

ACE Engineering Academy

Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru | Lucknow | Patna | Chennai | Vijayawada | Visakhapatnam | Tirupati | Kukatpally| Kolkata

H.O: 204, II Floor, Rahman Plaza, Opp. Methodist School, Abids, Hyderabad-500001, Ph: 040-23234418, 040-23234419, 040-23234420, 040 - 24750437

ESE- 2018 (Prelims) - Offline Test Series-Test-13

ELECTRICAL ENGINEERING

SUBJECT: Control Systems, Basic Electronics Engineering and Analog & Digital Electronics SOLUTIONS

01. Ans: (a)

- **Sol:** Binary zero has unique representation in 2's complement representation. So this representation is widely used.
- 02. Ans: (b)
- 03. Ans: (c)
- 04. Ans: (c)
- Sol: The given state diagram detects 01,001,001,00001,.....
- 05. Ans: (d)
- 06. Ans: (a)
- 07. Ans: (c)
- 08. Ans: (b)
- **Sol**: (a), (c) are not valid instructions .

SBI 98H \Rightarrow subtract immediate with borrow

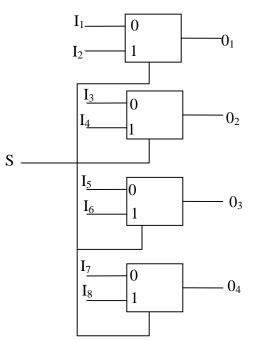
SUI 98H \Rightarrow subtract immediate (no borrow)

09. Ans: (a)

- **Sol:** XTHL exchanges the contents of L register with the contents of memory location specified by the stack, pointer the contents of the H register are exchanged with the contents of stack pointer +1
- 10. Ans: (a)
- 11. Ans: (a)
- 12. Ans: (d)
- Sol: All are the properties of EEPROM. EEPROM'S are fabricated using NMOS /CMOS, where as PROMS and ROMS use bipolar TTL. Hence EEPROM'S have longer delays.

ACE Engineering Academy

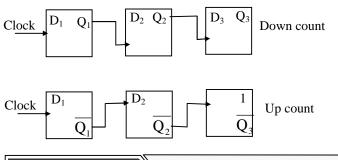
13. Ans: (c)


Sol: $64K \Rightarrow 2^{16} = 2^8 \times 2^8$ (Coincident decoding)

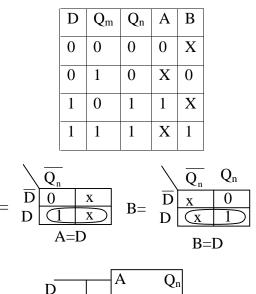
=256×256

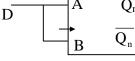
Each decoder is 8×256 side

14. Ans: (a)


Sol:

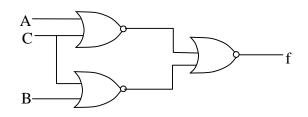
Total 9 input 4 outputs so ROM side $=2^9 \times 4$ ($2^{no of inputs} X$ no of outputs)


15. Ans: (c)


Sol: both statements are correct

16. Ans: (a)

Sol:

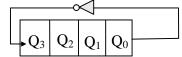


17. Ans: (b)

Sol: f = AB+C

f = (A+C)(B+C)

To implement using NOR gates, go for POS form.

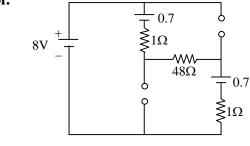

Date of Exam : 20th Jan 2018

Last Date To Apply : 05th Jan 2018

www.aceenggacademy.com

18. Ans: (d)

Sol:



Clock	0	0	0	0
1	1	0	0	0 (8)
2	1	1	0	0 (12)
3	1	1	1	0 (14)
4	1	1	1	1 (15)
5	0	1	1	1 (7)
6	0	0	1	1 (3)
7	0	0	0	1 (1)
8	0	0	0	0 (0)

20. Ans: (c)

Sol:

By KVL 8 - 0.7 - i - 48i - 0.7 - i = 0 8 - 1.4 = 50i $i = \frac{6.6}{50}$ i = 0.132i = 132 mA

21. Ans: (a)

22. Ans: (d)

Sol: $(gain)_{dB} = 10\log_{10}^{26/13}$

 $=10\log_{10}^{2}$ =3dB

23. Ans: (a)

Sol: $C_1 = 1nf$, $C_2 = 10nf$ & $L = 0.1 \mu H$

$$|A| \ge \frac{C_2}{C_1} = \frac{10nf}{1nf} = 10.$$

24. Ans: (d)

Sol:

NL amplifier

The output frequency component = $nf_1 \pm mf_2$

25. Ans: (d)

Sol:
$$\frac{dA_{f}}{A_{f}} = \frac{dA}{A} \left(\frac{1}{1 + A\beta_{f}} \right)$$

 $\frac{0.1}{100} = \frac{10}{1000} \left[\frac{1}{1 + 1000.\beta_{f}} \right]$
 $1 + 1000.\beta_{f} = 10$
 $\beta_{f} = \frac{9}{1000}.$

26. Ans: (b)

Sol: gain = 30 dB

 $30dB = 10 \log_{10}^{\left(\frac{P_{o}}{P_{i}}\right)}$ $3 = \log_{10}^{\left(\frac{P_{o}}{P_{i}}\right)}$ $\frac{P_{o}}{P_{i}} = 10^{3}$ $P_{o} = 10^{3} \times P_{i}$ $P_{o} = 10^{3} \times 1 \times 10^{-6}$ $P_{0} = 10^{-3} W$ $P_{0} = 1mW$ $P_{0 \text{ in } dB} = 10 \log_{10}^{1} = 0dBm$

27. Ans: (d)

28. Ans: (c)

Sol: Ripple factor in LC filter = $\frac{\sqrt{2}}{3} \frac{1}{4\omega^2 CL}$

For frequency of 50Hz

ripple factor (γ) = $\frac{1.194}{LC}$

So, it remains constant.

29. Ans: (a)

30. Ans: (d)

- 31. Ans: (d)
- **Sol:** For an ideal feedback circuit to have sustained oscillation the loop gain is 1. For practical feedback circuit the loop gain varies from 1.01 to 1.05 (slightly greater than one) for sustained oscillation.

Admissions are open at all our centers

H. O. : Hyderabad : Ph : 040-23234418,19,20

Banga 934129	Kukatı 040-659	Dell 920528	and the second se	Bhoj 0755-25		Pu 020-25		Bhuba 0674-2	neswar 540340
Lucknow 808199966	Patna 8699966	ennai 123289		yawada 2490001	Vishaka 0891-6	patnam 616001	Tirup 0877-22		Kolkata 8297899966

32. Ans: (b)

Sol: $\mathbf{R}_{\mathbf{H}} = \frac{p\mu_p^2 - n\mu_n^2}{(n\mu_n + p\mu_p)^2 q}$ If $p\mu_p^2 > n\mu_n^2$, then $\mathbf{R}_{\mathbf{H}}$ is positive

33. Ans: (d)

Sol: Zener diode: can be used as Voltage

stabilizer & Voltage reference.

- Tunnel diode: High speed switching
 - : Micro wave switching
 - : Oscillator
 - : Negative Resistance region

Gunn diode : micro wave oscillator

: Conductive negative region

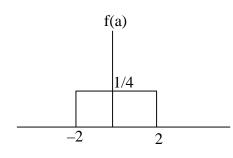
: Zero junction (junction less)

PIN diode: High speed switching

34. Ans: (b)

35. Ans: (d)

- **Sol:** Fabrication of a buried layer n-p-n transistor, the processes involved are:
 - 1. Lithography (Lithography)
 - 2. Oxidation
 - 3. Epitaxy
 - 4. Diffusion


	ACE Engineering Academy
1	Angineering measuring

36. Ans: (a)
37. Ans: (c)
38. Ans: (c)

- **39.** Ans: (a)
- **Sol:** given $x(t) = a e^{j\omega t}$

Auto correlation function $R(t_1,t_2) = E [x(t_1) x^*(t_2)]$

Given random variable uniformly distributed between -2 to 2

$$\begin{split} R_{x}(t_{1},t_{2}) &= E\left[ae^{j\omega t_{1}}.ae^{-j\omega t_{2}}\right] \\ &= E\left(a^{2}\right)e^{j\omega (t_{1}-t_{2})} \\ &= \left[\int_{-2}^{2}a^{2}f\left(a\right)da\right]e^{j\omega (t_{1}-t_{2})} \\ &= \frac{1}{4}\left[a^{3}/3\right]_{-2}^{2}e^{j\omega (t_{1}-t_{2})} \\ &= \frac{4}{3}e^{j\omega (t_{1}-t_{2})} \end{split}$$

40. Ans: (d)

Sol: C = B log₂
$$\left(1 + \frac{S}{N}\right)$$

= 4k log₂ (1 + 7) = 4 k log₂ 2³ = 12 k

Bandwidth is reduced to 25% =

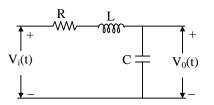
$$\frac{25}{100} \times 4 = 1 \text{ k}$$

$$C = B \log_2 \left(1 + \frac{\text{S}}{\text{N}} \right)$$

$$12 \text{ k} = 1 \text{ k} \log_2 \left(1 + \frac{\text{S}}{\text{N}} \right)$$

$$\frac{\text{S}}{\text{N}} = 4095$$

41. Ans: (d)


Sol: given continuous signal
$$x(t) = 8\cos 200\pi t$$

Discrete time signal $x(nT_s) = 8\cos 200\pi nT_s$

$$= 8\cos\frac{200\pi n}{150}$$
$$\left[::T_{s} = \frac{1}{f_{s}} = \frac{1}{150}\right]$$
$$= 8\cos\frac{4\pi n}{3}$$
$$= 8\cos\left(2\pi - \frac{2\pi}{3}\right)n$$
$$= 8\cos\left(\frac{2\pi n}{3}\right)$$

42. Ans: (d)

Sol: Given circuit is shown in below figure.

c²

$$\frac{V_0(s)}{V_i(s)} = \frac{\frac{1}{Cs}}{R + Ls + \frac{1}{Cs}} = \frac{1}{RCs + LCs^2 + 1}$$

CE is $LCs^2 + RCs + 1 = 0$

$$\Rightarrow s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \dots \dots (1)$$

1

We know for standard second order characteristic equation

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0 \dots (2)$$

 $\zeta = 0$ for undamped system

 $0 < \zeta < 1$ for under damped system

For system poles to be on real axis, $\zeta > 1$

For system poles to be on complex plane,

 $\zeta < 1.$

Compare (1), (2) we get

$$\omega_{\rm n} = \frac{1}{\sqrt{\rm LC}}, \zeta = \frac{\rm R}{2}\sqrt{\frac{\rm C}{\rm L}}$$

For $R = 0 \Longrightarrow \zeta = 0$

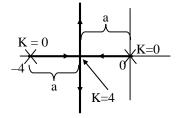
For R = 1Ω, L = 1H, C = 1F, $\zeta = \frac{1}{2} < 1$

For $\zeta > 1 \Rightarrow R > 2\sqrt{\frac{L}{C}}$ For $\zeta < 1 \Rightarrow R < 2\sqrt{\frac{L}{C}}$

From all above conclusions Statements 1, 2, 3 are correct

:7:

Sol: C.L.T.F. =
$$\frac{\frac{s}{2s+1}}{1+\frac{s^2}{2s+1}} = \frac{s^2}{s^2+2s+1}$$


C.E is $s^2+2s+1=0 \Rightarrow s=-1, -1 \Rightarrow$ system is critically damped.

Order of the system is two

∴Both statements are correct.

44. Ans: (d)

Sol: Root Locus plot is as shown below

'K' at break point = (a) (a) =
$$a^2$$

 $\Rightarrow a^2 = 4$
 $\Rightarrow a = 2$

 \therefore s = -2

System is over damped for poles on real axis i.e 0 < k < 4 only.

As two branches are there, so it is second order system.

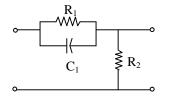
System to be under damped, poles should be on complex plane.

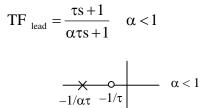
$$\therefore 4 < k < \infty$$
.

So Statements 1, 4 are true.

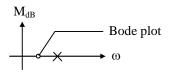
All tests will be available till 12th February 2018

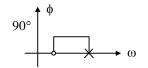
All tests will be available till 25th December 2017


* HIGHLIGHTS *


- Detailed solutions are available.
- All India rank will be given for each test.
- Comparison with all India toppers of ACE students.

www.aceenggacademy.com
 testseries@aceenggacademy.com


45. Ans: (b)



It adds a dominate zero

- It adds positive phase angle
- The system is always stable as the pole is in LHP
- Its magnitude will vary with frequency as shown in bode plot
- \therefore 1, 2, 3 are correct

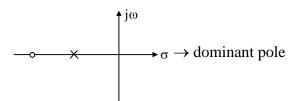
46. Ans: (d)

Sol: All the statements are true. Therefore correct option is (d).

47. Ans: (a) Sol: $k = -(s(s+4)(s^2+4s+8))$ $k = -(s^4+8s^3+24s^2+32s)$ $\frac{dk}{ds} = -(4s^3+24s^2+48s+32) = 0$ s = -2, -2, -2s = -2 is a break point.

48. Ans: (a)

Sol: The compensator is lead


$$-1/\alpha z$$
 $-1/z$

 $\omega_n = \sqrt{1 \times 10} = \sqrt{10} \ rad/sec$

The maximum phase angle is obtained at $\sqrt{10}$ rad/sec

49. Ans: (b)

Sol: Lag compensator, pole-zero diagram

Lag compensator decreases, ω_{gc} , bandwidth.

50. Ans: (c)

Sol:
$$CLTF = \frac{C(s)}{R(s)} = \frac{KG}{1 + KGH}$$

 $S_{K}^{CLTF} = \frac{1}{1 + KGH}$

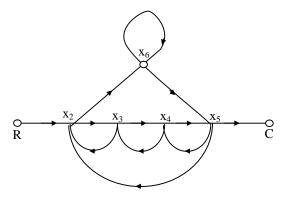
$$S_{G}^{CLTF} = \frac{1}{1 + KGH}$$

$$S_{H}^{CLTF} = \frac{-KGH}{1 + KGH}$$
If loop gain is high
$$KGH \rightarrow \infty$$

$$m S_{K}^{CLTF} = 0, \quad S_{G}^{CLTF} = 0, \quad S_{H}^{CLTF} = -1$$

Sol:
$$M_p = e^{-\pi \zeta / \sqrt{1-\zeta^2}}$$

 $\zeta = \cos\theta$
 $= e^{-\pi \frac{\cos\theta}{\sin\theta}} = e^{-\pi \cot\theta}$


Ang. (d)

52. Ans: (b)

:9:

51

Sol: Given signal flow graph is as shown below

Forward paths are

$$\Rightarrow \begin{pmatrix} \mathbf{R}, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{C} \\ \mathbf{R}, \mathbf{x}_2, \mathbf{x}_6, \mathbf{x}_5, \mathbf{C} \end{pmatrix} \text{two forward paths}$$

53. Ans: (a) Sol: a > ba > ba > ba > b

$$a < b$$

 $b - b - a$

$$b = 0$$

$$G(s) = \frac{s+a}{s} = 1 + \frac{a}{s}$$

∴PI controller

$$a = -b$$
 $\frac{s-b}{s+b}$ $\frac{b}{-b}$ $\frac{b}{b}$

All pass system Therefore 1,2,3,4 are correct

54. Ans: (b)

Sol: TF from root locus is $=\frac{k}{s(s+a)(s+b)}$,

where a, b are +ve

- The system is 3rd order
- It has break point between (0, –a)
- The system will be marginally stable for some k

There fore only 1, 2 are correct

55. Ans: (a)

Sol: Forward path going are H_1G_1 , $H_2G_1G_2$

- Loop gains are $-H_1G_1, -H_2G_1G_2$
- Both loops are touching loops so 3 is incorrect

56.	Ans: (b)							
Sol: From RH criteria								
	s^5	1	2	1	AE_1 Row of zero AE_2 ow of zero			
	s^4	-1	-2	-1	AE_1			
	s ³	(0) –4	(0) –4	0	Row of zero			
	s ²	-1	-1	0	AE_2			
	s^1	(0) –2	0	R	ow of zero			
	s^0	-1						

No sign change below AE so all four roots of AE equation lies on $j\omega$ axis.

4 Poles $\rightarrow j\omega$ –axis

1 Pole \rightarrow RHP (one sign change on first column)

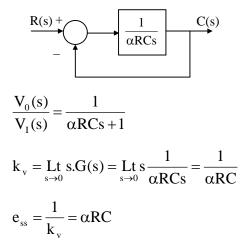
57. Ans: (c)

Sol:
$$G(s) = \frac{10}{(s-1)(s+2)}$$

$$-2$$
 1

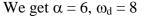
So, G(s) is unstable

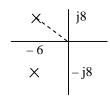
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{10}{(s-1)(s+2)+10}$$
$$= \frac{10}{s^2 - 2 + 2s - s + 10}$$



$$= \frac{10}{s^{2} + s + 8}$$

C.E = s² + s + 8 = 0
s² | 1 8
s¹ | 1 0
s⁰ | 8


There is no sign changes in the first column of RH criteria table. Therefore the closed


loop
$$\frac{C(s)}{R(s)}$$
 is stable

58. Ans: (a) Sol:

- 59. Ans: (d)
- **Sol:** Compare $C(t) = ke^{-\alpha t} \sin \omega_d t u(t)$

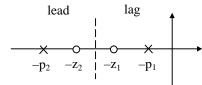
The radial distance $\omega_n = 10 \text{ rad/sec}$

$$\cos \theta = \zeta = \frac{6}{10} = 0.6$$

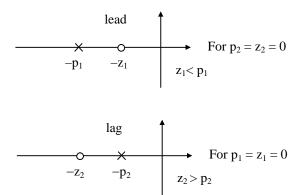
$$\omega_{d} = 8 \text{ rad /sec}$$
60. Ans: (c)
61. Ans: (c)
Sol:. $e_{ss} = \frac{A}{1+k_{p}}$ for step input
 $e_{ss} = \frac{A}{k_{v}}$ for ramp input
 $e_{ss} = \frac{A}{k_{a}}$ for parabolic input
Where
 $k_{p} = \underset{s \to 0}{\text{Lt}} G(s), k_{v} = \underset{s \to 0}{\text{Lt}} sG(s), k_{a} = \underset{s \to 0}{\text{Lt}} s^{2}G(s)$
For type 0- system, $k_{p} = \text{finite} \Rightarrow e_{ss}$ is finite
For type 1 system, $k_{p} = \infty \Rightarrow e_{ss} = 0$
 \therefore statements 1,2 are correct

62. Ans: (d)

60.

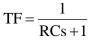

61.

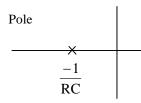
- Sol: System is under damped when poles are on complex plane.
 - \therefore For 0.7 < k < 14 system is under damped.


63. Ans: (a) lead Sol: lag O $-p_2$ $-p_1$ $-\mathbf{Z}_1$ $-\mathbf{Z}_2$

Hyderabad |Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata ACE Engineering Academy

 $z_1 < p_1 < p_2 < z_2$

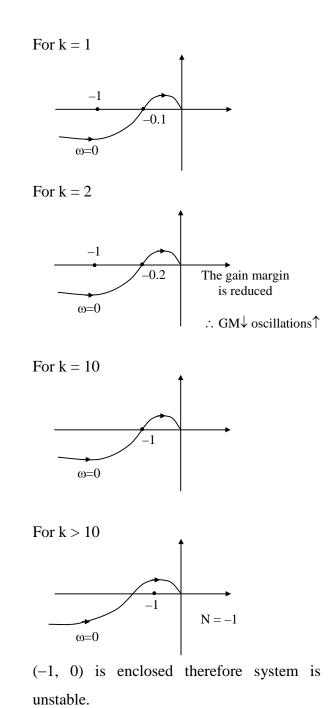

 $p_1 < z_1 < z_2 < p_2$



So, 1, 2, 3 correct.

64. Ans: (b)

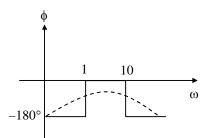
Sol: The circuit is 1st order RC network

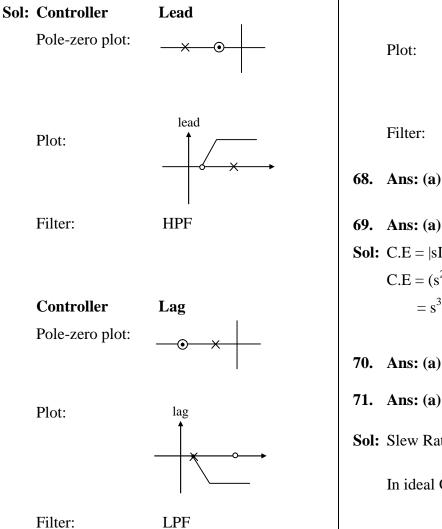

 \rightarrow For whatever RC value the pole location is on real axis

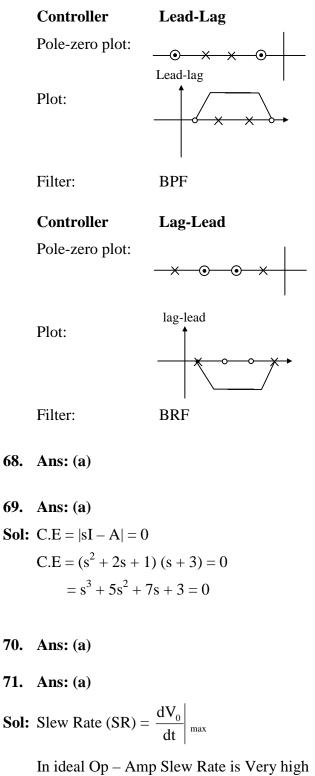
 \therefore It will never produce oscillations.

 \rightarrow Since pole of the system is on real axis and the system has only one pole. It will produce –ve phase angle for sin input, 1, 3, 4 are correct.

65. Ans: (c)


Sol: The plot is given for k = 1





The phase plot of the system $\omega = 10, -90^{\circ}$

67. Ans: (a)

ACE Engineering Academy : 1	4 : Electrical Engineering
72. Ans: (a)	H(s) = 1, closed loop transfer function is
73. Ans: (c)	$\frac{C(s)}{R(s)} = \frac{10}{s+8}$ (2), system is stable.
74. Ans: (d) Sol: Ex: Open loop system transfer function is $G(s) = \frac{10}{s-2} \dots \dots (1),$	By observing above two equations, ∴If open loop system is unstable, closed loop system need not be unstable
System is unstable	75. Ans: (d)

GATE TOPPERS

ESE TOPPERS

204, Rahman Plaza, Abids, Hyderabad Ph : 040-23234418/19/20