. Ans: (d)

Sol: Given data, $\mathrm{H}_{1}=2 \mathrm{~A} / \mathrm{m}$
Let, I be the current in the loop and a be the radius of the loop, then H at the centre of the loop is given as,

Fig.(1)
$H=\frac{I}{2 \mathrm{a}} \mathrm{A} / \mathrm{m} \Rightarrow \mathrm{H} \alpha \frac{\mathrm{I}}{\mathrm{a}}$
$\Rightarrow \frac{\mathrm{H}_{2}}{\mathrm{H}_{1}}=\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right)\left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}\right)$
$\because I_{2}=2 I_{1} \& \mathrm{a}_{2}=\frac{\mathrm{a}_{1}}{2} \Rightarrow \mathrm{H}_{2}=2 \times 2 \times \mathrm{H}_{1}=4 \mathrm{H}_{1}$

$$
\Rightarrow \mathrm{H}_{2}=4 \times 2=8 \mathrm{~A} / \mathrm{m}
$$

30. Ans: (a)

Sol: Given data,
$\overrightarrow{\mathrm{J}}=\mathrm{kx} \hat{\mathrm{a}}_{\mathrm{x}}-5 \mathrm{y} \hat{\mathrm{a}}_{\mathrm{y}}$
Then for a steady current i.e, charge entering and leaving a cross-section of the conductor to be equal at any time,
$\nabla \cdot \overrightarrow{\mathrm{J}}=0$
$\left\{\right.$ Continuity equation, $\nabla \cdot \overrightarrow{\mathbf{J}}=-\frac{\partial \rho_{v}}{\partial \mathrm{t}}$
but $\rho_{\mathrm{v}}=$ constant $\}$
$\Rightarrow\left(\frac{\partial}{\partial x} \hat{\mathbf{a}}_{x}+\frac{\partial}{\partial y} \hat{a}_{y}+\frac{\partial}{\partial z} \hat{\mathbf{a}}_{y}\right) \cdot\left(k x \hat{a}_{x}-5 y \hat{a}_{y}\right)=0$
$\mathrm{k}-5=0 \Rightarrow \mathrm{k}=5$

31. Ans: (c)

Sol: 1. $\nabla \cdot(\nabla \times \overrightarrow{\mathrm{A}}) \equiv 0$ (correct)
i.e, divergence of curl of a vector is always zero.
2. $\nabla \times(\nabla . \mathrm{V}) \equiv 0 \quad$ (correct) i.e; curl of gradient of a scalar is always zero.
3. $\int_{\mathrm{s}}(\nabla \times \overrightarrow{\mathrm{A}}) \overrightarrow{\mathrm{ds}}=\oint_{\mathrm{L}} \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{d} \ell}$ (correct)

The above expression is the Stoke's theorem which says that closed line integral of a vector is equal to the surface integral of the curl of that vector.
4. $\int_{\mathrm{V}}(\nabla \times \overrightarrow{\mathrm{A}}) \mathrm{dv}=\int_{\mathrm{s}} \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{ds}}$ (incorrect)

Gauss's diversion theorems is given as,
$\int_{\mathrm{v}}(\nabla \cdot \overrightarrow{\mathrm{A}}) \mathrm{dv}=\underset{\mathrm{s}}{\int_{\mathrm{A}}} \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{ds}}$
Which says that closed surface integral of a vector is equal to the volume integral of the diversion of that vector.

32. Ans: (b)

Sol: Electric flux:

According to Gauss's law, the surface integral of the electric field intensity gives the amount of electric flux.

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{q}}{\varepsilon_{0}}=\phi_{\text {electrical }} \\
& \begin{aligned}
\Rightarrow \text { unit of } \phi_{\mathrm{e}} & =\frac{\text { Coulombs }}{\text { Coulombs }^{2} / \text { Newton }- \text { meter }^{2}} \\
& =\text { Newton-meter }
\end{aligned} \text { /Coulombs. }
\end{aligned}
$$

33. Ans: (c)

Sol: Statement-1 is correct
For a linear dielectric
Polarization $(\mathrm{P}) \propto \mathrm{E}$ (Electric field)
$\Rightarrow \mathrm{P}=\chi_{\mathrm{e}} \mathrm{E}$
χ_{e} is susceptablity (constant for a linear dielectric)

A capacitor with a linear dielectric has capacitance independent of the charge on the plates and their potential difference, rather the capacitance is equal to the ratio of the charge on the plate to that of the potential difference between them. $C=\frac{Q}{V}$

Statement-2 is correct
As the capacitor is connected to battery, hence voltage ' V ' is fixed.

Let Q_{d} and Q_{a} be the charge on the plates for dielectric and air case, then,

$$
\begin{aligned}
\frac{\mathrm{Q}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{a}}}=\frac{\mathrm{C}_{\mathrm{d}} \mathrm{~V}}{\mathrm{C}_{\mathrm{a}} \mathrm{~V}}=\frac{\mathrm{C}_{\mathrm{d}}}{\mathrm{C}_{\mathrm{a}}} & =\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{~A}}{\mathrm{~d}} \times \frac{\mathrm{d}}{\varepsilon_{0} \mathrm{~A}} \\
& =\varepsilon_{\mathrm{r}}
\end{aligned}
$$

$\because \mathrm{Q}_{\mathrm{d}}=2 \mathrm{Q}_{\mathrm{a}}$
$\Rightarrow \varepsilon_{\mathrm{r}}=2$
But, $\varepsilon_{\mathrm{r}}=1+\chi_{\mathrm{e}}=2$
$\Rightarrow \chi_{\mathrm{e}}=1$

34. Ans: (b)

Sol:

Fig. 1
Applying Gauss's law,

$$
\int \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\mathrm{ds}}=\mathrm{Q}_{\text {enclosed }}
$$

$\mathrm{D}\left(4 \pi \mathrm{r}^{2}\right)=\rho \frac{4}{3} \pi \mathrm{a}^{3}$
$\Rightarrow \mathrm{D}=\frac{\mathrm{\rho a}^{3}}{3 \mathrm{r}^{2}}$
At the surface of the sphere, $r=a$
$\Rightarrow \mathrm{D}=\frac{\rho \mathrm{a}}{3}$

35. Ans: (d)

Sol: Statement -1 is correct as angle between $\overrightarrow{\mathrm{r}}$ and $\nabla \times \vec{r}$ is 90°, therefore,
$\overrightarrow{\mathrm{r}} .(\nabla \times \overrightarrow{\mathrm{r}})=0$
Statement - 2 is correct as
$\nabla \cdot \vec{r}=\left(\frac{\partial}{\partial x} \hat{a}_{x}+\frac{\partial}{\partial x} \hat{\mathbf{a}}_{y}+\frac{\partial}{\partial x} \hat{a}_{z}\right) \cdot\left(x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}\right)$
$\Rightarrow \nabla \cdot \overrightarrow{\mathrm{r}}=3$
Statement -3 is correct as,

$$
\begin{gathered}
\nabla \cdot(\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{r}})=\left(\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{a}}_{\mathrm{x}}+\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{a}}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{x}} \hat{\mathrm{a}}_{z}\right) \cdot\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \\
=2 x \hat{a}_{x}+2 y \hat{a}_{y}+2 \mathrm{z} \hat{\mathrm{a}}_{\mathrm{z}}
\end{gathered}
$$

$$
\begin{aligned}
& =2\left(x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}\right) \\
& =2 \vec{r}
\end{aligned}
$$

Statement-4 is correct as, angle between
∇ and $\nabla \times \overrightarrow{\mathrm{r}}$ is 90°
Therefore,
$\nabla .(\nabla \times \overrightarrow{\mathrm{r}})=0$

36. Ans: (d)

Sol: As the sphere is conducting and has potential 0 on its surface (grounded)

Hence, $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=0$
Where, V_{A} and V_{B} are the potential at points
A and B due to q and q^{\prime}, hence
For $V_{A}=0$
$\Rightarrow \frac{\mathrm{q}}{4 \pi \varepsilon_{0}(\mathrm{~d}-\mathrm{a})}+\frac{\mathrm{q}^{\prime}}{4 \pi \varepsilon_{0}(\mathrm{a}-\mathrm{b})}=0$
For $V_{B}=0$,

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{q}}{4 \pi \varepsilon_{0}(\mathrm{~d}+\mathrm{a})}+\frac{\mathrm{q}^{\prime}}{4 \pi \varepsilon_{0}(\mathrm{a}+\mathrm{b})}=0 \tag{2}
\end{equation*}
$$

$\operatorname{Eqn}(1) \Rightarrow q^{\prime}=-q \frac{(a-b)}{(d-a)}$
$\operatorname{Eqn}(2) \Rightarrow q^{\prime}=-q \frac{(a+b)}{(d+a)}$
$\Rightarrow \frac{\mathrm{a}-\mathrm{b}}{\mathrm{d}-\mathrm{a}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{d}+\mathrm{a}}$
$a d+a^{2}-b d-a b=a d-a^{2}+b d-a b$
$\Rightarrow 2 \mathrm{a}^{2}=2 \mathrm{bd} \Rightarrow \mathrm{a}^{2}=\mathrm{bd}$
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}^{2}}{\mathrm{~d}}$

Then, $q^{\prime}=\frac{-q\left(a-\frac{a^{2}}{d}\right)}{(d-a)}=\frac{-q a\left(\frac{d-a}{d}\right)}{(d-a)}$
$\Rightarrow q^{\prime}=-\frac{q a}{d}$

37. Ans: (a)

Sol: Ionic polarization takes place by displacement of cations and anions. It is independent of temperature
$\alpha_{i}=\frac{\mathrm{e}^{2}}{\omega^{2} \mathrm{~m}}$
Ionic Polarizability is inversely proportional to the square of natural frequency (ω)
38. Ans: (b)

Sol: Polarization $(\mathrm{P})=\varepsilon_{0}\left(\varepsilon_{\mathrm{r}}-1\right) \mathrm{E}$

$$
\begin{aligned}
& =8.854 \times 10^{-12} \times(8-1) \times 10 \times 10^{3} \\
& =6.2 \times 10^{-7}
\end{aligned}
$$

39. Ans: (b)

Sol: If the radius $\mathrm{X}=0.155$, a more stable configuration is possible with three anions bonding with cation. This form a stable structure only upto an X value of 0.225 for $0.155<\mathrm{X}<0.225$ the anions do not touch each other.
40. Ans: (c)
41. Ans: (a)
42. Ans: (b)

Sol: $\rho=\frac{1}{\text { ne } \mu} \Rightarrow \mu=\frac{1}{\text { ne } \rho}$

$$
\begin{aligned}
& =\frac{1}{6 \times 10^{28} \times 1.6 \times 10^{-19} \times 1.54 \times 10^{-8}} \\
& =6.76 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}
\end{aligned}
$$

43. Ans: (c)

Sol: $\mathrm{H}_{\mathrm{C}}=\mathrm{H}_{0}\left[1-\left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{C}}}\right)^{2}\right]$

$$
\begin{aligned}
& 1 \times 10^{5}=2 \times 10^{5}\left[1-\left(\frac{8}{\mathrm{~T}_{\mathrm{C}}}\right)^{2}\right] \\
& \frac{1 \times 10^{5}}{2 \times 10^{5}}=1-\left(\frac{8}{\mathrm{~T}_{\mathrm{c}}}\right)^{2} \\
& \frac{1 \times 10^{5}}{2 \times 10^{5}}+\left(\frac{8}{\mathrm{~T}_{\mathrm{c}}}\right)^{2}=1 \\
& \frac{64}{\mathrm{~T}_{\mathrm{c}}^{2}}+0.5=1 \Rightarrow \mathrm{~T}_{\mathrm{c}}^{2}=\frac{64}{0.5} \\
& \mathrm{~T}_{\mathrm{C}}=11.31 \mathrm{~K}
\end{aligned}
$$

44. Ans: (b)

Sol: $\mathrm{J}_{c}=\frac{\mathrm{i}_{\mathrm{C}}}{\mathrm{A}}=\frac{\mathrm{H}_{\mathrm{C}} \times 2 \pi \mathrm{R}}{\pi \mathrm{R}^{2}}=\frac{2 \mathrm{H}_{\mathrm{C}}}{\mathrm{R}}$

45. Ans: (a)

Sol: Based on F.London and H.London research, magnetic flux density is allowed by super conductor up to some layers from the surface.

London penetration depth: It is the depth from the surface of super conductor upto which flux density is decreased by 63%.
$B=B_{0} \mathrm{e}^{\frac{-\mathrm{X}}{\lambda_{\mathrm{L}}}}$
$B=$ Flux density at a depth ' X '
$B_{0}=$ flux density at surface of super conductor
$\lambda_{\mathrm{L}}=$ London penetration depth

46. Ans: (d)

Sol: Hall angle $\tan \theta_{H}=\mu B=0.041 \times 0.1=0.0041$

$$
\begin{aligned}
& \theta_{\mathrm{H}}=\tan ^{-1}(0.0041) \\
& \theta_{\mathrm{H}}=0.2349
\end{aligned}
$$

47. Ans: (a)
48. Ans: (c)

Sol: Total magnetic moment $=\mathrm{N} \times \mathrm{i} \times \mathrm{A}$

$$
\begin{aligned}
& =500 \times 20 \times 10^{-3} \times \pi\left(2 \times 10^{-2}\right)^{2} \\
& =500 \times 20 \times 10^{-3} \times 4 \pi \times 10^{-4} \\
& =4 \pi \times 10^{-3} \mathrm{~A}^{2} \mathrm{~m}^{2}
\end{aligned}
$$

49. Ans: (a)

Sol: Magnetic flux density $(\mathrm{b})=88 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$
Field strength $(H)=100 \mathrm{~A} / \mathrm{m}$

$$
\begin{aligned}
\mu_{R} & =\frac{\mu}{\mu_{0}}=\frac{B}{H \mu_{0}} \\
& =\frac{88 \times 10^{-4}}{100 \times 4 \pi \times 10^{-7}}=70
\end{aligned}
$$

50. Ans: (a)

Sol: The hysteresis loop of ferromagnetic material depends on

1. Temperature
2. Crystallographic imperfection
3. Cold working
4. Ans: (a)

Sol:

52. Ans: (b)

Sol: Magneto rheological materials has the ability to increase viscosity drastically with applied field.
53. Ans: (a)
54. Ans: (c)
55. Ans: (d)
56. Ans: (a)

Sol: Wiess-Domain Theory: Based on Wiess Domain theory in a domain all the dipoles are aligned in a particular direction. If the magnetic field is applied Domain growth takes place in the field direction and at higher field, inside domain dipole relation takes place.

GATE - 2018
 ONLINE TEST SERIES
 No. of Tests : 62

ISRO-2017
 ONLINE TEST SERIES

No. of Tests : 15
All tests will be available till $25^{\text {th }}$ December 2017

HIGHLICHTS

- Detailed solutions are available.
- All India rank will be given for each test.
- Comparison with all India toppers of ACE students.
www.aceenggacademy.com
testseries@aceenggacademy.com

57. Ans: (a)

Sol: Output voltage $=\mathrm{t} \times \mathrm{g} \times \mathrm{p}$

$$
\begin{aligned}
& =2 \times 10^{-3} \times 0.055 \times 1.25 \times 10^{6} \\
& =137.5 \mathrm{~V}
\end{aligned}
$$

58. Ans: (d)

Sol: Ga-As compound is a zinc blende structure
59. Ans: (b)

Sol: $\sqrt{2} \mathrm{a}=4 \mathrm{R}$

$$
\begin{aligned}
& \mathrm{a}=\frac{4 \mathrm{R}}{\sqrt{2}} \\
& \mathrm{~d}_{111}=\frac{\mathrm{a}}{\sqrt{\mathrm{~h}^{2}+\mathrm{k}^{2}+\ell^{2}}}
\end{aligned}
$$

$$
=\frac{4\left(0.128 \times 10^{-9}\right)}{\sqrt{2} \times \sqrt{1^{2}+1^{2}+1^{2}}}=2 \mathrm{~A}^{0}
$$

60. Ans: (d)

Sol: $\mathrm{X} \rightarrow 1$

$$
(-1,2, \infty)
$$

$\mathrm{Y} \rightarrow 2 \quad\left(\frac{-1}{1}, \frac{1}{2}, \frac{1}{\infty}\right)=(\overline{2} 10)$
Z $\rightarrow \infty$
61. Ans: (d)

Sol: The bullet proof jocket is made up of aramid fiber reinforced polymer (AFRB) with reinforcement phase is Aramid and matrix phase is polymer.

62. Ans: (d)

Sol: The bonding in ceramics is predominantly ionic, it consists of anions and cations. The crystal structure of ceramics is influenced by the radius ratios of the ions. The coordination number depends on the radius of the bonding ions. Ceramics are classified according to their crystal structure as AX, $\mathrm{AX}_{2}, \mathrm{ABX}_{3}$ and $\mathrm{AB}_{2} \mathrm{X}_{4}$ types.

Examples under each type are given below:
AX : NaCl, $\mathrm{CsCl}, \mathrm{Zns}$
$\mathrm{AX}_{2}: \mathrm{SiO}_{2}, \mathrm{CaF}_{2}, \mathrm{PuO}_{2}, \mathrm{ThO}_{2}$
$\mathrm{ABX}_{3}: \mathrm{BaTiO}_{3}, \mathrm{SrZrO}_{3}, \mathrm{SrSnO}_{3}$
$\mathrm{AB}_{2} \mathrm{X}_{4}: \mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{FeAl}_{2} \mathrm{O}_{4}$
63. Ans: (c)

Sol: If the temperature of metal increases, the lattice vibration in the crystal structure increases. Hence collision frequency increases and relaxation time decreases. Due to that resistivity of metal increases.
64. Ans: (c)

Sol: Ceramics have high melting point and can with stand high temperature.
65. Ans: (b)

Sol: Laplacian equation

$$
\nabla^{2} \mathrm{~V}=0 \rightarrow
$$

But we know, $\nabla^{2} \mathrm{~V}=-\frac{\rho_{\mathrm{V}}}{\varepsilon}$ from Poisson's equation
Therefore Laplacian equation is true for charge free region where $\rho_{\mathrm{V}}=0$

Every physical problem must contain atleast one conducting boundary but may contain more than one.

Solution of Laplace's equation with two different methods (valid methods) lead to same solution. Since E field is harmonic (conservative).
66. Ans: (d)

Sol: Statement I is incorrect as

$$
\int_{\mathrm{s}} \overline{\mathrm{~B}} \cdot \mathrm{ds} \neq 0
$$

Maxwell equation: $\oint \mathrm{B} . \mathrm{ds}=0$
i.e., net flux leaving closed surface is zero.

When surface is open
\int B.ds $=\psi_{\mathrm{m}} \rightarrow$ weber

Statement II is correct as

Tubes of magnetic flux have no source (or) sink i.e. monopoles do not exist in case of magnetic field.

67. Ans: (a)

Sol: - When AC field is applied to a dielectric material, then dielectric constant of material is no longer real
It is having both real part as well as imaginary part
$\varepsilon_{\mathrm{r}}=\varepsilon_{\mathrm{r}}{ }^{\prime}-\mathrm{j} \varepsilon_{\mathrm{r}}{ }^{\prime \prime}$
$\mathrm{j} \varepsilon_{\mathrm{r}^{\prime \prime}}$ part (Imaginary part) of ε_{r} is due to power loss in material.

- When AC field is applied to dielectric material, ε_{r} becomes complex quantity as a result power loss in dielectric material.

68. Ans: (b)

Sol: The antiferro magnetic material depends on Neel's law
$\chi=\frac{C}{T-T_{N}}$

69. Ans: (d)

Sol: Impressed voltage $V=(100-j 90) V$

$$
\text { Current } I=(3-j 4) A
$$

Complex power, $\mathrm{S}=\mathrm{V} \mathrm{I}^{*}$
$=(100-j 90)(3+j 4)=(660+j 130) V A$
\therefore Real power $=660 \mathrm{~W} \therefore$ Statement (I) is false.
70. Ans: (b)
71. Ans: (d)

Sol: Equivalent network obtained from $\Delta-\mathrm{Y}$ transformation relation is valid for any frequency.

So statement (I) is false.
72. Ans: (b)

73. Ans: (b)

Sol: Poly crystal materials are stronger than single crystal material because they require more stresses to initiate slip and yielding. Poly crystalline materials there are many preferred planes and direction for different grains due to their random orientation.

74. Ans: (a)

Sol: BaTiO_{3} crystal is Ferroelectric material upto $120^{\circ} \mathrm{C}$, due to non-centro symmetric (asymmetric) structure. But above $120^{\circ} \mathrm{C}$ it become centro-symmetric and hence it looses its ferroelectric character.
75. Ans: (d)

Sol: Statement I is incorrect
because when there is no charge inside the conductor the electric field inside a conductor is zero not infinity.

Statement II is correct as
Gauss law: Electric flux leaving any closed surface is equal to the charge enclosed.

In case of a conductor as the charge enclosed by any closed surface inside a conductor is zero hence there should not be any electric field inside the conductor.

GATE TOPPERS

ESE TOPPERS

Engineering Academy
Leading Institute for ESE/GATE/PSUs

