

ACE

Engineering Academy

Hyderabad | Delhi | Bhopal |Pune | Bhubaneswar | Bengaluru |Lucknow | Patna | Chennai | Vijayawada | Visakhapatnam | Tirupati | Kukatpally| Kolkata

H.O: 204, II Floor, Rahman Plaza, Opp. Methodist School, Abids, Hyderabad-500001, Ph: 040-23234418, 040-23234419, 040-23234420, 040 - 24750437

ESE- 2018 (Prelims) - Offline Test Series Test- 13 ELECTRONICS & TELECOMMUNICATION ENGINEERING

SUBJECT: CONTROL SYSTEMS + ANALOG ELECTRONICS

+ DIGITAL ELECTRONICS MICRO PROCESSOR SOLUTIONS

01. Ans: (d)

Sol: Given circuit is shown in below figure.

$$\frac{V_0(s)}{V_i(s)} = \frac{\frac{1}{Cs}}{R + Ls + \frac{1}{Cs}} = \frac{1}{RCs + LCs^2 + 1}$$

CE is
$$LCs^2 + RCs + 1 = 0$$

$$\Rightarrow s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \dots \dots (1)$$

We know for standard second order characteristic equation

$$s^{2} + 2\zeta \omega_{n}s + \omega_{n}^{2} = 0 \dots (2)$$

 $\zeta = 0$ for undamped system

 $0 < \zeta < 1$ for under damped system

For system poles to be on real axis, $\zeta > 1$

For system poles to be on complex plane, ζ

< 1.

Compare (1), (2) we get

$$\omega_{\rm n} = \frac{1}{\sqrt{\rm LC}}, \zeta = \frac{\rm R}{2}\sqrt{\frac{\rm C}{\rm L}}$$

For
$$R = 0 \Longrightarrow \zeta = 0$$

For R = 1
$$\Omega$$
, L = 1H, C = 1F, $\zeta = \frac{1}{2} < 1$

For
$$\zeta > 1 \Longrightarrow \mathbb{R} > 2\sqrt{\frac{\mathbb{L}}{\mathbb{C}}}$$

For
$$\zeta < 1 \Longrightarrow \mathbb{R} < 2\sqrt{\frac{\mathbb{L}}{\mathbb{C}}}$$

From all above conclusions Statements 1, 2, 3 are correct

Sol: C.L.T.F. =
$$\frac{\frac{s^2}{2s+1}}{1+\frac{s^2}{2s+1}} = \frac{s^2}{s^2+2s+1}$$

C.E is
$$s^2+2s+1=0 \Rightarrow s=-1, -1 \Rightarrow$$
 system
is critically damped.

Order of the system is two

∴Both statements are correct.

03. Ans: (d)

Sol: Root Locus plot is as shown below

'K' at break point = (a) (a) =
$$a^2$$

$$\Rightarrow a^2 = 4$$

 \Rightarrow a = 2

$$\therefore$$
 s = -2

System is over damped for poles on real axis i.e 0 < k < 4 only.

As two branches are there, so it is second order system.

System to be under damped, poles should be on complex plane.

 $\therefore 4 < k < \infty$.

So Statements 1, 4 are true.

04. Ans: (b)

$$\Gamma F_{\text{lead}} = \frac{\tau s + 1}{\alpha \tau s + 1} \quad \alpha < 1$$

$$\begin{array}{c|c} \hline & & \\ \hline & & \\ \hline & & \\ -1/\alpha\tau & -1/\tau \end{array} \quad \alpha < 1$$

It adds a dominant zero

- It adds positive phase angle
- The system is always stable as the pole is in LHP
- Its magnitude will vary with frequency as shown in bode plot
 - \therefore 1, 2, 3 are correct

05. Ans: (d)

Sol: All the statements are true. Therefore correct option is (d).

06. Ans: (a) Sol: $k = -(s(s+4)(s^2+4s+8))$ $k = -(s^4+8s^3+24s^2+32s)$

$$\frac{dk}{ds} = -(4s^3 + 24s^2 + 48s + 32) = 0$$

s = -2, -2, -2
s = -2 is a break point.

07. Ans: (a)

Sol: The compensator is lead

$$\omega_n = \sqrt{1 \times 10} = \sqrt{10}$$
 rad/sec
The maximum phase angle is obtained at $\sqrt{10}$ rad/sec

08. Ans: (b)

Sol: Lag compensator, pole-zero diagram

09. Ans: (c)

Sol:
$$CLTF = \frac{C(s)}{R(s)} = \frac{KG}{1 + KGH}$$

 $S_{K}^{CLTF} = \frac{1}{1 + KGH}$
 $S_{G}^{CLTF} = \frac{1}{1 + KGH}$

$$S_{H}^{CLTF} = \frac{-KGH}{1 + KGH}$$

If loop gain is high
 $KGH \rightarrow \infty$
 $m S_{K}^{CLTF} = 0, S_{G}^{CLTF} = 0, S_{H}^{CLTF} = -1$
10. Ans: (d)
Sol: $M_{p} = e^{-\pi \zeta / \sqrt{1-\zeta^{2}}}$
 $\zeta = \cos\theta$
 $= e^{-\pi \frac{\cos\theta}{\sin\theta}} = e^{-\pi \cot\theta}$

11. Ans: (b)

:3:

Sol: Given signal flow graph is as shown below

Forward paths are

$$\Rightarrow \begin{pmatrix} \mathbf{R}, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{C} \\ (\mathbf{R}, \mathbf{x}_2, \mathbf{x}_6, \mathbf{x}_5, \mathbf{C}) \end{pmatrix} \text{two forward paths}$$

b = 0

$$G(s) = \frac{s+a}{s} = 1 + \frac{a}{s}$$

∴PI controller

$$a = -b$$
 $\frac{s-b}{s+b}$ $\frac{bead}{-b}$

All pass system

Therefore 1,2,3,4 are correct

13. Ans: (b)

Sol: TF from root locus is
$$=\frac{k}{s(s+a)(s+b)}$$
,

where a, b are +ve

- The system is 3rd order
- It has break point between (0, –a)
- The system will be marginally stable for some k

There fore only 1, 2 are correct

14. Ans: (a)

Sol: Forward path going are H_1G_1 , $H_2G_1G_2$

- Loop gains are $-H_1G_1, -H_2G_1G_2$
- Both loops are touching loops so 3 is incorrect

Date of Exam : 20th Jan 2018

Last Date To Apply : 05th Jan 2018

15. Ans: (b)

~

Sol: From RH criteria 1

No sign change below AE so all four roots of AE equation lies on $j\omega$ axis.

$$AE = -s^{4} - 2s^{2} - 1 = 0$$

$$(s^{2} + 1)^{2} = 0$$

$$(s^{2} + 1)^{2} = 0$$

 $0 \text{ Poles} \rightarrow \text{LHP}$

4 Poles $\rightarrow j\omega$ –axis

1 Pole \rightarrow RHP (one sign change on first column)

16. Ans: (c)

Sol:
$$G(s) = \frac{10}{(s-1)(s+2)}$$

 $\frac{\times}{-2}$ 1

So, G(s) is unstable

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{10}{(s - 1)(s + 2) + 10}$$

$$= \frac{10}{s^{2} - 2 + 2s - s + 10}$$
$$= \frac{10}{s^{2} + s + 8}$$
$$C.E = s^{2} + s + 8 = 0$$
$$s^{2} | 1 | 8 \\ s^{1} | 1 | 0 \\ s^{0} | 8$$

sign changes in the first There is no column of RH criteria table. Therefore the

closed loop $\frac{C(s)}{R(s)}$ is stable

17. Ans: (a)

:5:

Sol:
$$\frac{V_0(s)}{V_1(s)} = \frac{1}{\alpha RCs + 1}$$

$$\frac{R(s) + C(s)}{\alpha RCs}$$

$$k_v = \lim_{s \to 0} s.G(s) = \lim_{s \to 0} s \frac{1}{\alpha RCs} = \frac{1}{\alpha RCs}$$

$$e_{ss} = \frac{1}{k_v} = \alpha RC$$

18. Ans: (d)

Sol: Compare $C(t) = ke^{-\alpha t} \sin \omega_d t u(t)$

We get
$$\alpha = 6$$
, $\omega_d = 8$

Hyderabad |Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata ACE Engineering Academy

E & T E

The radial distance $\omega_n = 10 \text{ rad/sec}$

$$\cos\theta = \zeta = \frac{6}{10} = 0.6$$

 $\omega_d = 8 \text{ rad /sec}$

19. Ans: (c)

20. Ans: (c)

Sol:
$$e_{ss} = \frac{A}{1+k_p}$$
 for step input

$$e_{ss} = \frac{A}{k_v}$$
 for ramp input

$$e_{ss} = \frac{A}{k_a}$$
 for parabolic input

Where

$$\begin{split} k_{p} &= \mathop{\text{Lt}}_{s \to 0} G(s), k_{v} = \mathop{\text{Lt}}_{s \to 0} sG(s), k_{a} = \mathop{\text{Lt}}_{s \to 0} s^{2}G(s) \\ \text{For type 0- system, } k_{p} = \text{finite} \implies e_{ss} \text{ is finite} \end{split}$$

For type 2-system, $k_v = \infty \Longrightarrow e_{ss} = 0$

 $k_a = finite \Longrightarrow e_{ss} = finite$

For type-1 system, $k_p = \infty \Longrightarrow e_{ss} = 0$

∴ statements 1,2 are correct

21. Ans: (d)

Sol: System is under damped when poles are on complex plane.

 \therefore For 0.7 < k < 14 system is under damped.

23. Ans: (b)

Sol: The circuit is 1st order RC network

$$TF = \frac{1}{RCs + 1}$$
Pole
$$\frac{-1}{RC}$$

 \rightarrow For whatever RC value the pole location is on real axis

ESE - 2018 (Prelims) Offline Test Series

 \therefore It will never produce oscillations.

 \rightarrow Since pole of the system is on real axis and the system has only one pole.

It will produce -ve phase angle for sin input, 1, 3, 4 are correct.

24. Ans: (c)

Sol: The plot is given for k = 1

For k = 2

(-1, 0) is enclosed therefore system is unstable.

The phase plot of the system $\omega = 10, -90^{\circ}$

26. Ans: (b)

By KVL

$$8 - 0.7 - i - 48i - 0.7 - i = 0$$

 $8 - 1.4 = 50i$
 $i = \frac{6.6}{50}$
 $i = 0.132$
 $i = 132$ mA

28. Ans: (a)

29. Ans: (d)

Sol: $(gain)_{dB} = 10\log_{10}^{26/13} = 10\log_{10}^2 = 3dB$

Admissions are open at all our centers

H. O. : Hyderabad : Ph : 040-23234418,19,20

Bangalore Ku		Kukatı	pally Del		hi Bhopal		oal	Pune		Bhubaneswar	
9341299966 040-0		040-659	7 4465 920528		2121 0755-25545		54512	020-25535950		0674-2540340	
Lucknow	ucknow Patna		Chennai		Vijayawada		Vishakapatnam		Tirupathi		Kolkata
808199966	3199966 9308699966		044-42123289		0866-2490001		0891-6616001		0877-2244388		8297899966

30. Ans: (a)

Sol:
$$C_1 = 1nF$$
, $C_2 = 10nF$ & $L = 0.1\mu H$

$$|A| \ge \frac{C_2}{C_1} = \frac{10nF}{1nF} = 10.$$

31. Ans: (d)

Sol: f_1, f_2 NL amplifier

The output frequency component

 $= nf_1 \pm mf_2$

32. Ans: (d)

Sol:
$$\frac{dA_{f}}{A_{f}} = \frac{dA}{A} \left(\frac{1}{1 + A\beta_{f}} \right)$$

 $\frac{0.1}{100} = \frac{10}{1000} \left[\frac{1}{1 + 1000.\beta_{f}} \right]$

 $1+1000. \beta_{\rm f} = 10$ $\beta_{\rm f} = \frac{9}{1000}.$

33. Ans: (b)

Sol: gain = 30 dB

 $30\mathrm{dB} = 10\log_{10}^{\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{Pi}}\right)}$

$$\Rightarrow 3 = \log_{10}^{\left(\frac{P_o}{P_i}\right)}$$

$$\frac{Po}{Pi} = 10^{3}$$

$$P_{0} = 10^{3} \times P_{i}$$

$$P_{0} = 10^{3} \times 1 \times 10^{-6}$$

$$P_{0} = 10^{-3} \text{ W}, \qquad P_{0} = 1 \text{ mW}$$

$$P_{0 \text{ in } dB} = 10 \log_{10}^{1} = 0 \text{ dBm}$$

40. Ans: (d)

Sol: For an ideal feedback circuit to have sustained oscillation the loop gain is 1. For practical feedback circuit the loop gain varies from 1.01 to 1.05 (slightly greater than one) for sustained oscillation.

41. Ans: (a)

Sol: $A_d = 2000$

CMRR = 1000

$$V_{non-inv} = 5.001V$$

 $V_{inv} = 4.999V$
Common mode gain $A_c = \frac{A_d}{CMRR} = \frac{2000}{1000} = 2$
Differential voltage $V_d = V_{non-inv} - V_{inv}$
 $= 5.001 - 4.999 = 2 \times 10^{-3}V$
Common mode voltage
 $V_c = \frac{V_{non-inv} + V_{inv}}{2} = \frac{5.001 + 4.999}{2} = 5V$
 $V_0 = A_d V_d + A_c V_c$
 $= 2000 \times 2 \times 10^{-3} + 2 \times 5$

= 4 + 10

42. Ans: (c)

:9:

Sol: Duty cycle

$$= \frac{\text{ON Time}}{\text{ON Time} + \text{OFF Time}} = \frac{(R_A + R_B)C}{(R_A + R_B)C + R_BC}$$
$$= \frac{(R_A + R_B)}{(R_A + 2R_B)}$$

Duty cycle of the output waveform V_0 not depend upon capacitor 'C'.

All tests will be available till 12th February 2018

All tests will be available till 07th January 2018

All tests will be available till 25th December 2017

★ HIGHLIGHTS ★

- Detailed solutions are available.
- All India rank will be given for each test.
- Comparison with all India toppers of ACE students.

www.aceenggacademy.com
 testseries@aceenggacademy.com

- 43. Ans: (c)
- 44. Ans: (c)
- 45. Ans: (c)
- Sol: For the given input voltages
 - D1 will be ON & D2 will be OFF
 - \Rightarrow Voltage at 'P' will be 2V

$$\therefore I = \frac{5V - 2V}{1K} = 3mA$$

46. Ans: (d)

- 47. Ans: (b)
- Sol: Step 1: Forward dynamic resistance of the

diodes,

$$R_{f} = \frac{V_{T}}{I_{D}} = \frac{0.025V}{\frac{1mA}{2}} = 50\Omega$$

Note: $R_{f_1} = R_{f_2} = R_{f_3} = R_{f_4} = R_f$ (:. All the diodes are identical) $V_0 = \frac{10K V_i}{10K + [2R_f \parallel 2R_f]}$ $\frac{V_0}{V_i} = \frac{10K}{10K + [100\Omega \parallel 100\Omega]}$ $\therefore \frac{V_0}{V} = 0.995$

48. Ans: (c)

Sol: We have, line regulation, $\eta_i = \frac{\Delta V_0}{\Delta V_i}$

$$= \frac{r_z}{r_z + R_s}$$
$$= \frac{10}{10 + 80}$$
$$= \frac{1}{9}$$

$$\Rightarrow \frac{\Delta \mathbf{V}_0}{\Delta \mathbf{V}_i} = \frac{1}{9}$$
$$\therefore \Delta \mathbf{V}_0 = \frac{1}{9} \times \Delta \mathbf{V}_i = \frac{1}{9} \times 0.9 \text{ V} = 100 \text{ mV}$$

49. Ans: (a)

A X 7

- **Sol:** Binary zero has unique representation in 2'S complement representation.So this representation is widely used.
- 50. Ans: (b)
- 51. Ans: (c)

: 11 : ESE - 2018 (Prelims) Offline Test Series

52 Ans: (c)

Sol: The given state diagram detects 01,001,001,00001,.....

53. Ans: (a)

Sol: A 01

A 00, (Cy = 0, AC = 0)

Loop: A FF (bit carry flag is not affected JNC loop is failed

Hence HLT is executed

54. Ans: (d) 55. Ans: (a)

56. Ans: (c)

57. Ans: (b)

Sol: (a)& (c) are not valid instructions.

SBI 98H \Rightarrow subtract immediate with borrow

SUI 98H \Rightarrow subtract immediate (no borrow)

58. Ans: (a)

Sol: XTHL exchanges the contents of L register with the contents of memory location specified by the stack, pointer the contents of the H register are exchanged with the contents of stack pointer +1.

59. Ans: (a) **60.** Ans: (a)

- 61. Ans: (d)
- Sol: All are the properties of EEPROM. EEPROM'S are fabricated using NMOS /CMOS, where as PROMS and ROMS use bipolar TTL. Hence EEPROM'S have longer delays.

62. Ans:(d)

Sol:

(i)	(ii) HL ← 5000H	(iii) A← 6AH
А←96Н		A←95H
	M ← 96H	
96H→(5000H)	M⇒	A ← 96
	contents of	96H
	HL	→(5000)

63. Ans:(a)

Sol: Whenever open collector (TTC) configuration then wired connection is

64. Ans:(c) Sol: $64K \Rightarrow 2^{16} = 2^8 \times 2^8$ (Coincident decoding)

$= 256 \times 256$

Each decoder is 8×256 side

65. Ans: (a)

Sol:

Total 9 input 4 outputs so ROM side $=2^9 \times 4$ ($2^{no of inputs} X$ no of outputs)

66. Ans: (c)

Sol: Both statements are correct

Sol:

68. Ans: (b)

Sol: f = AB + C

$$F=(A+C)B+C)$$

To implement using NOR gates, go for POS form.

69. Ans: (a)

Sol: To check commutative $\Rightarrow x \oplus y = y \oplus x$

L.H.S
$$x \oplus y = x^2 + y^2 \rightarrow (1)$$

R.H.S $y \oplus x = y^2 + x^2 \rightarrow (2)$
(1)=(2)

To check associative

$$\Rightarrow(x \oplus y) \oplus Z = x \oplus (y \oplus z)$$
L.H.S $(x \oplus (y \oplus z) = (x^2 + y^2) \oplus z$
 $= (x^2 + y^2) + z^2 \rightarrow (3)$
R.H.S $x \oplus (y \oplus z) = x \oplus (y^2 + z^2)$
 $= x^2 + (y^2 + z^2)^2 \rightarrow (4)$
 $(3) \neq (4)$

:13:

Sol:
$$\begin{array}{c|c} & & & \\ \hline & Q_3 & Q_2 & Q_1 & Q_0 \end{array}$$

Clock	0	0	0	0
1	1	0	0	0 (8)
2	1	1	0	0 (12)
3	1	1	1	0 (14)
4	1	1	1	1 (15)
5	0	1	1	1 (7)
6	0	0	1	1 (3)
7	0	0	0	1 (1)
8	0	0	0	0 (0)

71. Ans: (b)

Sol: → Its noise immunity and power dissipation are worst of all logic families
 → The outputs provide "OR" and "NOR" families

 \rightarrow Because of high speed, external wires act like transmission lines

ACE Engineering Academy :	14: E&TE
72. Ans: (a)	73. Ans: (a) 74. Ans: (a)
Sol: Slew Rate (SR) = $\frac{dV_0}{dt}\Big _{max}$	75. Ans: (c)
In ideal Op – Amp Slew Rate is Very high	