

ELECTRONICS \& TELECOMMUNICATION ENGINEERING

BASIC ELECTRICAL ENGINEERING

Volume - 1 : Study Material with Classroom Practice Questions

Chapter 1 Transformers
 (Solutions for Text Book Practice Questions)

Objective Practice Solutions

1. Ans: (b)

Sol: $\uparrow \mathrm{B}_{\text {max }} \propto \frac{\mathrm{V}}{\mathrm{f} \downarrow}$
Here $\mathrm{V} \rightarrow$ constant, $\mathrm{f} \rightarrow$ decreased to half
$\Rightarrow B_{\max }$ increased to double, which will drive the core in to deep saturation and also I_{μ} is very high to create double the rated flux.
02. Ans: (d)

Sol: As $\frac{V}{f}$ ratio is not equal
(i) $\mathrm{W}_{\mathrm{h}} \propto \frac{\mathrm{V}_{1}^{1.6}}{\mathrm{f}^{0.6}}$; as frequency increases, the hysteresis loss will decreases.
(ii) $\mathrm{W}_{\mathrm{e}} \propto \mathrm{V}_{1}^{2}$ (Independent on frequency)
\therefore Eddy current loss will be constant.
03. Ans: (a)

Sol: Lenz's Law:

The direction of statically induced emf is such that the current due to this emf will flow through a closed circuit in such a direction that it will in turn produce some flux according to Electro Magnetic Theory and this flux must opposes the changes in main field flux which is the cause for production of emf as well as current.
04. Ans: (a)

Sol: Specific weight $=\frac{\text { weight of transformer }}{\text { kVA rating }}$

If flux density is high, then required cross sectional area of core will be less.
$\left(\because \mathrm{B} \propto \frac{1}{\mathrm{~A}}\right)$
Therefore transformer weight will be decreased, the transformer should have less specific weight.
05. Ans: (b)

Sol: $\cos \phi_{\mathrm{sc}}=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{\mathrm{R}_{02}}{\sqrt{5} \times \mathrm{R}_{02}}$
$\cos \phi_{\mathrm{sc}}=\frac{1}{\sqrt{5}}$
06. Ans: (d)

Sol: In ideal transformer, resistance of windings and magnetic leakage flux are zero.
07. Ans: (d)

Sol: As leakage flux is more, coefficient of coupling of transformer will decrease and also the inductive reactance drop will be increased.
08. Ans: (a)

Sol: $V=$ constant and $f>f_{\text {rated }}$
$\Rightarrow \frac{\mathrm{V}}{\mathrm{f}}$ Ratio is not constant
$\therefore \mathrm{W}_{\mathrm{h}} \propto \frac{\mathrm{V}_{1}^{1.6}}{\mathrm{f}^{0.6} \uparrow} \Rightarrow \mathrm{~W}_{\mathrm{h}} \downarrow \& \mathrm{~W}_{\mathrm{e}}=$ Const
But " W_{h} " is due to core loss component of current I_{w}
$\Rightarrow \mathrm{As} \mathrm{f} \uparrow, \mathrm{W}_{\mathrm{h}} \downarrow \Rightarrow \mathrm{I}_{\mathrm{w}} \downarrow$.
Similarly $\downarrow \mathrm{I}_{\mu} \propto \downarrow \mathrm{B}_{\text {max }} \propto \frac{\mathrm{V}}{\mathrm{f} \uparrow}$
$\Rightarrow \mathrm{f} \uparrow \Rightarrow \mathrm{B}_{\max } \downarrow \Rightarrow \mathrm{I}_{\mu} \downarrow$
09. Ans: (b)

Sol: Deviation from first approximation is occurred by neglecting primary impedance drop, i.e $\mathrm{I}_{0} \mathrm{Z}_{1}$.
10. Ans: (d)

Sol: If the leakage impedance parameters for both primary and secondary are required separately, then it is usual to take $X_{1}=X_{2}=\frac{1}{2} X_{e}$ refer to the same side and $\mathrm{X}_{\mathrm{m}} \gg \mathrm{X}_{1}($ or $) \mathrm{X}_{2}$

11. Ans: (c)

Sol: Copper loss $\propto I^{2}$ i.e depends on load current called variable losses.
Iron loss $\left(\mathrm{W}_{\mathrm{h}}+\mathrm{W}_{\mathrm{e}}\right) \propto \mathrm{V}^{2}$ (applied voltage), called constant losses.

12. Ans: (a)

Sol: $\mathrm{W}_{\mathrm{i}}=100 \mathrm{~W}$ at 40 Hz .

$$
=72 \mathrm{~W} \text { at } 30 \mathrm{~Hz} .
$$

At $40 \mathrm{~Hz}, \mathrm{~W}_{\mathrm{i}}=\mathrm{A} f+\mathrm{B} f^{2}$.

$$
\begin{equation*}
100=\mathrm{A} \times 40+\mathrm{B} \times 40^{2} \tag{1}
\end{equation*}
$$

At $30 \mathrm{~Hz}, 72=\mathrm{A} \times 30+\mathrm{B} \times 30^{2}$
By solving above two equations,

$$
\mathrm{B}=1 / 100 \text { and } \mathrm{A}=2.1
$$

Hysteresis loss, $\mathrm{W}_{\mathrm{h}}=\mathrm{A} \times f$

$$
=2.1 \times 50 \Rightarrow 105 \mathrm{~W}
$$

Eddy current loss $\mathrm{W}_{\mathrm{e}}=\mathrm{B} \times f^{2}$

$$
\begin{aligned}
& =\frac{50 \times 50}{100} \\
& =25 \mathrm{~W} .
\end{aligned}
$$

13. Ans: (c)

Sol: - For a given kVA rating of transformer, more the design frequency, lesser the cross sectional area of the core and lesser will be the size and weight of transformer.

- For a given kVA rating and designed frequency of transformer, superior the magnetic material used for transformer core, higher will be the flux density and lesser will be the size and weight of the transformer.
- Copper loss is directly proportional to square of the current and resistance.

14. Ans: (a)

Sol: Distribution transformer: Cu-losses take place based on load cycle of Consumer and Iron losses takes place throughout 24 hrs . Iron losses are kept minimum while designing
Power transformer: Cu-losses and Iron losses takes place steadily throughout 24 hrs. Copper losses are kept minimum while designing.
Both assertion and reason are correct, reason is correct explanation to assertion.
15. Ans: (a)

Sol: At $230 \mathrm{~V}, 50 \mathrm{~Hz} \Rightarrow \mathrm{~W}_{\mathrm{I}}=1050 \mathrm{~W}$ At $138 \mathrm{~V}, 30 \mathrm{~Hz} \Rightarrow \mathrm{~W}_{\mathrm{I}}=500 \mathrm{~W}$

$$
\begin{array}{ll}
V_{11}=230 \mathrm{~V} & \frac{V_{11}}{f_{1}}=\frac{230}{50}=4.6 \\
f_{1}=50 \mathrm{~Hz} & \frac{V_{12}}{f_{2}}=\frac{138}{30}=4.6
\end{array}
$$

4
$V_{12}=138 \mathrm{~V}$
$f_{2}=30 \mathrm{~Hz} \quad \frac{V_{1}}{f}=$ constant
at $\frac{v_{1}}{f}=$ constant

$$
\begin{equation*}
W_{\mathrm{I}}=\mathrm{A} f+\mathrm{B} f^{2} \tag{i}
\end{equation*}
$$

at $50 \mathrm{~Hz} \Rightarrow 1050=A(50)+B(50)^{2}$
at $30 \mathrm{~Hz} \Rightarrow 500=A(30)+B(30)^{2}$
by solving equation (1) \& (2), we get

$$
\begin{aligned}
& A=10.1667 \\
& B=0.2167
\end{aligned}
$$

Then at $230 \mathrm{~V}, 50 \mathrm{~Hz}$
$W_{h}=A f=10.1667 \times 50=508.33 \mathrm{~W}$
$W_{e}=B f^{2}=0.2167 \times(50)^{2}=541.75 \mathrm{~W}$

16. Ans: (b)

Sol: Open circuit test is convenient to conduct on LV side by opening H.V winding due to the following reasons:

1. If the test is conducted on LV side, LV source sufficient to conduct the test to maintain rated flux.
2. If the test is conducted on LV side, low range meters are sufficient to conduct the test.
3. As magnitude of no-load current is more on LV side, this high no-load current can be accurately measured on LV side when compared to HV side.

Short circuit Test: As rated current is less on HV side, it is convenient to conduct this test on HV side by short circuiting LV terminals. By doing so low range of meters can be used for conducting this test.
17. Ans: (b)

Sol: $P=V I_{w}$
\because Loss component $\mathrm{I}_{\mathrm{w}}=\frac{5 \times 10^{3}}{220}=22.7 \mathrm{~A}$

18. Ans: (d)

Sol: Given that, no load loss components are equivally divided,
$\mathrm{W}_{\mathrm{h}}=\mathrm{W}_{\mathrm{e}}=10 \mathrm{~W}$
Initially test is conducted on LV side
Now $\frac{\mathrm{v}}{\mathrm{f}}$ ratio is $\frac{100}{50}=2$
In HV side, applied voltage is 160 V ; this voltage on LV side is equal to 80 V .
Now $\frac{\mathrm{V}}{\mathrm{f}}$ ratio is constant, $\mathrm{W}_{\mathrm{h}} \propto \mathrm{f}$ and $\mathrm{W}_{\mathrm{e}} \propto \mathrm{f}^{2}$.

$$
\begin{aligned}
\mathrm{W}_{\mathrm{h} 2} & =\mathrm{W}_{\mathrm{h} 1} \times \frac{\mathrm{f}_{2}}{\mathrm{f}_{1}} \\
& =10 \times \frac{40}{50}=8 \mathrm{~W}
\end{aligned}
$$

$$
\mathrm{W}_{\mathrm{e} 2}=\mathrm{W}_{\mathrm{e} 1} \times\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)^{2}
$$

$$
=10 \times\left(\frac{40}{50}\right)^{2}=6.4 \mathrm{~W}
$$

Therefore,
$\mathrm{W}_{1}=\mathrm{W}_{\mathrm{h} 2}+\mathrm{W}_{\mathrm{e} 2}$
$\Rightarrow 8+6.4=14.4 \mathrm{~W}$

In SC test,

$\mathrm{I}(\mathrm{HV}$ side $)=5 \mathrm{~A}$
$\mathrm{I}(\mathrm{LV}$ side $)=10 \mathrm{~A}$
As the SC tests were conducted at rated current on both sides, the copper losses are same.
19. Ans: (a)

Sol: 1. O.C. Test \qquad Iron loss
2. S.C. Test \qquad Copper loss
3. Sumpner's test-- Copper loss and iron loss
4. Load Test \qquad Total losses
20. Ans: (a)

Sol: It is equivalent circuit of the Transformer under S.C condition when referred to primary side.

21. Ans: (b)

Sol: Open circuit test is convenient to conduct on LV side by opening H.V winding due to the following reasons:

1. If the test is conducted on LV side, LV source sufficient to conduct the test to maintain rated flux.
2. If the test is conducted on LV side, low range meters are sufficient to conduct the test.
3. As magnitude of no-load current is more on LV side, this high no-load current can be accurately measured on LV side when compared to HV side.

Short circuit Test: As rated current is less on HV side, it is convenient to conduct this test on HV side by short circuiting LV terminals. By doing so low range of meters can be used for conducting this test.

22. Ans: (d)

Sol: By keeping V_{sc} is constant, if supply frequency is increased.
X_{01} increases;

$$
\begin{aligned}
& \downarrow \mathrm{I}_{\mathrm{sc}}=\frac{\mathrm{V}_{\mathrm{sc}}=\text { const }}{\mathrm{Z}_{01} \uparrow} \\
& \downarrow \cos \phi_{\mathrm{sc}}=\frac{\mathrm{R}_{01}=\mathrm{const}}{\mathrm{Z}_{01} \uparrow}
\end{aligned}
$$

23. Ans: (c)

Sol: The Condition for maximum efficiency $=2 \mathrm{~W}_{\mathrm{i}}$
\therefore At maximum efficiency

$$
\begin{aligned}
\mathrm{W}_{\text {total }} & =(150+150) \mathrm{W} \\
& =300 \mathrm{~W}
\end{aligned}
$$

24. Ans: (b)

Sol: kVA at $\eta_{\text {max }}=\mathrm{F} . \mathrm{LkVA} \times \sqrt{\frac{\text { Iron loss }}{\text { F.L culoss }}}$

$$
=\mathrm{F} . \mathrm{LkVA} \times \sqrt{\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{SC}}}}
$$

25. Ans: (d)

Sol: Methods to reduce Eddy current loss:
The eddy current loss can be reduced by reducing conductivity of core. The conductivity of core can be reduced without affecting its magnetic properties by using following methods.
(i) By adding silica content up to an extent of 4 to 5% to steel.
(ii) By using laminated core instead of solid core Eddy current loss $w_{e}=K B_{m}^{2} f^{2} 千^{2}$

Where, $K=\frac{\pi^{2}}{6 \rho}$;
$B_{\text {max }}=$ Maximum flux density.
$f=$ frequency of eddy current (supply frequency).
$t=$ Thickness of lamination

Observations:

$w_{e} \propto t^{2}$
The eddy current loss can be effectively reduced by reducing thickness of laminations.
Higher the design frequency of transformer, thinner will be the thickness of lamination required.
26. Ans: (c)

Sol: Core losses $=150 \mathrm{~W}$ (Constant)
Copper loss at full load $=220 \mathrm{~W}$
\therefore Copper loss at halt full load

$$
=\left(\frac{1}{2}\right)^{2} 220 \mathrm{~W}=55 \mathrm{~W}
$$

\therefore Total losses at half full load

$$
\begin{aligned}
& =150+55 \\
& =205 \mathrm{~W}
\end{aligned}
$$

Efficiency at half full load

$$
\begin{aligned}
& =\frac{\frac{1}{2} \times 10^{3} \times 1}{\frac{1}{2} \times 10 \times 10^{3}+205} \times 100 \\
& =96.06 \%
\end{aligned}
$$

27. Ans: (c)

Sol: $\% \eta=\frac{(\mathrm{x})(\mathrm{VI}) \cos \phi}{\mathrm{x}(\mathrm{VI}) \cos \phi+\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{cu}}} \times 100$

$$
x=1 \quad(\because \text { full load })
$$

$$
\mathrm{VI}=200 \mathrm{kVA} ; \cos \phi=0.9 \mathrm{lag} ; \mathrm{W}_{\mathrm{c}}=1.8 \mathrm{~kW}
$$

$$
\mathrm{W}_{\mathrm{cu}}=\left(\frac{1.1}{100}\right) \times 200 \times 10^{3}=2200 \text { watts }
$$

$$
\% \eta=\frac{(1)\left(200 \times 10^{3}\right)(0.9)}{\left(200 \times 10^{3} \times 0.9\right)+\left(1.8 \times 10^{3}\right)+2200} \times 100
$$

$$
=97.82 \%
$$

28. Ans: (a)

Sol: $\%$ Reg $=(\% R) \cos \phi_{2} \pm(\% X) \sin \phi_{2}$
For lagging power for

$$
\begin{aligned}
\% \mathrm{~V} . \mathrm{R} & =(2)(0.8)+(4)(0.6) \\
& =4 \%
\end{aligned}
$$

For leading power factor

$$
\begin{aligned}
\% \mathrm{~V} \cdot \mathrm{R} & =(2)(0.8)-(4)(0.6) \\
& =-0.8 \%
\end{aligned}
$$

29. Ans: (a)

Sol: Given $\% \mathrm{R}=1 \%, \% \mathrm{X}=5 \%$ and $\cos \phi=0.8$

$$
\begin{aligned}
\% \text { Reg } & =(\% \mathrm{R}) \cos \phi+(\% \mathrm{X}) \sin \phi \quad(\because \operatorname{lag} \mathrm{pf}) \\
& =(1)(0.8)+(5)(0.6) \\
& =3.8 \%
\end{aligned}
$$

30. Ans: (a)

Sol: V.R $=(\% \mathrm{R}) \cos \phi_{2}-(\% \mathrm{X}) \sin \phi_{2}$ [at leading p.f]

At leading power factor, Resistive drop and reactive drop are opposing (cancelled out) each other
\therefore Total drop $=$ zero \Rightarrow V.R is zero.
31. Ans: (c)

Sol: 3, 4, 5 condition's are necessary conditions $1 \& 2$ are desirable conditions for parallel operations.
32. Ans: (d)

Sol: If impedance decreases, current will increase and therefore sharing of load will increase.
33. Ans: (d)

Sol:

For series additive polarity of winding, voltage $=132 \mathrm{~V}$.
For series subtractive polarity of winding, voltage $=108 \mathrm{~V}$.
34. Ans: (c)

Sol: $240 / 120 \mathrm{~V}, 12 \mathrm{kVA}$
$\eta=96.2 \%$

$$
\begin{aligned}
\eta=\frac{12000 \times 1}{12000 \times 1+\operatorname{losses}} & =0.962 \\
\Rightarrow 12000+\text { losses } & =12474 \\
\text { Losses } & =474 \mathrm{~W}
\end{aligned}
$$

When connected across 360 V ,
The rating becomes $=\frac{12}{1-\mathrm{k}}=\frac{12}{1-\frac{2}{3}}=36 \mathrm{kVA}$
\therefore Efficiency $=\frac{36000 \times 0.85}{36000 \times 0.85+\text { losses }}$

$$
=\frac{30,600}{30,600+474}=98.5 \%
$$

35. Ans: (c)

Sol: In auto transformer, power is not only transferred by induction process but also by conduction process.

Conventional Practice Solutions

1.

Sol: Given,
Rated low voltage $\mathrm{V}_{\ell 1}=230 \mathrm{~V}$
Rated frequency, $\mathrm{f}_{1}=50 \mathrm{~Hz}$
Applied frequency, $\mathrm{f}_{2}=25 \mathrm{~Hz}$
Let,
Applied voltage to LV winding $=\mathrm{V}_{\ell 2}$
We know that in a transformer
$\mathrm{I}_{\mathrm{m}}{ }^{-} \propto \phi \propto \frac{\mathrm{V}}{\mathrm{f}}$
Given that magnetizing current $\left(\mathrm{I}_{\mathrm{m}}\right)$ is constant
$\therefore \mathrm{I}_{\mathrm{m} 1}=\mathrm{I}_{\mathrm{m} 2}$
$\frac{V_{\ell 1}}{f_{1}}=\frac{V_{\ell 2}}{f_{2}}$
$\frac{230}{50}=\frac{\mathrm{V}_{\ell 2}}{25}$
$\mathrm{V}_{\ell 2}=115 \mathrm{~V}$
\therefore Voltage applied to low voltage winding so that magnetizing current is same is 115 V .
02.

Sol: Given, number of turns in the primary winding, $\mathrm{N}_{1}=100$
Number of turns in the secondary winding, $\mathrm{N}_{2}=400$
Cross sectional area of the core,
$\mathrm{A}=250 \mathrm{~cm}^{2}$
Voltage applied to primary winding,
$\mathrm{V}_{1}=230 \mathrm{~V}$
Frequency of applied voltage, $\mathrm{f}=50 \mathrm{~Hz}$
Let,
$\mathrm{V}_{2}=$ Voltage induced in the secondary winding
$B_{m}=$ Maximum value of flux density in the core

We know that in a transformer, expression for voltage transformation is given by,
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$
$\frac{230}{\mathrm{~V}_{2}}=\frac{100}{400}$
$\mathrm{V}_{2}=920$
In a transformer, expression for induced emf is given by
$\mathrm{E}=4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{AfN}$ volts
$\mathrm{V}_{1}=4.44 \mathrm{~B}_{\mathrm{m}} \mathrm{AfN}_{1}$
$230=4.44 \times \mathrm{B}_{\mathrm{m}} \times 250 \times 10^{-4} \times 50 \times 100$
$\mathrm{B}_{\mathrm{m}}=0.4144 \mathrm{~Wb} / \mathrm{m}^{2}$
Induced EMF in the secondary winding
$=920 \mathrm{~V}$
Maximum value of flux density in the core $=0.4144 \mathrm{~Wb} / \mathrm{m}^{2}$
03.

Sol: Given,
Applied voltage, $\mathrm{V}_{0}=2300 \mathrm{~V}$
No load current drawn, $\mathrm{I}_{0}=0.3 \mathrm{~A}$
Power consumed $\mathrm{P}_{0}=200 \mathrm{~W}$
Let,
No load power factor $=\cos \phi_{0}$
We know that,
$\mathrm{P}_{0}=\mathrm{V}_{0} \mathrm{I}_{0} \cos \phi_{0}$
$200=2300 \times 0.3 \times \cos \phi_{0}$
$\cos \phi_{0}=0.289$
No load power factor $=0.289$
Primary resistance $\mathrm{r}_{1}=3.5 \Omega$
\therefore Primary Copper losses $\mathrm{P}_{\mathrm{cu}}=\mathrm{I}_{0}^{2} \mathrm{r}_{1}$

$$
\begin{aligned}
= & (0.3)^{2} \times 3.5 \\
\mathrm{P}_{\mathrm{cu}} & =0.315 \mathrm{~W}
\end{aligned}
$$

Core losses, $\mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{cu}}$

$$
\begin{aligned}
& =200-0.315 \\
& =199.685 \mathrm{~W}
\end{aligned}
$$

Core losses $=199.685 \mathrm{~W}$
04.

Sol: Given,
Power rating of the transformer,

$$
(\mathrm{VA})=150 \times 10^{3} \mathrm{VA}
$$

Full load copper losses, $\mathrm{P}_{\mathrm{cu}}=1600 \mathrm{~W}$
Iron losses, $\mathrm{P}_{\mathrm{c}}=1400 \mathrm{~W}$
Power factor $\mathrm{Pf}=1$
Let,
$\mathrm{x}=$ fraction of full loading
(i) Loading $=25 \%$ of full load
$\therefore \mathrm{x}=0.25$
Efficiency of transformer

$$
\begin{equation*}
\eta=\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}} \tag{1}
\end{equation*}
$$

$\eta=\frac{(0.25)\left(150 \times 10^{3}\right)(1)}{(0.25)\left(150 \times 10^{3}\right)(1)+1400+(0.25)^{2} \times 1600}$
$\eta=\frac{37500}{37500+1400+100}$
$\eta=96.15 \%$
(ii) Loading $=33 \%$ of full Load

$$
x=0.33
$$

From (1)
$\eta=\frac{(0.33)\left(150 \times 10^{3}\right)(1)}{(0.33)\left(150 \times 10^{3}\right)(1)+1400+(0.33)^{2} \times 1600}$
$\eta=96.9 \%$
(iii) Loading $=100 \%$ of full Load $\Rightarrow x=1$

From (1)
$\eta=\frac{(1)\left(150 \times 10^{3}\right)(1)}{(1)\left(150 \times 10^{3}\right)(1)+1400+(1)^{2} \times 1600}$
$\eta=98.04 \%$
05.

Sol: Given,
Maximum efficiency, $\eta_{\max }=98 \%$

Loading at which maximum efficiency,
$\mathrm{x}_{\mathrm{m}}=\frac{3}{4}=0.75$
$\mathrm{x}_{\mathrm{m}}=0.75$
Power factor, $\mathrm{pf}=1$
Iron losses, $\mathrm{P}_{\mathrm{c}}=314 \mathrm{~W}$
Let,
$\mathrm{VA}=$ power rating of the transformer
$\mathrm{P}_{\mathrm{cu}}=$ copper losses at full load
At maximum efficiency
$\mathrm{P}_{\mathrm{c}}=\mathrm{x}_{\mathrm{m}}^{2} \mathrm{P}_{\mathrm{cu}}$
$314=(0.75)^{2} \mathrm{P}_{\mathrm{cu}}$
$\mathrm{P}_{\mathrm{cu}}=558.2 \mathrm{~W}$
Given that $\eta_{\max }=98 \%$
$\eta=\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}}-\ldots--(1)$
$\eta_{\text {max }}=\frac{x_{m}(V A) p f}{x_{m}(V A) p f+P_{c}+x_{m}^{2} P_{c u}}$
$0.98=\frac{(0.75)(\mathrm{VA})(1)}{(0.75)(\mathrm{VA})(1)+314+314}$
$\mathrm{VA}=41029.3 \mathrm{VA}$
(i) Loading $=50 \%$ of full load
$\Rightarrow \mathrm{x}=0.5$
From (1)
$\eta=\frac{(0.5)(41029.3)(1)}{(0.5)(41029.3)(1)+314+(0.5)^{2} \times(558.2)}$
$\eta=97.8 \%$
(ii) Loading $=100 \%$ of full load
$\Rightarrow \mathrm{x}=1$
From (1)
$\eta=\frac{(1)(41029.3)(1)}{(1)(41029.3)(1)+314+(1)^{2}(558.2)}$
$\eta=97.92 \%$
06.

Sol: Given, Power rating of the transformer (VA) $=25 \times 10^{3} \mathrm{VA}$

Iron losses, $\mathrm{P}_{\mathrm{c}}=350 \mathrm{~W}$
Full load copper losses, $\mathrm{P}_{\mathrm{cu}}=400 \mathrm{~W}$
Power factor $\mathrm{pf}=1$
At maximum efficiency
Core losses = copper losses
$\mathrm{P}_{\mathrm{c}}=\mathrm{x}^{2} \mathrm{P}_{\mathrm{cu}}$
$350=\mathrm{x}^{2}(400)$
$\mathrm{X}=0.9354$
Maximum efficiency occurs at 93.54% at of full load

We know that, in a transformer
Efficiency $\eta=\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}}$

$$
\eta=\frac{(0.9354)\left(25 \times 10^{3}\right)(1)}{(0.9354)\left(25 \times 10^{3}\right)(1)+350+350}
$$

$\eta=97.1 \%$
Maximum efficiency, $\eta_{\max }=97.1 \%$
07.

Sol: Given,
Power rating of the transformer,
$\mathrm{VA}=40 \times 10^{3} \mathrm{VA}$
Maximum efficiency, $\eta_{\max }=97 \%$
Maximum efficiency occurs at 80% of full load
$\mathrm{X}_{\mathrm{m}}=0.8$
Power factor, $\mathrm{pf}=1$

Let $\mathrm{P}_{\mathrm{cu}}=$ full load copper loss
$\mathrm{P}_{\mathrm{c}}=$ core loss
At maximum efficiency,
Core losses = Copper losses
$\mathrm{P}_{\mathrm{c}}=\mathrm{X}_{\mathrm{m}}^{2} \mathrm{P}_{\mathrm{cu}}$
For a transformer,

$$
\text { Efficiency } \begin{align*}
\eta & =\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}}----(2) \tag{2}\\
\eta_{\max } & =\frac{x_{m}(\mathrm{VA}) \mathrm{pf}}{\mathrm{x}_{\mathrm{m}}(\mathrm{VA}) \mathrm{pf}+\mathrm{P}_{\mathrm{C}}+\mathrm{x}_{\mathrm{m}}^{2} \mathrm{P}_{\mathrm{cu}}} \\
0.97 & =\frac{(0.8)(\mathrm{VA})(1)}{(0.8)(\mathrm{VA})(1)+\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{c}}} \quad[\text { from (1)] }
\end{align*}
$$

$\mathrm{P}_{\mathrm{c}}=494.8 \mathrm{~W}$
From (1),
$\mathrm{P}_{\mathrm{cu}}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{X}_{\mathrm{m}}^{2}}=773.2 \mathrm{~W}$
$\mathrm{P}_{\mathrm{cu}}=773.2 \mathrm{~W}$

Time $\mathrm{t}(\mathrm{hrs})$	Load $\left(\mathrm{P}_{0}\right) \mathrm{kW}$	Pf	$\mathrm{x}=\frac{\mathrm{P}_{0}}{(\mathrm{VA}) \mathrm{pf}}$	$\mathrm{P}_{\mathrm{c}}(\mathrm{W})$	$\mathrm{E}_{\mathrm{c}}=\mathrm{P}_{\mathrm{c}} \times\left(\mathrm{k} \omega_{\mathrm{n}}\right)$
9	6	0.6	$\mathrm{x}=\frac{6}{40 \times 0.6}=0.25$	494.8	4.453
8	25	0.8	$\mathrm{x}=0.781995$	494.8	3.958
7	30	0.9	$\mathrm{x}=0.833$	494.8	3.463
				$\mathrm{E}_{\mathrm{ct}}=11.87 \mathrm{kWh}$	

$\mathrm{E}_{0}=\mathrm{P}_{0} \times \mathrm{t}(\mathrm{kWh})$	$\mathrm{P}_{\mathrm{cu}, \mathrm{x}}=\mathrm{x}^{2} \mathrm{P}_{\mathrm{cu}}(\mathrm{W})$	$\mathrm{E}_{\mathrm{cu}, \mathrm{x}}=\mathrm{P}_{\mathrm{cu}, \mathrm{x}} \times \mathrm{t}(\mathrm{kWh})$
54	$(0.25)^{2} 773=48.3$	0.434
200	470.4	3.76
210	536.5	3.75
		$\mathrm{E}_{\mathrm{cu}, \mathrm{t}}=7.94 \mathrm{kWh}$

All day efficiency of a transformer is
$\eta_{\text {all day }}=\frac{\text { total energy output }}{\text { total energy output }+ \text { total energy losses }}$

$$
\begin{aligned}
& =\frac{464}{464+11.87+7.94} \\
\eta_{\text {all day }} & =95.9 \%
\end{aligned}
$$

8.

Sol: Given power rating of the transformer (VA) $=50 \times 10^{3} \mathrm{VA}$

Loading at which maximum efficiency occurs $=90 \%$ of full load
$\mathrm{x}_{\mathrm{m}}=0.9$
Maximum efficiency, $\eta_{\max }=97.4 \%$
Let $\mathrm{P}_{\mathrm{cu}}=$ full load copper losses
$\mathrm{P}_{\mathrm{c}}=$ core losses
At maximum efficiency,
Core losses $=$ copper losses and $\mathrm{pf}=1$
$P_{c}=x^{2} P_{c u}$ \qquad
For a transformer
Efficiency,
$\eta=\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}} \cdots(2)$
$\eta_{\text {max }}=\frac{x_{m}(V A) p f}{x_{m}(V A) p f+P_{c}+x_{m}^{2} \mathrm{P}_{\mathrm{cu}}}$
$0.974=\frac{(0.9) \times\left(50 \times 10^{3}\right)(1)}{(0.9)\left(50 \times 10^{3}\right)(1)+\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{c}}=600.6 \mathrm{~W}$

From (1),

$600.6=(0.9)^{2} \mathrm{P}_{\mathrm{cu}}$
$\mathrm{P}_{\mathrm{cu}}=741.5 \mathrm{~W}$
(a) Given loading $=$ full load $\mathrm{x}=1$
$\mathrm{pf}=0.8 \mathrm{lag}$
from (2),

$$
\begin{aligned}
& \eta=\frac{(0.8)\left(50 \times 10^{3}\right)(1)}{(0.8)\left(50 \times 10^{3}\right)(1)+(600.6)+(1)^{2}(741.5)} \\
& \eta=96.75 \%
\end{aligned}
$$

(b) loading = half load
$\mathrm{x}=0.5$
$\mathrm{pf}=0.9$
$\eta=\frac{(0.9)\left(50 \times 10^{3}\right)(1 / 2)}{(0.9)\left(50 \times 10^{3}\right)(0.5)+(600.6)+(1 / 2)^{2}(741.5)}$
$\eta=96.6 \%$
09.

Sol: Given,
Initial frequency, $f_{1}=50 \mathrm{~Hz}$
Core loss at 50 Hz frequency, $\mathrm{P}_{\mathrm{c}_{1}}=2000 \mathrm{~W}$
Final frequency, $\mathrm{f}_{2}=75 \mathrm{~Hz}$
Core loss at 75 Hz , frequency, $\mathrm{P}_{\mathrm{c}_{2}}=3200 \mathrm{~W}$
Also it is given that flux density, B is
Constant
Hysteresis loss, $\mathrm{P}_{\mathrm{h}}=\mathrm{k}_{\mathrm{n}} \mathrm{B}^{\mathrm{x}} \mathrm{f}$
$\mathrm{P}_{\mathrm{h}}=\mathrm{C}_{1} \mathrm{f}----(1)$

$$
\left[\because \mathrm{B}=\text { constant and } \mathrm{C}_{1}=\mathrm{k}_{\mathrm{n}} \mathrm{~B}^{\mathrm{x}}\right]
$$

Eddy current losses, $\mathrm{P}_{\mathrm{e}}=\mathrm{k}_{\mathrm{e}} \mathrm{B}^{2} \mathrm{f}^{2}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}}=\mathrm{C}_{2} \mathrm{f}^{2} \quad------(2) \quad[\because \mathrm{B}=\text { constant and } \\
& \mathrm{C}_{2}=\mathrm{k}_{\mathrm{e}} \mathrm{~B}^{2}
\end{aligned}
$$

Core loss $\mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{e}}$
$\mathrm{P}_{\mathrm{c}}=\mathrm{C}_{1} \mathrm{f}+\mathrm{C}_{2} \mathrm{f}^{2}$ \qquad

From (3),
$\mathrm{P}_{\mathrm{cl}}=\mathrm{C}_{1} \mathrm{f}_{1}+\mathrm{C}_{2} \mathrm{f}_{1}^{2}$
$2000=50 \mathrm{C}_{1}+50^{2} \mathrm{C}_{2}$
$40=\mathrm{C}_{1}+50 \mathrm{C}_{2}-\cdots--(4)$
From (3)
$\mathrm{P}_{\mathrm{c} 2}=\mathrm{C}_{1} \mathrm{f}_{2}+\mathrm{C}_{2} \mathrm{f}_{2}^{2}--\cdots--(3)$
$3200=\mathrm{C}_{1}(75)+\mathrm{C}_{2}(75)^{2}$
$42.67=\mathrm{C}_{1}+75 \mathrm{C}_{2}$
(4) - (5)
$25 \mathrm{C}_{2}=2.67$
$\mathrm{C}_{2}=0.1067 \mathrm{~W} / \mathrm{Hz}^{2}$
Substituting (6) in (4) we get
$40=C_{1}+5.333$
$\mathrm{C}_{1}=34.67 \mathrm{~W} / \mathrm{Hz}$
At 50 Hz :
$\mathrm{P}_{\mathrm{h}_{1}}=\mathrm{C}_{1} \mathrm{f}_{1}$
$\mathrm{P}_{\mathrm{h}_{1}}=1733.3 \mathrm{~W}$
$\mathrm{P}_{\mathrm{e}_{1}}=\mathrm{C}_{2} \mathrm{f}_{1}^{2}$
$\mathrm{P}_{\mathrm{e} 1}=266.75 \mathrm{~W}$

At 75kHz:

$\mathrm{P}_{\mathrm{h}_{2}}=\mathrm{C}_{1} \mathrm{f}_{2}$
$\mathrm{P}_{\mathrm{h}_{2}}=2600.25 \mathrm{~W}$
$\mathrm{P}_{\mathrm{e}_{2}}=\mathrm{C}_{2} \mathrm{f}_{2}^{2}$
$\mathrm{P}_{\mathrm{e}_{2}}=600.18 \mathrm{~W}$

10. Ans: 2600 watt

Sol: Given $\mathrm{V}_{1}=1000 \mathrm{~V}, \mathrm{f}_{1}=50 \mathrm{~Hz}$

$$
\begin{aligned}
& \mathrm{V}_{2}=2000 \mathrm{~V}, \mathrm{f}_{2}=100 \mathrm{~Hz} \\
& \mathrm{~W}_{\mathrm{h} 1}=700 \mathrm{~W}, \mathrm{~W}_{\mathrm{e} 1}=300 \mathrm{~W} \\
& \frac{V}{f}=\text { constant }
\end{aligned}
$$

Therefore, $W_{h} \propto f$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{h} 2} \propto \mathrm{~W}_{\mathrm{h} 1}\left(\frac{f_{2}}{f_{1}}\right) & =700\left(\frac{100}{50}\right) \\
& =1400 \mathrm{watt}
\end{aligned}
$$

$W_{e} \propto f^{2}$
$\mathrm{W}_{\mathrm{e} 2}=\mathrm{W}_{\mathrm{e} 1}\left(\frac{f_{2}}{f_{1}}\right)^{2}=300\left(\frac{100}{50}\right)^{2}$
$=1200$ watt
New core loss $\mathrm{W}_{\mathrm{i}}=\mathrm{W}_{\mathrm{h} 2}+\mathrm{W}_{\mathrm{e} 2}$

$$
\begin{aligned}
& =1400+1200 \\
& =2600 \mathrm{watt}
\end{aligned}
$$

11.

Sol: Given,
Power rating of the transformer,
$(\mathrm{VA})_{\mathrm{B}}=20 \times 10^{3}$
Primary voltage rating, $\mathrm{V}_{1 \mathrm{~B}}=2500 \mathrm{~V}$
Secondary voltage rating, $\mathrm{V}_{2 \mathrm{~B}}=500 \mathrm{~V}$

$$
\begin{aligned}
\mathrm{r}_{1} & =8 \Omega \\
\mathrm{r}_{2} & =0.3 \Omega
\end{aligned} \quad \begin{aligned}
& \mathrm{x}_{1}=17 \Omega \\
& \mathrm{r}_{\mathrm{el}}=\mathrm{r}_{1}+\mathrm{r}_{2}\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \\
&=8+0.3\left(\frac{2500}{500}\right)^{2} \\
&=8+7.5 \\
& \mathrm{r}_{\mathrm{el}}=15.5 \Omega \\
& \mathrm{x}_{\mathrm{el}}=\mathrm{x}_{1}+\mathrm{x}_{2}\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)^{2}=17+0.7\left(\frac{2500}{500}\right)^{2} \\
&=17+17.5 \\
& \mathrm{x}_{\mathrm{el}}=34.5 \Omega
\end{aligned}
$$

Base impedance w.r.t primary side,
$Z_{1 B}=\frac{V_{1 B}^{2}}{(\mathrm{VA})_{\mathrm{B}}}$
$\mathrm{Z}_{\mathrm{IB}}=\frac{(2500)^{2}}{20 \times 10^{3}}$
$Z_{1 B}=312.5 \Omega$
Per unit resistance
$\left(\xi_{r}\right)=\frac{r_{e l}}{Z_{1 B}}=\frac{15.5}{312.5}=4.96 \%$
$\xi_{\mathrm{r}}=4.96 \%$
Per unit reactance $\left(\xi_{\mathrm{x}}\right)=\frac{\mathrm{X}_{\mathrm{el}}}{\mathrm{Z}_{\mathrm{IB}}}=\frac{34.5}{312.5}$
$\xi_{\mathrm{x}}=11.04 \%$
(a) $\mathrm{pf}=0.91 \mathrm{ag}$
$\cos \phi_{2}=0.9 \mathrm{lag}$
Voltage regulation (R)

$$
=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}[\mathrm{lag}]
$$

$$
\Rightarrow \mathrm{R}=(4.96)(0.9)+(11.04)(0.436)
$$

$$
\mathrm{R}=9.27 \%
$$

(b) $\mathrm{pf}=0.9$ lead
$\cos \phi_{2}=0.9$ lead
Voltage regulation (R)

$$
\begin{aligned}
& =\xi_{\mathrm{r}} \cos \phi_{2}-\xi_{\mathrm{x}} \sin \phi_{2}[\text { lead }] \\
\Rightarrow \mathrm{R} & =(4.96)(0.9)-(11.04)(0.436) \\
\mathrm{R} & =-0.35 \%
\end{aligned}
$$

12.

Sol:
(a) Expression for voltage regulation is
$\mathrm{R}=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}$
For zero voltage regulation
$\mathrm{R}=0, \quad \Rightarrow \quad \xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}=0$
$\Rightarrow \xi_{\mathrm{r}} \cos \phi_{2}=-\xi_{\mathrm{x}} \sin \phi_{2}$
$\Rightarrow \tan \phi_{2}=\frac{-\xi_{\mathrm{r}}}{\xi_{\mathrm{x}}}$
$\Rightarrow \phi_{2}=\tan ^{-1}\left(-\frac{\xi_{\mathrm{r}}}{\xi_{\mathrm{x}}}\right)$
$\Rightarrow \phi_{2}=-\tan ^{-1}\left(\frac{\xi_{\mathrm{r}}}{\xi_{\mathrm{x}}}\right)$

Power factor $\mathrm{pf}=\cos \phi_{2}$
$\mathrm{pf}=\cos \left(\tan ^{-1}\left(\frac{-\xi_{\mathrm{r}}}{\xi_{\mathrm{x}}}\right)\right)$
$\mathrm{pf}=\frac{\xi_{\mathrm{x}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}}, \operatorname{lead}[\because-$ sign $]$
Condition for zero voltage regulation is
$\mathrm{pf}=\frac{\xi_{\mathrm{x}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{r}}^{2}}}$, lead
from (1)
for maximum regulation
$\frac{\mathrm{dR}}{\mathrm{d} \phi_{2}}=0$
$\Rightarrow-\xi_{\mathrm{r}} \sin \phi_{2}+\xi_{\mathrm{x}} \cos \phi_{2}=0$
$\xi_{\mathrm{r}} \sin \phi_{2}=\xi_{\mathrm{x}} \cos \phi_{2}$
$\tan \phi_{2}=\frac{\xi_{\mathrm{x}}}{\xi_{\mathrm{r}}}$
$\left.\begin{array}{l}\sin \phi_{2}=\frac{\xi_{\mathrm{x}}}{\sqrt{\xi_{\mathrm{x}}^{2}+\xi_{\mathrm{r}}^{2}}} \\ \cos \phi_{2}=\frac{\xi_{\mathrm{r}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}}\end{array}\right\}$
Substituting (2) in (1)
$\operatorname{Max} R=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}$

$$
\begin{aligned}
& =\xi_{\mathrm{r}}\left(\frac{\xi_{\mathrm{r}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}}\right)+\xi_{\mathrm{x}}\left(\frac{\xi_{\mathrm{x}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}}\right) \\
& =\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}} \\
& =\xi_{\mathrm{z}} \\
& =\text { Per unit impedance }
\end{aligned}
$$

Maximum voltage regulation $=$ per unit impedance.
(b) Power rating of the transformer,

$$
(\mathrm{VA})_{\mathrm{B}}=20 \times 10^{3} \mathrm{VA}
$$

Primary rated voltage, $\mathrm{V}_{1 \mathrm{~B}}=2000 \mathrm{~V}$
Secondary rated voltage, $\mathrm{V}_{2 \mathrm{~B}}=200 \mathrm{~V}$
$\begin{array}{ll}\mathrm{r}_{1}=3 \Omega & \mathrm{x}_{1}=5.3 \Omega \\ \mathrm{r}_{2}=0.05 \Omega & \mathrm{x}_{2}=0.1 \Omega\end{array}$
$r_{e q}=r_{1}+r_{2}\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)^{2}$
$r_{\text {eq }}=3+0.05\left(\frac{2000}{200}\right)^{2}=3+0.05(100)$
$\mathrm{r}_{\mathrm{eq}}=8 \Omega$
$\mathrm{x}_{\mathrm{eq}}=\mathrm{x}_{1}+\mathrm{x}_{2}\left(\frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}\right)^{2}$
$\mathrm{x}_{\mathrm{eq}}=5.3+0.1\left(\frac{2000}{200}\right)^{2}$
$\mathrm{x}_{\mathrm{eq}}=15.3 \Omega$
Base is impedance w.r.t primary is
$Z_{1 \mathrm{~B}}=\frac{\mathrm{V}_{1 \mathrm{~B}}^{2}}{(\mathrm{VA})_{\mathrm{B}}}=\frac{(2000)(2000)}{20 \times 1000}$
$Z_{1 B}=200 \Omega$
Per unit resistance, $\xi_{\mathrm{r}}=\frac{\mathrm{r}_{\mathrm{el}}}{\mathrm{Z}_{1 \mathrm{~B}}}$
$\xi_{\mathrm{r}}=\frac{8}{200}$
$\xi_{\mathrm{r}}=4 \%$
Per unit reactance $\xi_{\mathrm{x}}=\frac{\mathrm{X}_{\mathrm{el}}}{\mathrm{Z}_{\mathrm{IB}}}$
$\xi_{\mathrm{x}}=\frac{15.3}{200}$
$\xi_{\mathrm{x}}=7.65 \%$
(i) $\mathrm{pf}=0.8 \mathrm{lag}$

Voltage regulation $(\mathrm{R})=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}$ [\because lagging]
$\Rightarrow \mathrm{R}=4(0.8)+7.65(0.6)$
$\mathrm{R}=7.79 \%$
(ii) $\mathrm{pf}=1$

Voltage regulation (R) $=\xi_{\mathrm{r}} \cos \phi_{2} \pm \xi_{\mathrm{x}} \sin \phi_{2}$
$\mathrm{R}=4(1) \pm 7.65(0)$
$\mathrm{R}=4 \%$
(iii) $\mathrm{pf}=0.707$ leading

Voltage regulation (R) $=\xi_{\mathrm{r}} \cos \phi_{2}-\xi_{\mathrm{x}} \sin \phi_{2}$
$\mathrm{R}=-2.58 \%$
13.

Sol: 1- $\phi, 25 \mathrm{kVA}, 2300 / 230 \mathrm{~V}, 50 \mathrm{~Hz}$ distribution transformer,
Given, core losses at full voltage $=250 \mathrm{~W}$ Copper losses at half load $=300 \mathrm{~W}$
$\mathrm{W}_{\mathrm{cu} 1 / 2 \text { load }}=\left(\frac{1}{2}\right)^{2} \mathrm{~W}_{\mathrm{cu} \text { full load }}$
$\therefore \mathrm{W}_{\mathrm{cu}}$ full load $=(2)^{2} \mathrm{~W}_{\mathrm{cu}}$ at half load

$$
=2^{2} \times 300=1200 \mathrm{~W}
$$

Now copper losses at full load $=300 \times 4$

$$
=1200 \mathrm{~W}
$$

(i) Rated load at 0.86 power factor lagging

$$
P_{\text {out }}=25 \times 10^{3} \times 0.866=21650 \mathrm{~W}
$$

$\mathrm{P}_{\text {losses }}$ at rated load

$$
\begin{aligned}
& =\mathrm{W}_{\text {cu full load }}+\mathrm{W}_{\text {core losses }} \\
& =1200+250=1450 \mathrm{~W}
\end{aligned}
$$

$$
=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {out }}+\mathrm{P}_{\text {losses }}}
$$

$$
\% \eta=\frac{21650}{21650+1200+250} \times 100=93.72 \%
$$

$$
\% \text { efficiency }=93.72 \%
$$

(ii) All day efficiency:

Since core losses remains same for 24 hours $\mathrm{W}_{\text {core loss }}=250 \mathrm{~W}$
Copper losses values depends on load:
$\frac{1}{4}$ full load for $\mathbf{4}$ hour at $0.8 \mathbf{p f}$
$\mathrm{W}_{\mathrm{cu}}=\left(\frac{1}{4}\right)^{2} \times 1200 \times=800 \mathrm{~W}$
$\mathrm{E}_{\text {out }}=\frac{1}{4} \times 25 \times 10^{3} \times 0.8 \times 4=20 \mathrm{kWh}$
$\frac{1}{2}$ full load for $\mathbf{1 0}$ hours at $\mathbf{0 . 8} \mathbf{~ p f}$

$$
\begin{aligned}
\mathrm{E}_{\text {out }} & =\left(\frac{1}{2}\right)^{2} \times 1200 \times 25 \times 10^{3} \times 0.8 \times 10 \\
& =100 \mathrm{kWh}
\end{aligned}
$$

$\frac{3}{4}$ full load for 6 hours $\mathbf{w}_{\mathbf{c u}}$
$\mathrm{W}_{\mathrm{cu}}=\left(\frac{3}{4}\right)^{2} \times 1200 \times 6=4050 \mathrm{~W}$
$\mathrm{E}_{\text {out }}=\frac{3}{4} \times 25 \times 10^{3} \times 0.8 \times 6=90 \mathrm{kWh}$
Full load for 4 hours at $\mathbf{0 . 9} \mathbf{~ p f}$
$\mathrm{W}_{\mathrm{cu}}=1200 \times 4=4800 \mathrm{~W}$
$\mathrm{E}_{\text {out }}=25 \times 10^{3} \times 0.9 \times 4=90 \mathrm{kWh}$
\therefore Total output for 24 hours $\mathrm{E}_{\text {out }}$
$=20 \mathrm{kWh}+100 \mathrm{kWh}+90 \mathrm{kWh}+90 \mathrm{kWh}$
$=300 \mathrm{kWh}$
Total copper losses for 24 hours W_{cu}
$=800 \mathrm{~W}+3000 \mathrm{~W}+4050 \mathrm{~W}+4800 \mathrm{~W}$
$=12.650 \mathrm{~kW}$
Total core losses for 24 hours $\mathbf{E}_{\text {loss }}$
$=250 \times 24=6 \mathrm{kWh}$

$$
\begin{aligned}
\therefore \text { All day efficiency } & =\frac{\mathrm{E}_{\text {out }}}{\mathrm{E}_{\text {out }}+\mathrm{E}_{\text {losses }}} \\
& =\frac{300}{300+12.650+6} \\
& =94.147 \%
\end{aligned}
$$

\therefore All day efficiency, $\% \eta=94.147 \%$
14.

Sol: Voltage regulation for lagging pf is
$\mathrm{R}=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}$
$\xi_{\mathrm{r}}=$ perunit resistane
$\xi_{\mathrm{x}}=$ perunit reactance
Given,
$\mathrm{R}_{1}=4 \% \quad ; \quad \cos \phi_{21}=0.8$----(2)
$\mathrm{R}_{2}=4.4 \% ; \quad \cos \phi_{22}=0.6$
Substituting (2) in (1)
$4=\xi_{\mathrm{r}} 0.8+\xi_{\mathrm{x}} 0.6$
$20=4 \xi_{\mathrm{r}}+3 \xi_{\mathrm{x}}$
Substituting (3) in (1)
$4.4=\xi_{\mathrm{r}}(0.6)+\xi_{\mathrm{x}}(0.8)$
$22=3 \xi_{\mathrm{r}}+4 \xi_{\mathrm{x}}$
Solving (4) and (5) we get
$\left.\begin{array}{l}\xi_{\mathrm{r}}=2 \% \\ \xi_{\mathrm{x}}=4 \%\end{array}\right\}$
(i) from (1)

For maximum regulation,
$\frac{\mathrm{dR}}{\mathrm{d} \phi_{2}}=0$
$-\xi_{\mathrm{r}} \sin \phi_{2}+\xi_{\mathrm{x}} \cos \phi_{2}=0$
$\tan \phi_{2}=\frac{\xi_{\mathrm{x}}}{\xi_{\mathrm{r}}}$
$\tan \phi_{2}=\frac{4}{2}=2$
$\tan \phi_{2}=2$
$\phi_{2}=63.43^{0}$
$\mathrm{Pf}=\cos \phi_{2}=0.447$
Pf for maximum regulation $=0.447 \mathrm{lag}$
(ii) $\xi_{\mathrm{x}}=\frac{\mathrm{P}_{\mathrm{cu}}}{\mathrm{VA}} \Rightarrow 0.02=\frac{\mathrm{P}_{\mathrm{cu}}}{\mathrm{VA}}$
$\Rightarrow \mathrm{P}_{\mathrm{cu}}=0.02 \mathrm{VA}$
$\mathrm{P}_{\mathrm{cu}}=$ full load copper loss
$\mathrm{VA}=$ Power rating of the transformer
Efficiency, $\eta=\frac{x(V A) p f}{x(V A) p f+P_{c}+x^{2} P_{c u}}$
$\mathrm{P}_{\mathrm{c}}=$ core loss
Given $\mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{cu}}$
$\mathrm{P}_{\mathrm{c}}=0.02 \mathrm{VA}$
Power factor, $\mathrm{pf}=1$ and $\mathrm{x}=1[\because$ full load $]$

$$
\begin{aligned}
\therefore \eta & =\frac{(1)(\mathrm{VA})(1)}{(1)(\mathrm{VA})(1)+0.02 \mathrm{VA}+0.02 \mathrm{VA}} \\
& =\frac{1}{1.04} \\
\eta & =96.1 \%
\end{aligned}
$$

15.

Sol: Given,
Maximum possible voltage regulation, max $\mathrm{R}=6 \%$
power factor at which regulation is maximum $=0.3$
We know that,
Maximum regulation
$=$ Per unit impedance $\left(\xi_{z}\right)$
$\xi_{z}=6 \%$
Power factor at which regulation is maximum is
$\mathrm{pf}=\frac{\xi_{\mathrm{r}}}{\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}}=0.3$
$\frac{\xi_{\mathrm{r}}}{\xi_{\mathrm{z}}}=0.3$
$\xi_{\mathrm{r}}=1.8 \%$
Substituting (2) in (1) we get
$\sqrt{\xi_{r}^{2}+\xi_{x}^{2}}=6 \%$
$\sqrt{(1.8)^{2}+\xi_{x}^{2}}=6$
$\xi_{\mathrm{x}}=5.72 \%$
Given,
$\mathrm{Pf}=0.8$ lead
\therefore Voltage regulation R

$$
=\xi_{\mathrm{r}} \cos \phi_{2}-\xi_{\mathrm{x}} \sin \phi_{2}[\because \text { lead }]
$$

$\mathrm{R}=1.8(0.8)-5.72(0.6)$
$\mathrm{R}=-2 \%$
16.

Sol: Given,
Maximum efficiency of the transformer, $\eta_{\text {max }}=97 \%$
Loading at which efficiency is maximum, $\mathrm{x}=\frac{3}{4}=0.75$
Power rating of the transformer, $\mathrm{VA}=$ $500 \times 10^{3} \mathrm{VA}$

Power factor, $\mathrm{pf}=1$
Independence drop, $\xi_{z}=10 \%$
Let, $\mathrm{P}_{\mathrm{cu}}=$ full load copper loss
$\mathrm{P}_{\mathrm{c}}=$ core loss
We know that, at maximum efficiency
Core loss $=$ copper loss
$\mathrm{P}_{\mathrm{c}}=\mathrm{x}_{\mathrm{m}}^{2} \mathrm{P}_{\mathrm{cu}}-----$ (1)
$\mathrm{P}_{\mathrm{C}}=(0.75)^{2} \mathrm{P}_{\mathrm{cu}}$
Efficiency of a transformer,
$\eta_{\text {max }}=\frac{x_{m}(V A) p f}{x_{m}(V A) p f+P_{c}+x_{m}^{2} P_{c u}}$
$0.97=\frac{(0.75)\left(500 \times 10^{3}\right)(1)}{(0.75)\left(500 \times 10^{3}\right)(1)+\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{c}}=5.799 \mathrm{~kW}$
$\mathrm{P}_{\mathrm{cu}}=10.31 \mathrm{~kW}$
We know that,
$\xi_{\mathrm{r}}=\frac{\mathrm{P}_{\mathrm{cu}}}{\mathrm{VA}}=\frac{10.31}{500}=2.06 \%$
$\xi_{\mathrm{r}}=2.06 \%$
$\xi_{\mathrm{z}}=\sqrt{\xi_{\mathrm{r}}^{2}+\xi_{\mathrm{x}}^{2}}=10 \%$
$\xi_{\mathrm{x}}=9.78 \%$
Power factor $(\mathrm{pf})=0.8 \mathrm{pf}$ lagging
$\cos \phi_{2}=0.8$
$\sin \phi_{2}=0.6$
Regulation, $\mathrm{R}=\xi_{\mathrm{r}} \cos \phi_{2}+\xi_{\mathrm{x}} \sin \phi_{2}$ $[\because$ lagging $]$
$\mathrm{R}=2.06(0.8)+9.78(0.6)$
$\mathrm{R}=7.52 \%$

Chapter
 DC Machines

Objective Practice Solutions

1. Ans: (c)

Sol: Current in armature conductor of dc machine is AC and commutator is used for converting AC to DC and vice-versa
02. Ans: (c)

Sol: For generator,
$E=V+I_{a} R_{a}$
$\mathrm{E}=200+(50)(0.5)=225 \mathrm{~V}$
For motors,
$V=E_{b}+I_{a} R_{a}$
$200=\mathrm{E}_{\mathrm{b}}+(50)(0.5)$
$\mathrm{E}_{\mathrm{b}}=175 \mathrm{~V}$
03. Ans: (d)

Sol: For constant power output,
$\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}=$ constant
$\mathrm{VI}_{\mathrm{a}}=$ constant (neglecting armature losses)
$\mathrm{V}_{1} \mathrm{I}_{\mathrm{a} 1}=\mathrm{V}_{2} \mathrm{I}_{\mathrm{a} 2}$
$\mathrm{V}_{2}=\frac{\mathrm{V}_{1}}{2}$
$\therefore \mathrm{I}_{\mathrm{a} 2}=\mathrm{I}_{\mathrm{a} 1}(2)$
$\mathrm{I}_{\mathrm{a} 2}=100 \mathrm{~A}$
04. Ans: (d)

Sol: By short circuiting of series field winding the net flux developed by the generator decreases, then the emf generated also decreases.
05. Ans: (c)

Sol:

$\mathrm{I}_{\mathrm{sh}}=\frac{250}{50}=5 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\text {sh }}=195+5=200 \mathrm{~A}$
$\mathrm{E}=\mathrm{V}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}$

$$
=250+(200)(0.05)
$$

$\mathrm{E}=260 \mathrm{~V}$
06. Ans: (b)

Sol: $\mathrm{E} \propto \phi \mathrm{N}$
$E_{1}=K \phi_{1} N_{1}=136.8 \mathrm{~V}$
$\mathrm{E}_{2}=\mathrm{K}\left(2 \phi_{1}\right)\left(0.75 \mathrm{~N}_{1}\right)=1.5 \mathrm{E}_{1}$
$\therefore \mathrm{E}_{2}=1.5 \times 136.8=205.2 \mathrm{~V}$
07. Ans: (d)

Sol: Under maximum power developed conditions $\mathrm{E}_{\mathrm{b}}=\frac{\mathrm{V}}{2}$
At no load, speed $\left(\mathrm{N}_{\mathrm{o}}\right)=1200 \mathrm{rpm}$
No load voltage $V=E_{b}$
$\frac{\mathrm{N}_{2}}{\mathrm{~N}_{0}}=\frac{\mathrm{E}_{\mathrm{b} 2}}{\mathrm{E}_{\mathrm{b} 0}}$
$\frac{\mathrm{N}_{2}}{1200}=\frac{\mathrm{V} / 2}{\mathrm{~V}}$
$\mathrm{N}_{2}=600 \mathrm{rpm}$ (speed under maximum power developed condition)
08. Ans: (b)

Sol: $\mathrm{P}=4, \mathrm{~N}=1500 \mathrm{rpm}$
$\mathrm{f}=$?
$\mathrm{N}=\frac{120 \mathrm{f}}{\mathrm{P}}$
$1500=\frac{120 \times \mathrm{f}}{4}$
$\mathrm{f}=50 \mathrm{~Hz}$

09. Ans: (c)

Sol: The armature MMF waveform of a dc machine is triangular
10. Ans: (b)

Sol: Compensating winding are connected in series with armature.
11. Ans: (d)

Sol: $I=20 \mathrm{~A}, \mathrm{~V}=200 \mathrm{~V}$
$\mathrm{E}_{\mathrm{g} 1} \propto\left(\phi_{\mathrm{sn}}+\phi_{\mathrm{se}}\right) \mathrm{N}=200 \mathrm{~V}$
If $\phi_{\mathrm{se}}=0$
Then $\mathrm{E}_{\mathrm{g} 2} \propto \phi_{\text {sh }}, \mathrm{N}<200 \mathrm{~V}$
$\mathrm{E}_{\mathrm{g} 2}$ decreases; it will become less than 200 V
12. Ans: (a)

Sol: Emf generated due to clockwise rotation is $\mathrm{E}_{\mathrm{g}} \propto \phi \mathrm{N}=200 \mathrm{~V}$
By reversing the direction of rotation, the emf generated also get reversed
$\mathrm{E}_{\mathrm{g}} \propto \phi(-\mathrm{N})=-200 \mathrm{~V}$
So, net voltage becomes zero.

13. Ans: (d)

Sol: $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~A}, \mathrm{I}_{\text {sh }}=\frac{200}{100}=2 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\text {sh }}+\mathrm{I}_{\mathrm{L}}=2+100=102 \mathrm{~A}$
$\mathrm{E}=\mathrm{V}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=200+(102)(0.01)$
$\mathrm{E}=201.02 \mathrm{~V}$

14. Ans: (a)

Sol: Maximum efficiency will be obtained only when, Variable losses $=$ Constant losses
(i.e. copper loss)

From data;
Total losses $=$ Input - Output

$$
=20 \mathrm{~kW}-17 \mathrm{~kW}=3000 \mathrm{~W}
$$

But Total losses =
Copper losses+ Constant losses
$\mathrm{I}_{\mathrm{sh}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{sh}}}=\frac{200}{50}=4 \mathrm{~A} ;$
Input, V. $\mathrm{I}_{\mathrm{L}}=20 \mathrm{~kW}=20000 \mathrm{~W}$
200. $\mathrm{I}_{\mathrm{L}}=20000 \Rightarrow \mathrm{I}_{\mathrm{L}}=100 \mathrm{~A}$

For shunt motor, $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\text {sh }}$

$$
=100-4=96 \mathrm{~A}
$$

In eq ${ }^{\mathrm{n}}$ (2), Copper losses $=\mathrm{I}_{\mathrm{a}}{ }^{2} \mathrm{R}_{\mathrm{a}}$

$$
=(96)^{2} \times 0.04=368.64
$$

\therefore Constant losses $=$ total loss - copper loss

$$
\begin{aligned}
& =3000-368.68 \\
& =2631.36 \mathrm{~W}
\end{aligned}
$$

\therefore From eq ${ }^{\mathrm{n}}$ (1), Total armature copper loss at max. Efficiency $\cong 2632 \mathrm{~W}$
15. Ans: (d)

Sol: For series motor $\Rightarrow I_{L}=I_{f}=I_{a}$ but $\phi \propto I_{f} \propto I_{a}$

Developed torque in series motor,
$\mathrm{T} \propto \phi . \mathrm{I}_{\mathrm{a}} \propto \mathrm{I}_{\mathrm{a}}^{2}$

$$
\begin{aligned}
& \therefore \% \text { increased torque, } \frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1}} \\
& \quad=\frac{\mathrm{I}_{\mathrm{a} 2}^{2}-\mathrm{I}_{\mathrm{a} 1}^{2}}{\mathrm{I}_{\mathrm{a} 1}^{2}}=\frac{144-100}{100} \times 100 \\
& =44 \%
\end{aligned}
$$

16. Ans: (a)

Sol: In DC machine
Generate emf, $\mathrm{E}_{\mathrm{g}}=\left(\frac{\phi \mathrm{ZN}}{60}\right)\left(\frac{\mathrm{P}}{\mathrm{A}}\right)$
$\Rightarrow \mathrm{E}_{\mathrm{g}} \propto(\mathrm{N} \phi)$
Torque developed, $T=\left(\frac{\mathrm{Z} \phi \mathrm{P}}{2 \pi}\right)\left(\frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{A}}\right)$
$\Rightarrow \mathrm{T} \propto\left(\phi . \mathrm{I}_{\mathrm{a}}\right)$

19

Electrical power developed, $\mathrm{P}=\mathrm{E}_{\mathrm{b}} \cdot \mathrm{I}_{\mathrm{a}}$ Speed of the machine,
$\mathrm{N}=60 .\left(\frac{E_{b}}{\phi}\right)\left(\frac{A}{Z P}\right) \Rightarrow \mathrm{N} \propto\left(\frac{E_{b}}{\phi}\right)$

17. Ans: (c)

Sol: Due to reduction of armature reaction drop change in No load to Full load voltage is reduces so as the regulation also reduces
18. Ans: (d)

Sol: When shunt field winding is interchanged by series field winding. The operating flux of the motor will be very low that motor could not start.
19. Ans: (b)

Sol: If prime mover is failed then machine takes supply from lines, generator operates as motor. As changes in current direction in series field winding then cummulative compound generator becomes differentially compounded motor.
20. Ans: (c)

Sol: $T \propto I_{a}^{2}$
For series motor
21. Ans: (a)

Sol: Condition for maximum efficiency in any machine is Cu loss $=$ iron loss

22. Ans: (c)

Sol: When terminal voltage is halved, voltage across field winding also get halved and hence flux also halved
23. Ans: (b)

Sol: From data $\Rightarrow I_{a}$ is constant
$\left(\because \mathrm{I}_{\mathrm{a}}\right.$ is supplied from constant current source)
From data \Rightarrow as I_{f} is supplied from constant voltage source,
$\phi=\operatorname{constant}\left(\because \phi \propto \mathrm{I}_{\mathrm{f}}\right)$
$\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{sh}}}=$ constant
$\therefore \mathrm{T} \propto\left(\phi . \mathrm{I}_{\mathrm{a}}\right)=$ constant irrespective of motor speed.
24. Ans: (b)

Sol:

We know that torque, $\mathrm{T} \propto \phi . \mathrm{I}_{\mathrm{a}}$ but flux, $\phi \alpha$
$\mathrm{I}_{\text {sh }}$ (for series motor, $\mathrm{I}_{\text {sh }}=\mathrm{I}_{\mathrm{a}}$)
$\therefore \mathrm{T} \propto \mathrm{I}_{\mathrm{a}}^{2} \Rightarrow \sqrt{\mathrm{~T}} \propto \mathrm{I}_{\mathrm{a}}$
(when saturation and armature reaction are neglected)
Speed, $\mathrm{N} \propto \frac{1}{\phi} \propto \frac{1}{\mathrm{I}_{\mathrm{a}}}$
\therefore From (1) and (2)
$\mathrm{N} \propto \frac{1}{\sqrt{\mathrm{~T}}} \Rightarrow$ Rectangular Hyperbola
Flux ' ϕ ' is constant when saturation \& armature reaction are considered $\Rightarrow T \alpha I_{a}$
\therefore Speed, $\mathrm{N} \propto \frac{1}{\varphi}=$ constant for any value of
Torque i.e, N Vs T characteristics approaches to straight line.
25. Ans: (c)

Sol: For differential compound motor,
$\phi_{\mathrm{r}}=\phi_{\text {sh }}-\phi_{\text {se }}$
As load $\uparrow \Rightarrow I_{\mathrm{a}} \uparrow \Rightarrow \phi_{\text {se }} \uparrow \Rightarrow \phi_{\mathrm{r}} \downarrow$
But $\uparrow \mathrm{N} \alpha \frac{1}{\phi \downarrow} \Rightarrow$ as $\phi_{\mathrm{r}} \downarrow \Rightarrow \mathrm{N} \uparrow$
26. Ans: (d)

Sol: In DC series motor, Torque is directly proportional to square of current $\left(T \propto I_{a}^{2}\right)$. Therefore if AC supply accidentally connected to DC motor; this AC current (either positive and negative of supply) through field and armature winding will always be in same direction (positive), hence torque will be unidirectional but due to AC nature of supply, torque will be pulsating nature.
27. Ans: (d)

Sol: In series motor
$T \propto I_{a}^{2}=\sqrt{T} \propto I_{a}$
$\mathrm{N} \propto \frac{1}{\phi} \propto \frac{1}{\mathrm{I}_{\mathrm{a}}} \propto \frac{1}{\sqrt{\mathrm{~T}}}$
$\mathrm{N} \propto \frac{1}{\sqrt{\mathrm{~T}}}$
Rectangular hyperbola
28. Ans: (c)

Sol: $\mathrm{T} \propto \phi \mathrm{I}_{\mathrm{a}}$
29. Ans: (c)

Sol: Here in 4-point starter unlike 3-point starter a separate path is being taken for holding coil.
30. Ans: (c)

Sol: $\mathrm{T} \propto \phi . \mathrm{I}_{\mathrm{a}}$
For constant torque load,
$\phi_{1} \mathrm{I}_{\mathrm{a} 1}=\phi_{2} \mathrm{I}_{\mathrm{a} 2}$
Flux is constant as shunt field current is constant.
$\phi_{1}=\phi_{2}$ so $\mathrm{I}_{\mathrm{a} 1}=\mathrm{I}_{\mathrm{a} 2}$
31. Ans: (b)

Sol: The speed control of dc shunt motor in both directions can be obtained by Ward Leonard method

Conventional Practice Solutions

1.

Sol: Given,
Terminal voltage, $\mathrm{V}_{\mathrm{T}}=230 \mathrm{~V}$
Initial speed $\mathrm{N}_{1}=750 \mathrm{rpm}$
Armature current $\left(\mathrm{I}_{\mathrm{cu}}\right)=30 \mathrm{~A}$
External resistance $\left(\mathrm{R}_{\text {ext }}\right)=10 \Omega$
Torque (T) $\propto \operatorname{speed}(\mathrm{N})$
Equivalent circuit of dc shunt machine

Without external resistance:

From figure (1)
$\mathrm{E}_{\mathrm{b} 1}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a} 1}\left(\mathrm{r}_{\mathrm{a}}\right)$
$\mathrm{E}_{\mathrm{b} 1}=230-30\left(\mathrm{r}_{\mathrm{a}}\right)$
$\mathrm{E}_{\mathrm{b} 1}=230 \mathrm{~V}$
With external resistance:

From figure (2)
$\mathrm{E}_{\mathrm{b} 2}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a} 2}\left(\mathrm{R}_{\mathrm{ext}}+\mathrm{r}_{\mathrm{a}}\right)$
$\mathrm{E}_{\mathrm{b} 2}=230-10 \mathrm{I}_{\mathrm{a} 2}$
In shunt machine
$\mathrm{T} \propto \phi \mathrm{I}_{\mathrm{a}}$
$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{I}_{\mathrm{a} 1}}{\mathrm{I}_{\mathrm{a} 2}}$
But it is given that
$\mathrm{T} \propto \mathrm{N}$
$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$

21

We know that in a shunt machine
$\mathrm{E}_{\mathrm{b}} \propto \phi \mathrm{N}$
$\therefore \frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$
\therefore from (1), (2) and (3)
$\frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\mathrm{I}_{\mathrm{a} 1}}{\mathrm{I}_{\mathrm{a} 2}}$.
$\frac{230}{230-10 \mathrm{I}_{\mathrm{a} 2}}=\frac{30}{\mathrm{I}_{\mathrm{a} 2}}$
$230 \mathrm{I}_{\mathrm{a} 2}=6900-300 \mathrm{I}_{\mathrm{a} 2}$
$\mathrm{I}_{\mathrm{a} 2}=13.02 \mathrm{~A}$
Substituting (5) in (3)
$\frac{230}{230-10 I_{\mathrm{a} 2}}=\frac{750}{\mathrm{~N}_{2}}$
$\therefore \mathrm{N}_{2}=325.5 \mathrm{rpm}$
02.

Sol: Given,
$\mathrm{V}_{\mathrm{t}}=230 \mathrm{~V}$
$\mathrm{r}_{\mathrm{a}}=0.2 \Omega$
$\mathrm{r}_{\mathrm{f}}=0.1 \Omega$
$\mathrm{T}=70 \mathrm{Nm}$
$\mathrm{N}_{1}=1200 \mathrm{rpm}$
$\mathrm{N}_{2}=2000 \mathrm{rpm}$
$\mathrm{I}_{\mathrm{a} 2}=\mathrm{I}_{\mathrm{a} 1} / 2$
Machine $=$ dc series motor
(a) Equivalent circuit of a dc series motor is as follows

From the above circuit,
$\mathrm{E}_{\mathrm{b}}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)$
$\mathrm{E}_{\mathrm{b}}=230-\mathrm{I}_{\mathrm{a}}(0.1+0.2)$
$\mathrm{E}_{\mathrm{b}}=230-0.3 \mathrm{I}_{\mathrm{a}}$
Power developed $\mathrm{P}_{\text {dev }}=\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}=\mathrm{T} \omega$
$\therefore \mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}=\mathrm{T} \omega$
$\left(230-0.3 \mathrm{I}_{\mathrm{a}}\right) \mathrm{I}_{\mathrm{a}}=(70) \times \frac{(1200)}{60} \times 2 \pi$
$0.3 \mathrm{I}_{\mathrm{a}}^{2}-230 \mathrm{I}_{\mathrm{a}}+8796.46=0$
$\mathrm{I}_{\mathrm{a} 1}=40.37 \mathrm{~A}$
(b) $I_{a 2}=\frac{I_{a 1}}{2}$
$\mathrm{I}_{\mathrm{a} 2}=20.18 \mathrm{~A}$
$\mathrm{N}_{2}=2000 \mathrm{rpm}$
$\mathrm{E}_{\mathrm{b}} \propto \phi \mathrm{N}$ [in dc motors]
$\frac{E_{b 1}}{E_{b 2}}=\frac{\phi_{1} N_{1}}{\phi_{2} N_{2}}$
$\frac{\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a} 1}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)}{\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a} 2}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)}=\frac{\phi_{1} \times 1200}{\phi_{2} \times 2000}$
$\frac{230-40.37(0.3)}{230-20.18(0.3)}=\frac{\phi_{1}(1.2)}{2 \phi_{2}}$
$\frac{217.89}{223.95}=\frac{\phi_{1}(1.2)}{2 \phi_{2}}$
$\phi_{2}=0.6166 \phi_{1}$
$\therefore \%$ reduction in flux $=\frac{\phi_{1}-\phi_{2}}{\phi_{1}} \times 100$

$$
=38.3 \%
$$

$\therefore \%$ reduction in flux $=38.3 \%$
03.

Sol: Given,
$\mathrm{V}_{\mathrm{t}}=125 \mathrm{~V}$
$\mathrm{P}_{0}=12.5 \mathrm{~kW}$
$\mathrm{r}_{\mathrm{f}}=25 \Omega$
$\mathrm{r}_{\mathrm{a}}=0.1 \Omega$
$\mathrm{V}_{\mathrm{b}}=3.5 \mathrm{~V}$
Machine $=$ dc shunt generator
Equivalent circuit of a dc shunt generator including brush voltage losses is as follows

$\therefore \mathrm{P}_{0}=\mathrm{V}_{\mathrm{t}} \mathrm{I}_{\mathrm{L}}$
$12.5 \times 10^{3}=125 \times \mathrm{I}_{\mathrm{L}}$
$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~A}$
$\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{r}_{\mathrm{f}}}=\frac{125}{25}$
$\mathrm{I}_{\mathrm{f}}=5 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{f}}$
$\mathrm{I}_{\mathrm{a}}=105 \mathrm{~A}$
From the circuit,
$\mathrm{E}_{\mathrm{g}}=\mathrm{V}_{\mathrm{t}}+\mathrm{V}_{\mathrm{b}}+\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}$
$\mathrm{E}_{\mathrm{g}}=125+3.5+(105)(0.1)$
$\mathrm{E}_{\mathrm{g}}=139 \mathrm{~V}$

04.

Sol: Given,
$\mathrm{V}_{\mathrm{t}}=230 \mathrm{~V}$
$\mathrm{P}_{0}=50 \mathrm{~kW}$
$\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}\right)=0.03 \Omega$
$\mathrm{r}_{\mathrm{sh}}=46 \Omega$
$\mathrm{V}_{\mathrm{b}}=2 \mathrm{~V}$
Machine $=$ long shunt compound generator
\therefore Equivalent circuit is as follows

$\mathrm{P}_{0}=\mathrm{V}_{\mathrm{t}} \mathrm{I}_{\mathrm{L}}=50 \times 10^{3}$
$\Rightarrow 230 \mathrm{I}_{\mathrm{L}}=50 \times 10^{3}$

$$
\mathrm{I}_{\mathrm{L}}=217.4 \mathrm{~A}
$$

$\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{r}_{\text {sh }}}=\frac{230}{46}=5 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{f}}+\mathrm{I}_{\mathrm{sh}}=222.4 \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{a}}=222.4 \mathrm{~A}$
From the circuit,
$\mathrm{E}_{\mathrm{g}}=\mathrm{V}_{\mathrm{t}}+\mathrm{V}_{\mathrm{b}}+\mathrm{I}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}\right)$
$\mathrm{E}_{\mathrm{g}}=230+2+(222.4)(0.03)$
$\mathrm{E}_{\mathrm{g}}=238.672$
\% voltage regulation $=\frac{E_{g}-V_{t}}{V_{t}} \times 100$

$$
\begin{aligned}
& =\frac{238.672-230}{230} \\
& =3.77 \%
\end{aligned}
$$

$\therefore \%$ voltage regulation $=3.77 \%$
05.

Sol: Given,
$\mathrm{r}_{\mathrm{a}}=0.04 \Omega$
$\mathrm{r}_{\mathrm{f}}=110 \Omega$
$\mathrm{V}_{\mathrm{f}}=230 \mathrm{~V}$
$\mathrm{V}_{\mathrm{t}}=230 \mathrm{~V}$
Core and mechanical loss $\left(\mathrm{P}_{\mathrm{c}}\right)=960 \mathrm{~W}$
Machine $=$ separately excited generator
Field copper losses $\left(\mathrm{P}_{\text {cuf }}\right)=\frac{\mathrm{V}_{f}^{2}}{\mathrm{r}_{\mathrm{f}}}=\frac{(230)^{2}}{110}$

$$
\left(\mathrm{P}_{\mathrm{cu}, \mathrm{f}}\right)=480.91 \mathrm{~W}
$$

(a) In a dc separately excited generator,

Constant losses are field copper losses and mechanical losses
Variable losses are armature copper losses
\therefore Constant losses $=\mathrm{P}_{\text {cuf }}+\mathrm{P}_{\mathrm{c}}$

$$
\begin{aligned}
& =480.91+960 \\
& =1440.91 \mathrm{~W}
\end{aligned}
$$

At maximum efficiency,
Constant losses $=$ variable losses
$1440.91=I_{a}^{2} r_{a}$
$\therefore \mathrm{I}_{\mathrm{a}}^{2}(0.04)=1440.91$
$\mathrm{I}_{\mathrm{a}}=189.8 \mathrm{~A}$
(b) Power output at max efficiency is
$\mathrm{P}_{0}=\mathrm{V}_{\mathrm{t}} \mathrm{I}_{\mathrm{L}}$
$\mathrm{P}_{0}=230 \times 189.8\left[\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{a}}\right.$ for a separately excited generator]
$\therefore \mathrm{P}_{0}=43653.22 \mathrm{~W}$

$$
\begin{aligned}
\text { Efficiency } \eta & =\frac{\text { Power output }}{\text { Power output }+ \text { Losses }} \\
& =\frac{43653.22}{43653.22+1440.91+1440.91} \\
\eta & =93.8 \%
\end{aligned}
$$

6.

Sol: A DC motor converts electrical energy (dc power) into mechanical energy. We know that a current carrying conductor when placed in a magnetic field experience a mechanical force. This phenomenon is used in electric motors. (Lorentz force law)
The force is given by, $\mathrm{F}=\mathrm{BIL}$
Where $\mathrm{B}=$ magnetic flux density, $\mathrm{wb} / \mathrm{m}^{2}$
$\mathrm{I}=$ current in conductor, A
$\mathrm{L}=$ length of conductor, m
No. of conductors are arranged on the rotor.
The magnetic field is provided by the stator poles.
The supply to rotor winding (armature winding) is through commutator. Due to electromagnetic action between the rotor and stator flux, the force is developed which results in torque and rotation of the rotor.
Back EMF: The rotating conductors in a motor armature cut the flux from the poles causing developed of an emf. By Lenz's law, this end oppose the applied emf and is known as the back emf E_{b}. It is given by
$\mathrm{E}_{\mathrm{b}}=\frac{\mathrm{ZN} \phi}{60} \times \frac{\mathrm{P}}{\mathrm{A}}$ volts
Where, $\phi=$ flux per pole
$\mathrm{Z}=$ Total no. of conductors
$\mathrm{P}=$ No. of poles
$A=$ No. of parallel paths in armature
$\mathrm{N}=$ speed of rotation
Fundamental motor equation
$V=E_{b}+I_{a} R_{a}$
Where, $\mathrm{R}_{\mathrm{a}}=$ armature resistance
$\mathrm{V}=$ terminal voltage
$\mathrm{E}_{\mathrm{b}}=$ back emf
Mechanical power of a motor is given by
$\mathrm{P}_{\mathrm{m}}=\mathrm{VI}_{\mathrm{a}}-\mathrm{I}_{\mathrm{a}}^{2} \mathrm{R}_{\mathrm{a}}$

Torque: Torque on motor armature

$$
\mathrm{T}=\frac{\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}}{\omega}
$$

Where, $\omega=\frac{2 \pi \mathrm{~N}}{60}$
$\mathrm{E}_{\mathrm{b}}=\frac{\mathrm{ZN} \phi}{60}\left(\frac{\mathrm{P}}{\mathrm{A}}\right)$
$\mathrm{T}=0.159 . \frac{\phi \mathrm{ZPI}_{\mathrm{a}}}{\mathrm{A}} \mathrm{N}-\mathrm{m}$
$=0.162 \frac{\phi \mathrm{ZPI}_{\mathrm{a}}}{\mathrm{A}} \mathrm{Kg}-\mathrm{m}$
From the above relation we can write the Torque equation
$\mathrm{T}=\mathrm{K} \phi \mathrm{I}_{\mathrm{a}}$
Where, $\mathrm{K}=\left(\frac{0.159 \mathrm{PZ}}{\mathrm{A}}\right)$
07.

Sol:
(i) Here generating voltage 230 less than terminal voltage 240 , so the machine work as motor
(ii) $V_{t}=E_{a}+I_{a} r_{a}$

$$
\begin{aligned}
& 240=230+\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \\
& \mathrm{R}_{\mathrm{a}}=0.25 \Omega
\end{aligned}
$$

(iii) The electromagnetic Torque

$$
\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{E}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}}{\omega_{\mathrm{m}}}
$$

$$
\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{E}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}}{\frac{2 \pi \mathrm{~N}_{\mathrm{s}}}{60}}=\frac{230 \times 40 \times 60}{2 \times \pi \times 1200}
$$

$\mathrm{T}_{\mathrm{e}}=73.21 \mathrm{~N}-\mathrm{m}$
(iv) If the load is thrown off, the generated voltage is equal to the terminal voltage i.e. 240 volts.
$\mathrm{E}_{\mathrm{a}}^{1}=\mathrm{K}_{\mathrm{a}}^{1} \phi \mathrm{~N}_{0}$

$$
\begin{aligned}
& \frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{E}_{\mathrm{a}}^{1}}=\frac{\mathrm{N}}{\mathrm{~N}_{0}} \\
& \frac{230}{240}=\frac{1200}{\mathrm{~N}_{0}}
\end{aligned}
$$

$$
\mathrm{N}_{0}=1252 \mathrm{rpm}
$$

8.

Sol: D.C. Shunt motor: For constant supply voltage, the field current is constant. At small values of armature current the demagnetizing effect of armature reaction is almost negligible and therefore the air gap flux is unaffected. For larger values of armature (or load) currents, the demagnetizing effect of armature reaction, decreases the air gap flux slightly.
The speed of a d.c. motor is given by

$$
\begin{aligned}
\omega_{m} & =\frac{E_{a}}{K_{a} \phi} \\
E_{a} & =V_{t}-I_{a} r_{a} \\
\text { But, } \omega_{m} & =\frac{V_{t}-I_{a} r_{a}}{K_{a} \phi}
\end{aligned}
$$

(i) Speed-current characteristic. For constant supply voltage V_{t} and constant field current I_{f}, the motor speed is affected by $I_{a} r_{a}$ drop and demagnetizing effect of armature reaction. With the increase of I_{a}, the demagnetizing effect of armature reaction. Which reduces the field flux-therefore the motor speed tends to increase. But with the increase of I_{a}, voltage drop $\mathrm{I}_{a} \mathrm{r}_{\mathrm{a}}$ increases and the numerator $\left(\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}\right)$ decreases-therefore the motor speed tends to decrease. With the increase of I_{a}, the numerator decrement is more than the denominator decrement; in view of this, the speed of d.c. shunt motor with increase of I_{a} drops only slightly from its no-load speed $\omega_{\mathrm{m} 0}$. Since I_{a} at no-load is negligibly small, the shunt motor no-load speed $\omega_{\mathrm{m} 0}$ is given by

$$
\omega_{\mathrm{m} 0}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{~K}_{\mathrm{a}} \phi}
$$

In case the effect of armature reaction (AR) is neglected, then the denominator is constant. As a consequence, speed drops faster with I_{a} fig.(a). Illustrates speed-current characteristics of a shunt motor with and without AR. The curve marked speed is with AR included.
(ii) Torque-current characteristic: The expression $T_{e}=K_{a} \phi I_{a}$ reveals that if the flux ϕ is constant as in a shunt motor, the torque would increase linearly with armature current I_{a}. However, for larger I_{a}, the net flux decreases due to the demagnetizing effect of armature reaction. In view of this, the torque current characteristic deviates from the straight line, as illustrated in. In case the effect of AR is neglected, T_{e} versus I_{a} characteristic would be a straight line as shown.

(iii) Speed-torque characteristic: The speed-torque characteristic is also called the mechanical characteristic and under steady state conditions, it can be obtained as follows
From $\omega_{m}=\frac{V_{t}-I_{a} r_{a}}{K_{a} \phi}$
But $\quad T_{e}=K_{a} \phi I_{a}$ or $I_{a}=\frac{T_{e}}{K_{a} \phi}$
Substituting this value of I_{a} in

$$
\begin{aligned}
\omega_{m} & =\frac{1}{K_{a} \phi}\left[V_{t}-\frac{T_{e} r_{a}}{K_{a} \phi}\right] \\
& =\frac{V_{t}}{K_{a} \phi}-r_{a} \frac{T_{e}}{K_{a}^{2} \phi^{2}} \\
& =\omega_{m}-r_{a} \frac{T_{e}}{K_{a}^{2} \phi^{2}}
\end{aligned}
$$

It is seen from that with increase of T_{e}, the speed drops. Note that for larger T_{e}, larger I_{a} is required and this has the effect of reducing the air gap flux ϕ, due to saturation and armature reaction. Since with increase of $T_{e} \phi$ is reduced, $\mathrm{T}_{\mathrm{e}} / \phi^{2}$ increases at a faster rate and the speed drops more rapidly with the increase of torque in a shunt motor as shown in figure.

If effect of AR is neglected, then $\left(\mathrm{K}_{\mathrm{a}} \phi\right)^{2}$ remains constant. As a result, the speed drop with T_{e} is slow as shown in figure.
09.

Sol: $V=200 \mathrm{~V}, \quad \mathrm{R}_{\text {sh }}=0.2 \Omega$
Before weaking the flux, $\mathrm{N}_{1}=960 \mathrm{rpm}$,

$$
\mathrm{I}_{\mathrm{a} 1}=50 \mathrm{~A}
$$

\therefore Back EMF, $\mathrm{E}_{\mathrm{b} 1}=\mathrm{V}-\mathrm{I}_{\mathrm{a} 1} \mathrm{R}_{\mathrm{a}}=200$
$-(50 \times 0.2)=190 \mathrm{~V}$ \qquad
Find speed $\left(\mathrm{N}_{2}\right)$, when flux reduced by 10%, i.e. $\phi_{2}=0.9 \phi_{1}$

We know, for shunt motor, Torque, $T \propto(\phi$. I_{a})
As the total torque assumed constant

$$
\begin{aligned}
& \Rightarrow \mathrm{T}_{2}=\mathrm{T}_{1} \\
& \Rightarrow \phi_{2} \mathrm{I}_{\mathrm{a} 2}=\phi_{1} \cdot \mathrm{Ia}_{1} \\
& \Rightarrow\left(0.9 \phi_{1}\right) \mathrm{I}_{\mathrm{a} 2}=\phi_{1} \mathrm{I}_{\mathrm{a} 1} \\
& \therefore \mathrm{I}_{\mathrm{a} 2}=\frac{\mathrm{I}_{\mathrm{a} 1}}{0.9}=\frac{50}{0.9}=55.5 \mathrm{~A}
\end{aligned}
$$

Back EMF, after weaken flux,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{b} 2} & =\mathrm{V}-\mathrm{I}_{\mathrm{a} 2} \cdot \mathrm{R}_{\mathrm{a}} \\
& =200-(55.5 \times 0.2)=189.9 \mathrm{~V}
\end{aligned}
$$

\therefore But, speed of motor, $\mathrm{N} \propto \frac{\mathrm{E}_{\mathrm{b}}}{\phi}$
$\Rightarrow \frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\frac{\mathrm{E}_{\mathrm{b} 2}}{\mathrm{E}_{\mathrm{b} 1}} \times \frac{\phi_{1}}{\phi_{2}}$
$\Rightarrow \mathrm{N}_{2}=960 \times \frac{189.9}{190} \times \frac{\phi_{1}}{0.9 \phi_{1}}$
$=1066.105 \mathrm{rpm}$
\therefore New motor speed, $\mathrm{N}_{2} \approx 1066 \mathrm{rpm}$
10.

Sol: Given data: $\mathrm{V}_{\mathrm{t}}=500 \mathrm{~V}$,
output power $=25 \mathrm{HP}=25 \times 746 \mathrm{~W}$
$R_{f}=650 \Omega, R_{a}=0.57 \Omega, I_{L}=2.4 \mathrm{~A}$,

$\mathrm{V}_{\mathrm{b}}=2 \mathrm{~V}$ (brush drop)
$\mathrm{I}_{\mathrm{f}}=\frac{500}{650}=0.77 \mathrm{~A}$
At no load, $\mathrm{I}_{\mathrm{a} 0}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{f}}=2.4-0.77=1.63 \mathrm{~A}$
Constant losses $=\mathrm{V}_{\mathrm{t}} \mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{a} 0}^{2} \mathrm{r}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}} \mathrm{I}_{\mathrm{a} 0}$
(Where $\mathrm{V}_{\mathrm{b}}=$ brush drop)

$$
\begin{aligned}
& =500 \times 2.4-(1.63)^{2} \times 0.57-2 \times 1.63 \\
& =1195.23 \mathrm{~W} .
\end{aligned}
$$

Near at full load, $\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}=25 \times 746$
(power output)
Power input $=$ power output + total losses.
$500\left(I_{a}+0.77\right)$

$$
=25 \times 746+\mathrm{V}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}+\text { constant losses }
$$

$$
+\mathrm{I}_{\mathrm{a}}^{2}(0.57)
$$

$385+498 \mathrm{I}_{\mathrm{a}}=19845.23+\mathrm{I}_{\mathrm{a}}^{2}(0.57)$
(or) $\mathrm{I}_{\mathrm{a}}^{2}-873 \mathrm{I}_{\mathrm{a}}+34140.75=0$
$\mathrm{I}_{\mathrm{a}}=\frac{873 \pm \sqrt{(873)^{2}-4 \times 34140.75}}{2}$
$\mathrm{I}_{\mathrm{a}}=831.96 \mathrm{~A}, 41.04 \mathrm{~A}$
Where $\mathrm{I}_{\mathrm{a}}=831.96 \mathrm{~A}$ is a abnormal current.
Input $=\mathrm{V}_{\mathrm{t}}\left(\mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{f}}\right)=500(41.04+0.77)$

$$
=20905 \mathrm{~W}
$$

Efficiency $=\frac{\text { output }}{\text { input }} \times 100=\frac{25 \times 746}{20905} \times 100$

$$
=89.21 \%
$$

11.

Sol: Given,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a} 1}=50 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{t}}=250 \mathrm{~V} \\
& \mathrm{~N}_{2}=1.4 \mathrm{~N}_{2} \\
& \mathrm{~T}_{2}=1.4 \mathrm{~T}_{2} \\
& \mathrm{r}_{\mathrm{a}}=0.2 \Omega \\
& \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{\phi_{1} \mathrm{I}_{1}}{\phi_{2} \mathrm{I}_{2}} \\
& \frac{1}{1.4}=\frac{\phi_{1}}{\phi_{2}} \frac{50}{\mathrm{I}_{2}} \\
& \frac{\phi_{1}}{\phi_{2}}=\mathrm{I}_{2} \times \frac{1}{1.4} \times \frac{1}{50} \\
& \frac{\phi_{1}}{\phi_{2}}=\frac{\mathrm{I}_{2}}{70} \\
& \frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\phi_{1} \mathrm{~N}_{1}}{\phi_{2} \mathrm{~N}_{2}}
\end{aligned}
$$

$\frac{\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{1} \mathrm{r}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{2} \mathrm{r}_{\mathrm{a}}}=\frac{\phi_{1}}{\phi_{2}} \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}$
$\frac{250-0.2(50)}{250-0.2\left(\mathrm{I}_{2}\right)}=\frac{\mathrm{I}_{2}}{70} \times \frac{1}{1.4}$
$\frac{240}{250-0.2 \mathrm{I}_{2}}=\frac{\mathrm{I}_{2}}{98}$
$23520=250 \mathrm{I}_{2}-0.2 \mathrm{I}_{2}^{2}$
$0.2 \mathrm{I}_{2}^{2}-250 \mathrm{I}_{2}+23520=0$
$\mathrm{I}_{2}=102.5 \mathrm{~A}$
$\frac{\phi_{1}}{\phi_{2}}=\frac{I_{2}}{70}$
$\frac{\phi_{1}}{\phi_{2}}=\frac{102.5}{70}$
$\phi_{2}=0.683 \phi_{1}$
$\therefore \%$ change in flux $=\frac{\phi_{2}-\phi_{1}}{\phi_{1}} \times 100$
$\%$ change in flux $=-31.7 \%$
12.

Sol: Given,
$\mathrm{V}_{\mathrm{t}}=220 \mathrm{~V}$
$\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}=1 \Omega$
$\mathrm{I}_{\mathrm{a} 1}=15 \mathrm{~A}$
$\mathrm{N}_{1}=1000 \mathrm{rpm}$
$\mathrm{R}_{\mathrm{ext}}=4.5 \Omega$
$\mathrm{I}_{\mathrm{a} 2}=10 \mathrm{~A}$
Machine $=$ dc series motor
Equivalent circuit of the motor without external resistance is as follows

$\mathrm{V}_{\mathrm{t}}=\mathrm{E}_{\mathrm{b} 1}+\mathrm{I}_{\mathrm{a} 1}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)$
$220=\mathrm{E}_{\mathrm{b} 1}+15$ (1)
$\mathrm{E}_{\mathrm{b} 1}=205 \mathrm{~V}$
With external resistance:

$\mathrm{V}_{\mathrm{t}}=\mathrm{E}_{\mathrm{b} 2}+\mathrm{I}_{\mathrm{a} 2}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}+\mathrm{R}_{\mathrm{ext}}\right)$
$220=\mathrm{E}_{\mathrm{b} 2}+10(1+4.5)$
$\mathrm{E}_{\mathrm{b} 2}=165 \mathrm{~V}$
We know that,
$\mathrm{E}_{\mathrm{b}} \propto \phi \mathrm{N}_{1}$
$\therefore \frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\phi_{1} \mathrm{~N}_{1}}{\phi_{2} \mathrm{~N}_{2}}=\frac{\mathrm{I}_{\mathrm{a} 1} \mathrm{~N}_{1}}{\mathrm{I}_{\mathrm{a} 2} \mathrm{~N}_{2}}$
$\left[\because \phi \propto \mathrm{I}_{\mathrm{a}}\right.$ in series machine]
$\frac{205}{165}=\frac{(15) \times 1000}{10 \times \mathrm{N}_{2}}$
$\mathrm{N}_{2}=1207.3 \mathrm{rpm}$
13.

Sol: Given,
$\mathrm{r}_{\mathrm{a}}=0.7 \Omega$
$\mathrm{r}_{\mathrm{f}}=0.3 \Omega$
$\mathrm{I}_{\mathrm{a} 1}=15 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a} 2}=15 \mathrm{~A}$
$\mathrm{V}_{\mathrm{t}}=200 \mathrm{~V}$
$\mathrm{N}_{1}=800 \mathrm{rpm}$
$\mathrm{R}_{\mathrm{ext}}=5 \Omega$
Equivalent circuit of a dc series motor
Without external resistance:

From figure (1)
$\mathrm{V}_{\mathrm{t}}=\mathrm{E}_{\mathrm{b} 1}+\mathrm{I}_{\mathrm{a} 1}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)$
$200=\mathrm{E}_{\mathrm{b} 1}+15$ (1)
$\mathrm{E}_{\mathrm{b} 1}=185 \mathrm{~V}$

With external resistance:

From figure (2)
$\mathrm{V}_{\mathrm{t}}=\mathrm{E}_{\mathrm{b} 2}+\mathrm{I}_{\mathrm{a} 2}\left[\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{f}}\right)+\mathrm{R}_{\mathrm{ext}}\right)$
$200=\mathrm{E}_{\mathrm{b} 2}+15(0.3+0.7+5)$
$\mathrm{E}_{\mathrm{b} 2}=110 \mathrm{~V}$
$\mathrm{E}_{\mathrm{b}} \propto \phi \mathrm{N}$ in a dc machine
$E_{b} \propto I_{a} N$ in a dc series machine $\left[\because \phi \propto I_{a}\right]$
$\therefore \frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\mathrm{I}_{\mathrm{a} 1} \mathrm{~N}_{1}}{\mathrm{I}_{\mathrm{a} 2} \mathrm{~N}_{2}}$
$\frac{185}{110}=\frac{15 \times 800}{15 \times \mathrm{N}_{2}}$
$\mathrm{N}_{2}=475.7 \mathrm{rpm}$
14.

Sol: Given,
$\mathrm{P}_{0}=5 \mathrm{~kW}$
$\mathrm{V}_{\mathrm{t}}=250-0.5 \mathrm{I}_{\mathrm{L}}$
Machine $=$ dc shunt generator
In a dc shunt generator,
$\mathrm{P}_{0}=\mathrm{V}_{\mathrm{t}} \mathrm{I}_{\mathrm{L}}$
$5000=\left(250-0.5 \mathrm{I}_{\mathrm{L}}\right) \mathrm{I}_{\mathrm{L}}$
$0.5 \mathrm{I}_{\mathrm{L}}^{2}-250 \mathrm{I}_{\mathrm{L}}+5000=0$
$\mathrm{I}_{\mathrm{L}}=\frac{250 \pm \sqrt{(250)^{2}-4 \times 0.5 \times 5000}}{2(0.5)}$
$\mathrm{I}_{\mathrm{L}}=20.87 \mathrm{~A}$
$\mathrm{V}=250-0.5 \mathrm{I}_{\mathrm{L}}=250-0.5(20.87)$
$\Rightarrow \mathrm{V}=239.56 \mathrm{~V}$
$\mathrm{R}_{\mathrm{L}}=$ Load resistance $=\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{L}}}$
$\mathrm{R}_{\mathrm{L}}=11.48 \Omega$
15.

Sol: Given,
$\mathrm{V}_{\mathrm{t} 1}=100 \mathrm{~V}$
$\mathrm{P}_{01}=5 \mathrm{~kW}$
$\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}=0.5 \Omega$
$\mathrm{N}_{1}=1000 \mathrm{rpm}$
$\mathrm{V}_{\mathrm{t} 2}=$?
$\mathrm{P}_{0_{2}}=8 \mathrm{~kW}$
$\mathrm{N}_{2}=1500 \mathrm{rpm}$
Machine $=$ dc series generator

Equivalent circuit

With initial conditions:

From the above circuit
$\mathrm{E}_{\mathrm{g} 1}=\mathrm{V}_{\mathrm{t} 1}+\mathrm{I}_{\mathrm{a} 1}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}\right)$
$\mathrm{E}_{\mathrm{g} 1}=100+\mathrm{I}_{\mathrm{a} 1}(0.5)$
With final conditions:

From the above circuit

$\mathrm{E}_{\mathrm{g} 2}=\mathrm{V}_{\mathrm{t} 2}+\mathrm{I}_{\mathrm{a} 2}\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{se}}\right)$
$\mathrm{E}_{\mathrm{g} 2}=\mathrm{V}_{\mathrm{t} 2}+\mathrm{I}_{\mathrm{a} 2}(0.5)$
But $P_{01}=V_{t 1} I_{a 1}$
$5000=100 \mathrm{I}_{\mathrm{a} 1}$
$\mathrm{I}_{\mathrm{a} 1}=50 \mathrm{~A}$
$\mathrm{E}_{\mathrm{g} 1}=100+50(0.5)$
$\mathrm{E}_{\mathrm{g} 1}=125 \mathrm{~V}$
We know in a dc machine
$\mathrm{E}_{\mathrm{g}} \propto \phi \mathrm{N}$
$\mathrm{E}_{\mathrm{g}} \propto \mathrm{I}_{\mathrm{a}} \mathrm{N}\left[\right.$ In series machine $\quad \phi \propto \mathrm{I}_{\mathrm{a}}$]
$\frac{E_{g 1}}{E_{g 2}}=\frac{I_{a 1} N_{1}}{I_{a 1} N_{2}}$
$\frac{125}{\mathrm{~V}_{\mathrm{t} 2}+0.5 \mathrm{I}_{\mathrm{a} 2}}=\frac{50 \times 1000}{\mathrm{I}_{\mathrm{a} 2} \times 1500}$
$\mathrm{V}_{\mathrm{t} 2}=3.25 \mathrm{I}_{\mathrm{a} 2}$
But it is given that
$\mathrm{P}_{02}=\mathrm{V}_{\mathrm{t} 2} \mathrm{I}_{\mathrm{a} 2}$
$8000=\left(3.25 \mathrm{I}_{\mathrm{a} 2}\right) \mathrm{I}_{\mathrm{a} 2}$
$\mathrm{I}_{\mathrm{a} 2}=49.61 \mathrm{~A}$
Substituting (2) in (1)
$\mathrm{V}_{\mathrm{t} 2}=161.24 \mathrm{~V}$
16.

Sol: Given

Machine 1

No load terminal voltage $\left(\mathrm{V}_{01}\right)=270 \mathrm{~V}$
Terminal voltage at 30 A current $\left(\mathrm{V}_{\mathrm{L} 1}\right)$
$=220 \mathrm{~V}$
Terminal voltage $\left(\mathrm{V}_{1}\right)=270-\frac{50}{30} \times \mathrm{I}_{1}$
$\mathrm{V}_{1}=270-\frac{5 \mathrm{I}_{1}}{3}$
Machine 2
No load terminal voltage $\left(\mathrm{V}_{02}\right)=280 \mathrm{~V}$
Terminal voltage at 30A current
$\left(\mathrm{V}_{\mathrm{L} 2}\right)=220 \mathrm{~V}$
\therefore Terminal voltage $\left(\mathrm{V}_{2}\right)=280-\frac{60}{30} \mathrm{I}_{2}$
$\mathrm{V}_{2}=280-2 \mathrm{I}_{2}$
(i) When both machines are operating in parallel.
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{1}+\mathrm{I}_{2}$

Given load current $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~A}$
$\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{\mathrm{L}}=50 \mathrm{~A}$
$\therefore \mathrm{I}_{1}+\mathrm{I}_{2}=50 \mathrm{~A}$
Make over $V_{1}=V_{2}=V$
$270-\frac{5}{3} \mathrm{I}_{1}=280-2 \mathrm{I}_{2}$
$2 \mathrm{I}_{2}-5 \frac{\mathrm{I}_{1}}{3}=10$
$6 \mathrm{I}_{2}-5 \mathrm{I}_{1}=30$
From (1) and (2)
$\mathrm{I}_{1}=24.54 \mathrm{~A}$
$\mathrm{I}_{2}=25.45 \mathrm{~A}$
$\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}=280-2 \mathrm{I}_{2}$
$\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}=229.1 \mathrm{~V}$
(ii) Given load resistance $R_{L}=10 \Omega$
$\mathrm{V}=\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}=10 \mathrm{I}_{\mathrm{L}}=10\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$
$\therefore \mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}=10\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$
$280-2 \mathrm{I}_{2}=10 \mathrm{I}_{1}+10 \mathrm{I}_{2}$
$10 \mathrm{I}_{1}+12 \mathrm{I}_{2}=280$
$5 \mathrm{I}_{1}+6 \mathrm{I}_{2}=140$
From (2) and (3)
$\mathrm{I}_{1}=11 \mathrm{~A}$
$\mathrm{I}_{2}=14.167 \mathrm{~A}$
$\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}=280-2 \mathrm{I}_{2}$
$\mathrm{V}=251.67 \mathrm{~A}$
17.

Sol: Given,
$\mathrm{V}_{\mathrm{t}}=230 \mathrm{~V}$
$\mathrm{r}_{\mathrm{a}}=0.5 \Omega$
$\mathrm{r}_{\mathrm{f}}=230 \Omega$
$\mathrm{N}_{0}=1000 \mathrm{rpm}$
$\mathrm{I}_{\mathrm{L} 0}=3 \mathrm{~A}$
$\mathrm{I}_{\mathrm{Lf}}=23 \mathrm{~A}$
$\phi_{2}=\phi_{1}-\frac{2 \phi_{1}}{100}=0.98 \phi_{1} \quad[\therefore 2 \%$ drop $]$
Machine $=$ dc shunt motor
Equivalent circuit:

$\mathrm{I}_{\mathrm{L} \text { o }}=3 \mathrm{~A}$
$\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{r}_{\mathrm{f}}}=\frac{230}{230}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a} 0}=\mathrm{I}_{\mathrm{L} 0}-\mathrm{I}_{\mathrm{f}}$
$\mathrm{I}_{\mathrm{a} 0}=2 \mathrm{~A}$
$\mathrm{E}_{\mathrm{b} 0}=\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a} 0} \mathrm{r}_{\mathrm{a}}$
$\mathrm{E}_{\mathrm{b} 0}=230-2 \times 0.5$
$\mathrm{E}_{\mathrm{b} 0}=229 \mathrm{~V}$
No load losses (rotational) $P_{\text {rot }}=E_{b 0} \mathrm{I}_{\mathrm{a} 0}$ $\mathrm{P}_{\text {rot }}=458 \mathrm{~W}$

At full load:
$\mathrm{I}_{\mathrm{L}}=23 \mathrm{~A}$
$\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}}=22 \mathrm{~A}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{b}} & =\mathrm{V}_{\mathrm{t}}-\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \\
& =230-22(0.5)
\end{aligned}
$$

$\mathrm{E}_{\mathrm{b}}=219 \mathrm{~V}$
Power developed $\left(\mathrm{P}_{\text {dev }}\right)=\mathrm{E}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}$

$$
=(219)(22)
$$

$\mathrm{P}_{\mathrm{dev}}=4818 \mathrm{~W}$
Load power $\left(\mathrm{P}_{\mathrm{o}}\right)=\mathrm{P}_{\text {dev }}-\mathrm{P}_{\text {rot }}$

$$
=4818-458
$$

$$
\mathrm{P}_{\mathrm{o}}=4360 \mathrm{~W}
$$

$\frac{E_{b 0}}{E_{b}}=\frac{\phi_{1} N_{1}}{\phi_{2} N_{2}}$
$\frac{229}{219}=\frac{\phi_{1} \times(1000)}{(0.98) \phi_{1} \times \mathrm{N}_{2}}$
$\mathrm{N}_{2}=975.85 \mathrm{rpm}$
$\mathrm{N}_{2} \approx 976 \mathrm{rpm}$
$\mathrm{P}_{0}=\mathrm{T}_{0} \omega$
$\mathrm{T}_{0}=\frac{4360}{\frac{976}{60} \times 2 \pi}=42.60 \mathrm{Nm}$
Torque output $\mathrm{T}_{0}=42.60 \mathrm{Nm}$
18.

Sol: At the time of starting, the motor speed is zero.
Therefore counter emf $\mathrm{E}_{\mathrm{a}}\left(=\mathrm{K}_{\mathrm{a}} \phi \omega_{\mathrm{m}}\right)$ is also zero.

Consequently for the armature circuit, the voltage equation is $V_{t}=0+I_{a} r_{a}$ for shunt motor and $V_{t}=0+I_{a}\left(r_{a}+r_{s}\right)$ for both series \& compound motors with rated applied voltage the starting armature current is
$I_{a}=\frac{V_{t}}{r_{a}}($ shunt motor $)$
$I_{a}=\frac{V_{t}}{\left(r_{a}+r_{s}\right)}($ series and compound $)$
$r_{a} \& r_{s}$ Are much smaller, the motor draws large starting armature current from the supply mains.

Four-Point starter: Function of starter is to limit the starting current.

The ' 4 ' point starter is used when wide range of speed by shunt field control is required. Under normal running conditions with starter handle in the ON Position, the holding coil HC is in series with the starting resistance and an additional resistance R as shown in figure.

The function of resistance R is to prevent short circuit of the supply mains, in case the overload release OR operates, when HC gets short circuited by OR, the current through R is limited by its over resistance and starting resistance. When the motor is at rest starter handle H is kept in the OFF position.

The starting resistance is connected between contact studs 1, 2, 3...6. For starting the motor, the handle is rotated to come in contact with stud1. As soon as handle H touches stud1, the shunt field and holding coil HC get connected in series across the supply, where as the armature gets connected in series with the entire starting resistance. Since the current begin to flow in both the field and armature windings. The motor starts rotating. After the armature has picked up sufficient speed, the handle H is moved to stud2, these by cutting out the resistance between stud1 and stud2. Movement of the handle is continued slowly fill the soft iron keeper touches the holding magnet.

Fig. 4-point starter for dc shunt motor
19.

Sol: There are three kinds of electrical braking
(a) Rheostatic or dynamic braking
(b) Plugging and
(c) Regenerative braking

a) Rheostatic or Dynamic Braking (Shunt motor)

Figure shows the Rheostatic braking in which armature of the shunt motor is disconnected from the supply and it is connected across a variable resistance R . The field winding is kept undisturbed and his braking is controlled by varying the series resistance R . This method uses the generator action in a motor to bring it to lest.

Series Motor:

In this method the motor is disconnected form supply, the field connection is reversed and the motor is connected through a variable resistor R.

b) Plugging or Reverse (shunt motor)

In this method, the armature terminals are reversed to rotate the motor in reverse direction and the applied voltage V and the back emf E_{b} start acting in the same direction. To limit the armature current, a resistance is inserted in series with the armature during reversing the armature. The kinetic energy of the system is dissipated in the armature and braking resistances.

c) Regenerative Braking

In regenerative braking, $\mathrm{E}_{\mathrm{b}}>\mathrm{V}$. Figure shows regenerative braking scheme.
The I_{a} direction and armature torque T_{B} are reversed. Most of the braking energy is returned to the supply. Regenerative braking is used for down grade motion of an electric train. The kinetic energy of the system is dissipated in armature and braking resistor.

Chapter

Objective Practice Solutions

1. Ans: (c)

Sol: The phase sequence of alternator can be reversed by changing the direction of rotor rotation (whether field may be rotating or armature rotating), but phase sequence is doesn't depends on polarities or direction of field current.
Whether the machine may be acting as generator or motor the phase sequence is related to rotor rotation only. Phase sequence is no way related with direction of field current (i.e., field polarities)
02. Ans: (c)

Sol: As the two alternators are mechanically coupled, both rotors should run with same speed. $\Rightarrow \mathrm{Ns}_{1}=\mathrm{Ns}_{2}$
$\Rightarrow \frac{120 \mathrm{f}_{1}}{\mathrm{p}_{1}}=\frac{120 \mathrm{f}_{2}}{\mathrm{p}_{2}}$
$\Rightarrow \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$
$\Rightarrow \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}=\frac{50}{60}=\frac{5}{6}=\frac{10}{12}$
$\Rightarrow \mathrm{p}_{1}: \mathrm{p}_{2}=10: 12$
Every individual magnet should contains two poles, such that number of poles of any magnet always even number.

$$
\begin{aligned}
& \mathrm{G}_{1}: \mathrm{p}=10, \mathrm{f}=50 \mathrm{~Hz} \\
& \Rightarrow \quad \mathrm{~N}_{\mathrm{s}}=600 \mathrm{rpm} \\
& \text { (or) } \\
& \mathrm{G}_{2}: \mathrm{p}=12, \mathrm{f}=60 \mathrm{~Hz} \\
& \Rightarrow \quad \mathrm{~N}_{\mathrm{s}}=600 \mathrm{rpm}
\end{aligned}
$$

3. Ans: (c)

Sol: As the ac supply given to the stator of synchronous motor, stator rotating magnetic poles are rotating at synchronous speed [say stator frequency $=50 \mathrm{~Hz}$], means armature poles are interchanging their positions for every 10 msec . But due to large inertia of rotor, it couldn't catch the quick reversal of stator poles. At standstill the rotor of a synchronous motor is subjected to alternate forces of repulsion and attraction, in other words there exist relative motion between stator field (poles) and rotor field (poles), means two field's are not stationary w.r.t each other.
\therefore The average torque is zero, hence synchronous motor is not self starting.
04. Ans: (d)

Sol: These are the properties of cylindrical rotor synchronous machines.
05. Ans: (d)

Sol: For P - plate machine, $\frac{p}{2}$ cycles of e.m.f will be generated in one revolution thus for a p - pole machine
$\theta_{\text {elect }}=\frac{\mathrm{p}}{2} \theta_{\text {mech }}$
06. Ans: (d)

Sol: Distribution winding eliminates "higher order harmonics" and short pitch winding processor eliminates "particular dominant harmonics" based on short pitch angle, hence resultant EMF wave closer to sine wave form.
07. Ans: (d)

Sol: Reason: When the rotor rotates at synchronous speed, there is no relative motion between armature flux and damper winding (since damper winding placed on rotor).Therefore EMF induced in the damper bars is zero means current through the damper bars equal to zero, hence damping torque production is zero.
08. Ans: (a)

Sol: Distribution: The distribution of the armature winding along the air-gap periphery tends to make the e.m.f. waveform sinusoidal.
Chording: With coil-span less than pole pitch, the harmonics can be eliminated.
Skewing: By skewing the armature slots, only tooth harmonics or slot harmonics can be eliminated.
Fractional slot winding: With fractional slot winding slot harmonics can be eliminated.
09. Ans: (c)

Sol: Damper windings are provided on pole shoes with dampers in salient pole synchronous machine and these dampers on each pole are shorted by a "End ring".

Function of damper winding in Alternator:
(i) To suppress Negative sequence field
(ii) To eliminate Hunting

Function of Damper winding in synchronous motor:
(i) To eliminate hunting
(ii) For starting purpose
10. Ans: (b)

Sol: Distribution factor /belt factor/breadth factor/ spread factor $\left(\mathbf{k}_{\mathrm{d}}\right)$:
$k_{d}=\frac{\text { The e.mf induced with Distri buted winding }}{\text { The e.m.f induced with concentr ated winding }}$ $k_{d}=\frac{\text { The vector sum of induced e.m.f }}{\text { The arithmatic sum of induce d e.m.f }}$

$$
k_{d}=\frac{\sin m \frac{\gamma}{2}}{m \sin \frac{\gamma}{2}}
$$

For $\mathrm{n}^{\text {th }}$ harmonic, $k_{\mathrm{dn}}=\frac{\sin \frac{m n \gamma}{2}}{m \sin n \frac{\gamma}{2}}$
For concentrated winding, $k_{d}=1$

$$
k_{d 1}=k_{d 2}=k_{d 3}----=1
$$

For distributed winding, $k_{d}<1$
Winding factor $\boldsymbol{K}_{\boldsymbol{w}}=\boldsymbol{K}_{\boldsymbol{p}} \times \boldsymbol{K}_{\boldsymbol{d}}$
11. Ans: (a)

Sol: The speed of $\mathrm{n}^{\text {th }}$ space harmonic is $=\frac{1}{\mathrm{n}} \mathrm{F}_{1}$ for $7^{\text {th }}$ space harmonic is $=\frac{1}{7} \times \mathrm{F}_{1}$
$\mathrm{F}_{1}=\frac{120 \times 50}{8}=750=\frac{1}{7} \times 750=107.14$
In forward direction
$(6 \mathrm{~K} \pm 1)=$ ' + ' for forward
12. Ans: (b)

Sol: Alternator working under
(i) ZPF lag pf

(ii) ZPF Lead pf

(iii) UPFpf

(iv)For intermediate lagging load, effect of armature reaction is partly crossmagnetizing and partly demagnetizing.
13. Ans: (a)

Sol: Open circuit characteristics (O.C.C)
$\left.E V_{s} I_{f}\right|_{N=\text { constart }}$

Fiigure 3.33: Circuit diagram for O.C.C

- To get O.C.C, the alternator has to be driven at constant rated speed and the open circuit terminal voltage is noted as field current is gradually increased from zero.
We know that, $\quad E=4.44 k_{p} k_{d} \phi f T$
$E \propto \phi \propto I_{f}$
$E \propto I_{f}$
$\therefore E$ vs $I_{f} \Rightarrow$ linear \Rightarrow Before saturation
\Rightarrow Non-linear \Rightarrow After saturation

Figure 3.34: O.C.C of an alternator.

- When $\operatorname{mmf}\left(I_{f}\right)$ exceed a certain value the iron parts require a good amount of mmf and the saturation sets in.
$a b=\operatorname{mmf}\left(\right.$ or $\left.I_{f}\right)$ for the air gap.
$b c=\mathrm{mmf}$ for the iron parts.

14. Ans: (b)

Sol:

$$
Z_{s} \simeq X_{s}=\frac{E_{O C}}{I_{S C}}
$$

$$
I_{f}=\text { constant }
$$

Up to knee point both OCC \& SCC are linear.
$\therefore Z_{s}$ is constant for unsaturated position. But above knee OCC ic non linear \& SCC is linear so Z_{s} decreases during saturated condition.
15. Ans: (a)

Sol: Y-axis indicates armature current $\left(\mathrm{I}_{\mathrm{a}}\right) \&$ Xaxis indicates field current $\left(\mathrm{I}_{\mathrm{f}}\right)$.
\therefore V-curve Indicates the variation of ' I_{a} ' w.r.t the changes in Excitation $\left(\mathrm{I}_{\mathrm{f}}\right)$.

16. Ans: (d)

Sol: S.C.R $=\frac{1}{X_{\mathrm{s}}(\text { adjusted saturation)P.U }}$
17. Ans: (c)

Sol: $\mathrm{X}_{\mathrm{s}}=\mathrm{X}_{\mathrm{a}}+\mathrm{X}_{l}$
Note: $\mathrm{X}_{\mathrm{s}}>\mathrm{X}_{\mathrm{a}}>\mathrm{X}_{l}>\mathrm{R}_{\mathrm{a}}$
18. Ans: (a)

Sol: on d-axis

$$
\begin{aligned}
\mathrm{X}_{\mathrm{d}} & =\frac{\mathrm{V}_{\max }}{\mathrm{I}_{\min }} \\
& =\frac{108}{10}=10.8 \Omega
\end{aligned}
$$

on q-axis

$$
\begin{aligned}
\mathrm{X}_{\mathrm{q}} & =\frac{\mathrm{V}_{\min }}{\mathrm{I}_{\max }} \\
& =\frac{96}{12}=8 \Omega
\end{aligned}
$$

19. Ans: (a)

Sol: Power developed in synchronous machine

$$
\begin{aligned}
& \Rightarrow \mathrm{P}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{s}}} \cdot \sin \delta \\
& \Rightarrow \mathrm{P}=\mathrm{P}_{\text {max }} \cdot \sin \delta
\end{aligned}
$$

24. Ans: (d)

Sol: Salient pole synchronous machine:

$$
P=\frac{E V}{X_{d}} \sin \delta+\frac{V^{2}}{2}\left(\frac{1}{X_{q}}-\frac{1}{X_{d}}\right) \sin 2 \delta
$$

Figure : Power-Load angle Characteristic of a Salient pole synchronous machine
(G) $P_{\max }$ is obtained for load angle $\delta<90^{\circ}$ (i.e in between 60° to 70°)
(8) $P \mathrm{v}_{\mathrm{s}} \delta$ curve is Non sinusoidal.
(T) Steady state stability is more for salient pole synchronous machine due to extra reluctance power.
25. Ans: (a)

Sol:

26. Ans: (c)

Sol: As the load on the synchronous motor is suddenly increased, the motor becomes hunt i.e, rotor speed fluctuates around synchronous speed and finally reaches to synchronous speed.
27. Ans: (c)

Sol: 1. Open-circuit Characteristic------Eg Vs. I_{f}
2. V curve ------------I I_{a} Vs. If
3. Internal Characteristic----------- E_{a} Vs. I_{a}
4. Inverted V-curve ------------- p.f. Vs. If
28. Ans: (d)

Sol: 1. The terminal voltage of incoming alternator must be same as that of the existing system otherwise circulating current flows between the two systems. The terminal voltage can be adjusted with the field excitation.
2. The frequency of incoming alternator must be same as that of the existing system otherwise circulating current flows between the two systems. At a particular instant there may be dead short circuit when the two voltages are in adding polarity.
The frequency can be adjusted by varying the prime mover speed.
3. The phase sequence of incoming alternator must be same as that of the existing system otherwise large circulating currents exist, because the voltage across the two systems is equal to $\sqrt{3}$ times of their rated voltage.
4. The phase displacement between existing system and alternator should be same.
5. Synchronization is possible with different kVA rating alternators. Rating is not a problem to synchronization.
29. Ans: (c)

Sol: Power factor of alternator mainly depends on reactive power, which is depends on field excitation.
30. Ans: (c)

Sol: $\mathrm{P}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{s}}} \sin \delta$, when $\delta=90$
$P_{m}=\frac{E V}{X_{s}}$
31. Ans: (b)

Sol: When excitation of sailent pole synchronous motor is removed. It will take reactive power from bus bar and acts as a reluctance motor.
32. Ans: (b)

Sol: During starting, the field winding is short circuited with a low resistance to avoid damage of the field insulation and an induced voltage in the field winding will drive the current which will develop additional torque so that motor start with increased torque.
33. Ans: (a)

Sol: Synchronous motor maintains constant speed called synchronous speed irrespective of torque \& it's load magnitude, so we can say torque will vary at constant speed.
34. Ans: (a)

Sol:

35. Ans: (d)

Sol: An over excited synchronous motor under no-load condition behaves as a capacitor which is used to improve the power factor. This is called synchronous condenser.

Conventional Practice Solutions

01.

Sol: Given,
For induction motor,
$\mathrm{VA}=1000 \mathrm{kVA}=\mathrm{Si}$
$\mathrm{pf}=0.8 \mathrm{lag}=\cos \phi_{\mathrm{i}}$
for synchronous condenser,
$(\mathrm{VA})=750 \mathrm{kVA}=\mathrm{S}_{\mathrm{c}}$
$\mathrm{pf}=0.6$ lead $=\cos \phi_{\mathrm{c}}$

For Induction motor:
$\mathrm{P}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}} \cos \phi_{\mathrm{i}}$
$=1000 \times 0.8$
$\mathrm{P}_{\mathrm{i}}=800 \mathrm{~kW}$
$\theta_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}} \sin \phi_{\mathrm{i}}$
$=1000 \times 0.6$
$\theta_{\mathrm{i}}=600 \mathrm{kVAR}$
For synchronous condenser:
$\mathrm{P}_{\mathrm{c}}=\mathrm{S}_{\mathrm{c}} \cos \phi_{\mathrm{c}}=750 \times 0.6$
$\mathrm{P}_{\mathrm{c}}=450 \mathrm{~kW}$
$\mathrm{Q}_{\mathrm{c}}=\mathrm{S}_{\mathrm{c}} \sin \phi_{\mathrm{c}}=750 \times 0.8=600 \mathrm{kVAR}$
$\mathrm{Q}_{\mathrm{c}}=600 \mathrm{kVAR}$
$\therefore \mathrm{S}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}+\mathrm{j} \theta_{\mathrm{i}}[\because \mathrm{lag}]$
$\mathrm{S}_{\mathrm{i}}=(800+\mathrm{j} 600)$
But $\mathrm{S}_{\mathrm{c}}=\mathrm{P}_{\mathrm{c}}-\mathrm{jQ}_{\mathrm{c}}[\because$ lead $]$
$S_{c}=(450-j 600)$
Apparent power from supply is
$\mathrm{S}_{\mathrm{s}}=\mathrm{S}_{\mathrm{i}}+\mathrm{S}_{\mathrm{c}}$
$=(800+\mathrm{j} 600)+(450-\mathrm{j} 600)$
$=(1250+\mathrm{j} 0) \mathrm{kVA}$
\Rightarrow Supply power factor $=\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{s}}}=\frac{1250}{1250}=1$
\therefore Supply power factor $=1$
02.

Sol: Given,
$(\mathrm{VA})=1600 \mathrm{kVA}$
$\mathrm{V}_{\mathrm{L}}=11 \mathrm{kV} \Rightarrow \mathrm{V}_{\mathrm{P}}=6350.85 \mathrm{~V}$
$\mathrm{X}_{\mathrm{s}}=30 \Omega /$ phase
$\mathrm{r}_{\mathrm{a}}=0 \quad[\because$ negligible $]$
Base impedance $Z_{B}=\frac{\mathrm{V}_{\mathrm{L}}^{2}}{(\mathrm{VA})}$

$$
\begin{aligned}
& =\frac{\left(11 \times 10^{3}\right)^{2}}{1600 \times 10^{3}} \\
& =75.625 \Omega
\end{aligned}
$$

$\mathrm{X}_{\mathrm{s}_{\mathrm{pu}}}=\frac{\mathrm{X}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{B}}}=\frac{30}{75.625}$
$X_{\mathrm{s}_{\mathrm{pu}}}=0.3967 \mathrm{pu}$
Zero regulation is possible only in leading pf case
$\overline{\mathrm{E}}_{\mathrm{f}}=\overline{\mathrm{V}}_{\mathrm{t}}+\mathrm{j} \overline{\mathrm{I}}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}}$ [for alternator neglecting r_{a}]
$\overline{\mathrm{E}}_{\mathrm{f}}=1+\mathrm{j} 0+\mathrm{j} 1[\cos \phi+\mathrm{j} \sin \phi](0.3967)$
$\overline{\mathrm{E}}_{\mathrm{f}}=1+\mathrm{j}[0.3967 \cos \phi]-(0.3967 \sin \phi)$
$\overline{\mathrm{E}}_{\mathrm{f}}=[1-0.3967 \sin \phi]+\mathrm{j}(0.3967 \cos \phi)$
$\left|\overline{\mathrm{E}}_{\mathrm{f}}\right|^{2}=(1-0.3967 \sin \phi)^{2}-(0.3967 \cos \phi)^{2}$
$1=1^{2}+(0.3967)^{2}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)-2(0.3967) \sin \phi$
$(0.3967)^{2}(1)=2(0.3967) \sin \phi$
$\sin \phi=0.1983$
$\phi=11.44^{\circ}$
$\therefore \cos \phi=0.98$, lead
(ii) Insufficient data
03.

Sol: Given, $\mathrm{X}_{\mathrm{d}}=1.4$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{q}}=1 \\
& \mathrm{r}_{\mathrm{a}}=0 \\
& \mathrm{pf}=1 \\
& \Rightarrow \cos \phi=1 \\
& \Rightarrow \phi=0
\end{aligned}
$$

$\mathrm{V}=1$
$\Rightarrow \mathrm{I}=1 \quad[\mathrm{rated} \mathrm{kVA}]$
$\tan \psi=\frac{\mathrm{V} \sin \phi+\mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{q}}}{\mathrm{V} \cos \phi+\mathrm{I}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}}$
$\tan \psi=\frac{1(0)+(1)(1)}{1(1)+0}$
$\Psi=45^{\circ}$
$\Psi=\delta+\phi$
$\Rightarrow \delta=45-0$

$$
\delta=45^{\circ}
$$

Power angle $=45^{\circ}$
$\mathrm{P}=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{d}}} \sin \delta+\frac{\mathrm{V}^{2}}{2}\left[\frac{1}{\mathrm{X}_{\mathrm{q}}}-\frac{1}{\mathrm{X}_{\mathrm{d}}}\right] \sin 2 \delta$
$1=\frac{\mathrm{E}(1)}{1.4} \sin 45^{\circ}+\frac{(1)^{2}}{2}\left[\frac{1}{1}-\frac{1}{1.4}\right] \sin \left(2 \times 45^{\circ}\right)$
$1=\frac{\mathrm{E}}{\sqrt{2} \times 1.4}+\frac{1}{2}\left[\frac{0.4}{1.4}\right]$ (1)
$\mathrm{E}=1.697$
04.

Sol: Given,
$\mathrm{V}_{\mathrm{L}}=11 \mathrm{kV} \Rightarrow \mathrm{V}_{\mathrm{p}}=\frac{11000}{\sqrt{3}}=6350.35 \mathrm{~V}$
$\mathrm{r}_{\mathrm{a}}=0.3 \Omega /$ Phase
$\mathrm{X}_{\mathrm{s}}=5 \Omega /$ phase
$(\mathrm{VA})=2000 \mathrm{kVA}$
$\mathrm{Pf}=0.8 \mathrm{lag}$
Rated current $\left(I_{a}\right)=\frac{(V A)}{\sqrt{3} V_{L}}$

$$
\begin{aligned}
& =\frac{2000 \times 10^{3}}{\sqrt{3} \times 11 \times 10^{3}} \\
& =104.97 \mathrm{~A}
\end{aligned}
$$

By taking terminal voltage as reference $\overline{\mathrm{E}}_{\mathrm{f}}=\overline{\mathrm{V}}_{\mathrm{t}}+\overline{\mathrm{I}}_{\mathrm{a}} \overline{\mathrm{Z}}_{\mathrm{s}}$

$\therefore \overline{\mathrm{V}}_{\mathrm{t}}=\mathrm{V}_{\mathrm{p}} \angle 0^{\circ} \quad[\because$ reference $]$
$\overline{\mathrm{I}}_{\mathrm{a}}=\mathrm{I}_{\mathrm{a}}(0.8-\mathrm{j} 0.6) \quad[\because \mathrm{pf}=0.8 \mathrm{lag}]$
$\overline{\mathrm{Z}}_{\mathrm{s}}=\left(\mathrm{r}_{\mathrm{a}}+\mathrm{j} \mathrm{X}_{\mathrm{s}}\right)=(0.3+\mathrm{j} 5)$
$\therefore \overline{\mathrm{E}}_{\mathrm{f}}=\overline{\mathrm{V}}_{\mathrm{t}}+\overline{\mathrm{I}}_{\mathrm{a}} \overline{\mathrm{Z}}_{\mathrm{s}}$

$$
=6350.85+\mathrm{j} 0+104.97(0.8-\mathrm{j} 0.6)
$$

$$
(0.3+\mathrm{j} 5)
$$

$$
=6350.85+104.97(3.24+\mathrm{j} 3.82)
$$

$$
\begin{equation*}
=6690.95+\mathrm{j} 400.98 \tag{1}
\end{equation*}
$$

$\left|\mathrm{E}_{\mathrm{f}}\right|=6702.95 \mathrm{~V}$
In the second case,
Excitation is constant but, load pf is 0.8 leading. Hence terminal voltage will change
$\therefore \overline{\mathrm{E}}_{\mathrm{f}}=\overline{\mathrm{V}}_{\mathrm{t}}+\overline{\mathrm{I}}_{\mathrm{a}} \overline{\mathrm{Z}}_{\mathrm{s}}$
$\overline{\mathrm{E}}_{\mathrm{f}}=\mathrm{V}_{\mathrm{t}} \angle 0+104.97(0.8+\mathrm{j} 0.6)(0.3+\mathrm{j} 5)$
$\bar{E}_{f}=V_{t}+j 0+104.97(-2.76+j 4.18)$
$\overline{\mathrm{E}}_{\mathrm{f}}=\left(\mathrm{V}_{\mathrm{t}}-289.71\right)+\mathrm{j}(438.77)$
$\left|\overline{\mathrm{E}}_{\mathrm{f}}\right|=\sqrt{\left(\mathrm{V}_{\mathrm{t}}-289.71\right)^{2}+(438.77)^{2}}$
$(6702.95)^{2}=\left(V_{t}-289.71\right)^{2}+(438.77)^{2}$
$\Rightarrow V_{t}=6978.3 \mathrm{~V}$
$\therefore \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{t}} \sqrt{3}$
$\mathrm{V}_{\mathrm{L}}=6978.3 \times \sqrt{3}$
$\mathrm{V}_{\mathrm{L}}=12086.7 \mathrm{~V}$
\therefore Terminal voltage $=12.0867 \mathrm{kV}$
05.

Sol: Given
$\mathrm{I}_{\mathrm{SC}}=250 \mathrm{~A}$
$\mathrm{V}_{\mathrm{DC}}=1500 \mathrm{~V}$
$\therefore \mathrm{Z}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{1500}{250}$
$Z_{\mathrm{s}}=6 \Omega$
Given, $\mathrm{r}_{\mathrm{a}}=2 \Omega$
$X_{s}=\sqrt{Z_{s}^{2}-r_{a}^{2}}=\sqrt{6^{2}-2^{2}}=5.657 \Omega$
$\therefore r_{a}=2 \Omega ; X_{s}=5.657 \Omega$
$\mathrm{I}_{\mathrm{a}}=250 \mathrm{~A}$
$\mathrm{V}_{\mathrm{L}}=6.6 \mathrm{kV} \Rightarrow \mathrm{V}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}=3810.5 \mathrm{~V}$

$$
\begin{aligned}
\mathrm{pf} & =0.8 l \mathrm{lag} \\
\overline{\mathrm{E}}_{\mathrm{f}} & =\overline{\mathrm{V}}_{\mathrm{t}}+\overline{\mathrm{I}}_{\mathrm{a}} \overline{\mathrm{Z}}_{\mathrm{s}} \\
\overline{\mathrm{E}}_{\mathrm{f}} & =3810.5+250(0.8-\mathrm{j} 0.6)(2+\mathrm{j} 5.657) \\
& =3810.5+250(5+\mathrm{j} 3.326) \\
& =5060.5+\mathrm{j} 831.5 \\
\mid \overline{\mathrm{E}}_{\mathrm{f}} & =5128.3 \mathrm{~V} \\
\mathrm{E}_{\mathrm{f}_{\mathrm{LL}}} & =\mathrm{E}_{\mathrm{f}} \sqrt{3} \\
& =8882.57 \mathrm{~V}
\end{aligned}
$$

\therefore Voltage across the terminals when load is switched off $=8882.57 \mathrm{~V}$.

Chapter Induction Machines

Objective Practice Solutions

01. Ans: (d)

Sol: In slip ring induction motor, if stator and rotor has different number of poles, the motor doesn't rotate.
02. Ans: (c)

Sol: Induction motor rotates at slightly less than the synchronous speed.
$\therefore \mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}$
$\mathrm{N}_{\mathrm{r}}=$ less than 1000 rpm
03. Ans: (c)

Sol: In an induction motor, if the air gap is increased

1. Its power factor will reduce
2.Its magnetizing current increase

04. Ans: (b)

Sol: Skewing of a slot is shown in fig. 1

Fig. 1
Noise, vibrations, cogging, and crawling can be considerably reduced by skewing either the stator or the rotor. To eliminate the
effects of any harmonic of the air-gap mmf, slots must be skewed by 2 pole-pitches corresponding to that harmonic. The usual practice is skew rotor slots by one stator slot-pitch.
A study of the torque-speed characteristics of an induction motor with skewing and without skewing shows that, with skewing,

1) Maximum or pull-out torque decreases.
2) Starting torque also decreases.
5. Ans: (a)

Sol: Open type slot:

Figure: Open slots

Advantages:

(i) Windings can be placed into the slots very easily.
The winding which is formed before placed into the slots is called former winding.
(ii) Leakage reactance is less in open type slots. Therefore more amount of power will be transferred from stator to rotor and torque production is high.
06. Ans: (b)

Sol: Supply frequency, $\mathrm{f}=\frac{1500 \times 4}{120}=50 \mathrm{~Hz}$
$\mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}$
Slip, $\% \mathrm{~S}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{s}}} \times 100$
Slip, $\% \mathrm{~S}=\frac{1000-960}{1000} \times 100$
$\% \mathrm{~S}=4 \%$
07. Ans: (a)

Sol: $\mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{4}=1500 \mathrm{rpm}$
Slip, $S=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{s}}}=\frac{1500-1440}{1500}=0.04$
The frequency of emf induced in rotor,
$\mathrm{F}_{\mathrm{r}}=\mathrm{SF}_{\mathrm{s}}$
$\mathrm{F}_{\mathrm{r}}=0.04 \times 50$
$\mathrm{F}_{\mathrm{r}}=2 \mathrm{~Hz}$
08. Ans: (c)

Sol: If an induction motor by some means is rotated at synchronous speed the slip is equal to zero, therefore the emf induced in the rotor is zero and the torque developed by the rotor is zero.

09. Ans: (d)

Sol: The induction motor is rotates at slightly less than the synchronous speed, therefore synchronous speed is 300 rpm .
$300=\frac{120 \times 50}{P}$
$\therefore \mathrm{P}=20$
10. Ans: (c)

Sol: If any two leads of stator are interchanged in a 3-phase induction motor, the motor will run in a direction opposite to previous one.
11. Ans: (a)

Sol:

Torque-slip characteristics of a 3-phase Induction machine
12. Ans: (b)

Sol: The no load current shown by the induction motor is usually more than that of transformer.
13. Ans: (b)

Sol: $\frac{\mathrm{T}_{\mathrm{st}}}{\mathrm{T}_{\mathrm{FL}}}=\frac{2 \mathrm{~s}_{\mathrm{m}}}{1+\mathrm{s}_{\mathrm{m}}^{2}}$
Where $\mathrm{s}_{\mathrm{m}}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{s}}}$
$\mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}}=\frac{120 \times 50}{4}=1500 \mathrm{rpm}$
$\mathrm{N}_{\mathrm{r}}=1200 \mathrm{rpm}$
$\therefore \mathrm{s}_{\mathrm{m}}=\frac{1500-1200}{1500}=0.2=20 \%$
Now, $\frac{T_{\text {st }}}{T_{F L}}=\frac{2(0.2)}{1+(0.2)^{2}}=0.384$
14. Ans: (c)

Sol: Efficiency $(\eta)=\frac{\text { output shaft power }}{\text { input power }}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm} \\
& \mathrm{~N}_{\mathrm{r}}=975 \mathrm{rpm} \text { (Given) }
\end{aligned}
$$

$\therefore \mathrm{s}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{s}}}=\frac{1000-975}{1000}=0.025$
Airgap power $=$ Stator input - Stator losses

$$
=40-1=39 \mathrm{~kW}
$$

Gross mechanical power output

$$
\begin{aligned}
& =(1-\mathrm{s}) \times \text { Air gap power } \\
& =(1-0.025) \times 39=38.025 \mathrm{~kW}
\end{aligned}
$$

Shaft power output
= Gross mechanical power output

- Mechanical losses
$=38.025-2=36.025 \mathrm{~kW}$

$$
\begin{aligned}
\therefore \quad \% \eta & =\frac{36.025}{40} \times 100 \\
& =90.0625 \%
\end{aligned}
$$

15. Ans: (c)

Sol: Slip s $=5 \%=0.05$
Rotor output/gross mechanical power developed $\mathrm{P}_{\mathrm{ro}}=20 \mathrm{~kW}$
Rotor copper loss $=\frac{\mathrm{s}}{1-\mathrm{s}} \times \mathrm{P}_{\mathrm{r} 0}$

$$
\begin{aligned}
& =\frac{0.05}{1-0.05} \times 20 \mathrm{k} \\
& =1052 \mathrm{~W}
\end{aligned}
$$

16. Ans: (c)

Sol: In an induction motor, if the air gap is increased

1. Its power factor will reduce
2. Its magnetizing current increase

17. Ans: (b)

Sol: $\mathrm{T}_{\mathrm{e}}=\frac{180}{2 \pi \mathrm{~N}_{\mathrm{s}}} \times \frac{\mathrm{SE}_{2}^{2} \mathrm{R}_{2}}{\mathrm{R}_{2}^{2}+\left(\mathrm{SX}_{2}\right)^{2}}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{e}} \propto \mathrm{~V}^{2} \\
& \mathrm{~T}_{2}=\frac{\mathrm{T}_{1}}{4}=\frac{500}{4}=125 \mathrm{Nm}
\end{aligned}
$$

18. Ans: (*)

Sol: Slip at maximum torque,
$\mathrm{S}_{\mathrm{Tm}}=\frac{\mathrm{r}_{2}}{\mathrm{X}_{2}}=\frac{0.21}{0.7}=0.3$
The speed at maximum torque,
$\mathrm{N}_{\mathrm{Tm}}=\mathrm{N}_{\mathrm{s}}\left(1-\mathrm{S}_{\mathrm{Tm}}\right)$
$\mathrm{N}_{\mathrm{Tm}}=1500(1-0.3)$
$\mathrm{N}_{\mathrm{Tm}}=1050 \mathrm{rpm}$
19. Ans: (d)

Sol: As load on an induction motor goes on increasing, its power factor goes on increasing up to full load and then it falls again.
20. Ans: (b)

Sol: The rotor bars of squirrel cage induction motor are short circuited at both ends by end-rings of the same material, hence we unable to connect external resistance into rotor, so Rotor resistance control not applicable to cage induction motor.
21. Ans: (a)

Sol: Rotor current's in an induction motor is due to relative speed between stator RMF and physical rotor.
If $\mathrm{N}_{\mathrm{r}}=\mathrm{N}_{\mathrm{s}}$ i.e. if rotor rotating with ' N_{S} ' speed in the same direction of stator RMF (N_{s} speed), then the relative speed between them is zero.
\Rightarrow EMF induced in the rotor winding is zero.
\Rightarrow Current's in rotor winding is zero. Hence torque production is zero
\Rightarrow At $\mathrm{N}=\mathrm{N}_{\mathrm{s}}$; rotor won't rotate, hence called "Asynchronous machine".

43
22. Ans: (d)

Sol: The main function of a starter in a 3- ϕ induction motor is to limit high starting current to reasonable values.
23. Ans: (a)

Sol: The speed control of induction motor by pole changing is suitable for cage motors only because the cage rotor automatically develops numbers of poles equal to the poles of stator winding.

24. Ans: (a)

Sol: The rotor will start rotating in such a direction that it will oppose the cause, i.e., the relative speed between the rotating field and stationary rotor conductors should decrease.
25. Ans: (c)

Sol: A large capacity three-phase induction motor is started using a star delta starter instead of starting direct on line. The starting current is reduced to one third its value.
26. Ans: (c)

Sol: If the motor is started by an auto transformer with $\mathrm{x} \%$ tapping, the starting line current will be reduced by x^{2} times.
27. Ans: (a)

Sol: The star delta starting current of an induction motor is 50 A . Its DOL starting current is 150 A .
28. Ans: (a)

Sol: $\frac{T_{\mathrm{st}}}{\mathrm{T}_{\mathrm{FL}}}=\mathrm{X}^{2}\left(\frac{\mathrm{I}_{\mathrm{st}}}{\mathrm{I}_{\mathrm{FL}}}\right)^{2} \times \mathrm{S}$
$\frac{1}{4}=X^{2}(4)^{2} \times 0.03$
$\Rightarrow \mathrm{X}=72.2 \%$
29. Ans: (c)

Sol: Magnitude of starting torque depends upon value of capacitor used at the time of starting. Practically permanent split capacitor start consist high value of capacitor and shaded pole type produces low starting torque.
30. Ans: (d)

Sol: In a single phase capacitor motor the direction of rotation will be in the opposite direction to the original when Capacitor is replaced by an inductor.
31. Ans: (d)

Sol: The tendency of squirrel cage induction motor to run at one seventh of the synchronous speed when connected to supply mains is called crawling. This is due to the space harmonics in the air gap flux wave. The dominant harmonics of the air gap flux wave are $5^{\text {th }}$ and $7^{\text {th }}$ harmonics. The $5^{\text {th }}$ harmonic flux rotates backwards with synchronous speed of $\frac{\mathrm{n}_{\mathrm{s}}}{5}$ and the seventh harmonic flux rotates forward at $\frac{\mathrm{n}_{\mathrm{s}}}{7}$. These harmonic fluxes produce their own harmonic torques of the same general torque-slip shape as that of the fundamental and will have stable operating regions around the rotor speeds of $-\frac{\mathrm{n}_{\mathrm{s}}}{5}$ and $\frac{\mathrm{n}_{\mathrm{s}}}{7}$ respectively. In the following figure, the superimposition of the fundamental, fifth and seventh harmonic torque- slip curves are shown.

In the motor operating mode of induction machine (i.e $0<\mathrm{n}<\mathrm{n}_{\mathrm{s}}$) there is a stable operating region around $\frac{\mathrm{n}_{\mathrm{s}}}{7}$ th speed of the motor (see figure). If load torque curve intersects the motor torque curve in this stable region it results in stable operation of the induction motor around this low speed (i.e. $\frac{\mathrm{n}_{\mathrm{s}}}{7}$ th speed). This phenomenon is known as crawling. This phenomenon is less prominent in slip ring induction machines as these possess higher starting torque than squirrel cage induction machines.
As the induction motor is working at low speeds, the slip will be high so rotor copper losses (s \times Airgap power) will be more and efficiency will be poor. The crawling is also accompanied by much higher stator current and sometimes noise and vibration are also observed.
32. Ans: (b)

Sol: Functions of skewed rotor slots in induction motor

1. The skewed rotor slot increases the length of the copper bar thereby
increases the resistance of the rotor bars and hence starting performance of the induction machine.
2. It makes the air gap flux distribution uniform thereby reduces harmonics torque produced by the machine.
3. As harmonic torque are reduced, the phenomenon due to harmonic torque can also be reduced.

45

Conventional Practice Solutions

1.

Sol: Given,
Number of poles, $\mathrm{P}=4$
Frequency $\mathrm{f}_{1}=50 \mathrm{~Hz}$
Speed of the motor, $\mathrm{N}=1450 \mathrm{rpm}$.
Synchronous speed $\mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}_{1}}{\mathrm{p}}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{4} \\
& \Rightarrow \mathrm{~N}_{\mathrm{s}}=1500 \mathrm{rpm}
\end{aligned}
$$

(a) Slip, $\mathrm{s}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}}{\mathrm{N}_{\mathrm{s}}}$

$$
\begin{aligned}
& \mathrm{s}=\frac{1500-1450}{1500}=0.0333 \\
& \mathrm{~s}=3.33 \%
\end{aligned}
$$

(b) Frequency of rotor currents $\mathrm{f}_{2}=\mathrm{sf}_{1}$
$\Rightarrow \mathrm{f}_{2}=\frac{3.33}{100} \times 50$

$$
\mathrm{f}_{2}=1.67 \mathrm{~Hz}
$$

(c) Angular velocity of stator field w.r.t stator
$=\mathrm{N}_{\mathrm{S}}$
$=1500 \mathrm{rpm}$
Angular velocity of stator field w.r.t rotor $=\mathrm{sN}_{\mathrm{S}}$

$$
=\frac{3.33}{100} \times 1500
$$

$$
=50 \mathrm{rpm}
$$

(d) Angular velocity of rotor field w.r.t rotor $=\mathrm{sN}_{\mathrm{S}}$
$=50 \mathrm{rpm}$
Angular velocity of rotor field w.r.t stator

$$
\begin{aligned}
& =\mathrm{N}_{\mathrm{S}} \\
& =1500 \mathrm{rpm}
\end{aligned}
$$

2.

Sol: Given,
No load speed of induction motor, $\mathrm{N}_{\mathrm{o}}=1000 \mathrm{rpm}$.
Full load speed, $\mathrm{N}_{\mathrm{fl}}=950 \mathrm{rpm}$
Frequency $\mathrm{f}_{1}=50 \mathrm{~Hz}$
In an induction motor ,No Load speed is very close by to synchronous speed

$$
\mathrm{N}_{\mathrm{s}}=1000 \mathrm{rpm}
$$

(a) We know synchronous speed, $\mathrm{N}_{\mathrm{S}}=\frac{120 \mathrm{f}_{1}}{\mathrm{p}}$

$$
\Rightarrow 1000=\frac{120 \times 50}{\mathrm{p}}
$$

$$
\Rightarrow \mathrm{p}=6
$$

\therefore Number of poles, $\mathrm{p}=6$
(b) Slip, $s=\frac{N_{S}-N}{N_{S}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{s}_{\mathrm{f}_{1}}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{f}_{1}}}{\mathrm{~N}_{\mathrm{s}}} \\
& \mathrm{~s}_{\mathrm{f}_{1}}=\frac{1000-950}{1000} \\
& \mathrm{~s}_{\mathrm{f}_{1}}=5 \%
\end{aligned}
$$

(c) Frequency of rotor voltage $\mathrm{f}_{2}=\mathrm{s} \mathrm{f}_{1}$

$$
\begin{aligned}
\Rightarrow \mathrm{f}_{2} & =0.05 \times 50 \\
\mathrm{f}_{2} & =50 \times 0.05 \\
\mathrm{f}_{2} & =2.5 \mathrm{~Hz}
\end{aligned}
$$

(d) Speed of rotor field w.r.t rotor $=\mathrm{sN}_{\mathrm{S}}$

$$
\begin{aligned}
& =0.05 \times 1000 \\
& =50 \mathrm{rpm}
\end{aligned}
$$

(e) Speed of rotor field w.r.t stator $=\mathrm{N}_{\mathrm{S}}$

$$
=1000 \mathrm{rpm}
$$

3.

Sol: Given,
Power rating of the machine, $\mathrm{P}_{0}=10 \mathrm{~kW}$
Number of poles, $\mathrm{p}=6$
Frequency, $\mathrm{f}_{1}=50 \mathrm{~Hz}$
Full load slip, $S=0.04$
At full load,
Power output $=$ machine rating
$\mathrm{P}_{0}=10 \mathrm{~kW}$
Given,
Friction and windage losses, $\mathrm{P}_{\mathrm{f} \& \mathrm{w}}=4 \%$ of output

$$
\begin{aligned}
\therefore \mathrm{P}_{\mathrm{f} \& \mathrm{w}} & =0.04 \times \mathrm{P}_{0} \\
& =0.04 \times 10 \times 10^{3} \\
\mathrm{P}_{\mathrm{f} \& \mathrm{w}} & =400 \mathrm{~W}
\end{aligned}
$$

Power flow in an induction motor is as follows

(1) Mechanical power developed $\left(\mathrm{p}_{\mathrm{em}}\right)=$ power output $\left(\mathrm{P}_{0}\right)+$ friction and windage losses $\left(\mathrm{P}_{\mathrm{f} \& \mathrm{w}}\right)$

$$
\begin{aligned}
\Rightarrow \mathrm{P}_{\mathrm{em}} & =\mathrm{P}_{0}+\mathrm{P}_{\mathrm{f} \& \mathrm{w}} \\
& =10000+400
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{em}}=10400 \mathrm{~W}
$$

$\frac{\text { Rotor copper losses }}{\text { Mechanical power develped }\left(\mathrm{p}_{\mathrm{em}}\right)}=\frac{\mathrm{SP}_{\mathrm{ag}}}{(1-\mathrm{S}) \mathrm{P}_{\mathrm{ag}}}=\frac{\mathrm{S}}{1-\mathrm{S}}$
$\frac{\text { Rotor copper losses }}{10400}=\frac{0.04}{1-0.04}=\frac{1}{24}$
Rotor copper losses $=\frac{10400}{24}=433.3 \mathrm{~W}$
Rotor copper losses $=433.3 \mathrm{~W}$
(2) Full load electromagnetic torque, $\mathrm{T}_{\mathrm{em}}=\frac{\mathrm{P}_{\mathrm{em}}}{\omega}$

$$
T_{\mathrm{em}}=\frac{10400}{\omega_{\mathrm{s}}(1-\mathrm{s})}=\frac{10400}{\omega_{\mathrm{s}}(1-0.04)}
$$

Synchronous speed, $\mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{s}} & =1000 \mathrm{rpm} \\
\omega_{\mathrm{s}} & =\frac{\mathrm{N}_{\mathrm{s}}}{60} \times 2 \pi \\
\omega_{\mathrm{s}} & =104.72 \mathrm{rad} / \mathrm{s} \\
\therefore \mathrm{~T}_{\mathrm{em}} & =\frac{10400}{104.72(1-0.04)} \\
\mathrm{T}_{\mathrm{em}} & =103.45 \mathrm{Nm}
\end{aligned}
$$

(3) Rotor efficiency, $\eta_{r}=1-S$

$$
\begin{aligned}
& \eta_{\mathrm{r}}=1-0.04 \\
& \eta_{\mathrm{r}}=0.96 \\
& \eta_{\mathrm{r}}=96 \%
\end{aligned}
$$

4.

Sol: Given,
Power, rating of the motor, $\mathrm{P}_{0}=30 \mathrm{~kW}$
Full load slip, $\mathrm{S}_{\mathrm{f} 1}=0.03$
Stator losses, $\left(\mathrm{P}_{\mathrm{sL}}\right)=5 \%$ of input power
Mechanical losses ($\mathrm{P}_{\mathrm{rot}}$) $=1.5 \%$ of output
Rotor currents per phase $\left(\mathrm{I}_{\mathrm{r}}\right)=45 \mathrm{~A}$
Power flow in induction motor is as follows,

Mechanical losses, $\left(\mathrm{P}_{\mathrm{rot}}\right)=1.5 \%$ of P_{0}

$$
\begin{aligned}
& =\frac{1.5}{100} \times 30000 \\
& =450 \mathrm{~W}
\end{aligned}
$$

Mechanical power developed $\left(\mathrm{P}_{\mathrm{em}}\right)=$ power output $\left(\mathrm{P}_{0}\right)+$ Mechanical losses $\left(\mathrm{P}_{\mathrm{rot}}\right)$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{em}} & =\mathrm{P}_{0}+\mathrm{P}_{\mathrm{rot}} \\
& =30000+450 \\
\mathrm{P}_{\mathrm{em}} & =30450 \mathrm{~W}
\end{aligned}
$$

$\frac{\text { Rotor copper losses }}{\text { Mechanical power developed }}=\frac{\mathrm{SP}_{\mathrm{ag}}}{(1-\mathrm{S}) \mathrm{P}_{\mathrm{ag}}}=\frac{\mathrm{S}}{1-\mathrm{S}}$
$\frac{\text { Rotor copper losses }}{30450}=\frac{0.03}{1-0.03}=\frac{3}{97}$
Rotor copper losses $=\frac{3}{97} \times 30450$
Rotor copper losses $=941.75 \mathrm{~W}$
Rotor copper losses $=3 \mathrm{I}_{\mathrm{r}}^{2} \mathrm{r}_{\mathrm{r}}=941.75$

$$
\mathrm{r}_{\mathrm{r}}=0.155 \Omega
$$

5.

Sol: Given,
Poles, $\mathrm{P}=6$
Frequency, $\left(\mathrm{f}_{1}\right)=50 \mathrm{~Hz}$
Speed of motor (N) = 935 rpm
Stator losses, $\left(\mathrm{P}_{\mathrm{SI}}\right)=400 \mathrm{~W}$
Friction and windage losses $\left(\mathrm{P}_{\mathrm{f} \& \mathrm{w}}\right)=1 \%$ of output

Rating of the motor $\left(\mathrm{P}_{0}\right)=5 \mathrm{hP}=3675 \mathrm{~W}$
[1hp=735 W]
$\mathrm{P}_{0}=3675 \mathrm{~W}$
$\mathrm{P}_{\text {f\&w }}=1 \%$ of P_{0}

$$
=\frac{1}{100} \times 3675 \mathrm{~W}
$$

$\mathrm{P}_{\mathrm{fkw}}=36.75 \mathrm{~W}$
Mechanical power developed (P_{em})
$=$ Power output $\left(\mathrm{P}_{0}\right)$

+ friction and windage losses $\left(\mathrm{P}_{\mathrm{f} \mathrm{\& w}}\right)$
$\mathrm{P}_{\mathrm{em}}=\mathrm{P}_{0}+\mathrm{P}_{\mathrm{fw}}$
$=3675+36.75$
$\mathrm{P}_{\mathrm{em}}=3711.75 \mathrm{~W}$
$\operatorname{Airgap} \operatorname{power}\left(\mathrm{P}_{\mathrm{ag}}\right)=\frac{\mathrm{P}_{\mathrm{em}}}{1-\mathrm{S}}$

$$
=\frac{3711.75}{1-S}
$$

Synchronous speed, $\left(\mathrm{N}_{\mathrm{S}}\right)=\frac{120 \mathrm{f}_{1}}{\mathrm{p}}$

$$
=\frac{120 \times 50}{6}
$$

$$
\mathrm{N}_{\mathrm{S}}=1000 \mathrm{rpm}
$$

$\mathrm{S}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}}{\mathrm{N}_{\mathrm{S}}}=\frac{1000-935}{1000}=0.065$
$\mathrm{S}=0.065$
$\mathrm{P}_{\mathrm{ag}}=\frac{3711.75}{1-0.065}$
$\mathrm{P}_{\mathrm{ag}}=3969.8 \mathrm{~W}$
(a) Power input ($\mathrm{P}_{\text {in }}$)
$=$ Air gap power $\left(\mathrm{P}_{\mathrm{ag}}\right)+$ stator losses $\left(\mathrm{P}_{\mathrm{s} \mathrm{l}}\right)$
$\mathrm{P}_{\text {in }}=\mathrm{P}_{\mathrm{ag}}+\mathrm{P}_{\mathrm{SL}}$

$$
=3969.8+400
$$

$\mathrm{P}_{\text {in }}=4369.8 \mathrm{~W}$
\therefore Input power $=4369.8 \mathrm{~W}$
(b) Given,

Speed at maximum torque, $\mathrm{N}_{\mathrm{mT}}=800 \mathrm{rpm}$
$\therefore \mathrm{S}_{\mathrm{mT}}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{\mathrm{mT}}}{\mathrm{N}_{\mathrm{s}}}$

$$
\mathrm{S}_{\mathrm{mT}}=\frac{1000-800}{1000}
$$

$$
\mathrm{S}_{\mathrm{mT}}=0.2
$$

We know that
$\frac{\mathrm{T}_{\mathrm{fl}}}{\mathrm{T}_{\max }}=\frac{2}{\frac{\mathrm{~S}_{\mathrm{fl}}}{\mathrm{S}_{\mathrm{mT}}}+\frac{\mathrm{S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{fl}}}}$
$\frac{\mathrm{T}_{\mathrm{st}}}{\mathrm{T}_{\text {max }}}=\frac{2 \mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{mt}}^{2}+1}$
$\therefore \frac{\mathrm{T}_{\mathrm{f}_{1}}}{\mathrm{~T}_{\mathrm{st}}}=\frac{2 \mathrm{~S}_{\mathrm{mT}} \mathrm{S}_{\mathrm{f} 1}}{\mathrm{~S}_{\mathrm{mt}}^{2}+\mathrm{S}_{\mathrm{fl}}^{2}} \times \frac{\mathrm{S}_{\mathrm{mT}}^{2}+1}{2 \mathrm{~S}_{\mathrm{mT}}}$
$\frac{\mathrm{T}_{\mathrm{f} 1}}{\mathrm{~T}_{\mathrm{st}}}=\frac{\left(\mathrm{S}_{\mathrm{mT}}^{2}+1\right) \mathrm{S}_{\mathrm{f} 1}}{\left(\mathrm{~S}_{\mathrm{mT}}^{2}+\mathrm{S}_{\mathrm{f} 1}^{2}\right)}$.
$\mathrm{T}_{\mathrm{f} 1}=\frac{\mathrm{P}_{0}}{\omega}=\frac{3675}{\frac{935}{60} \times 2 \pi}=37.5 \mathrm{Nm}$
$\therefore \mathrm{T}_{\mathrm{fl}}=37.5 \mathrm{Nm}$
\therefore From (1) and (2)
$\frac{37.5}{\mathrm{~T}_{\mathrm{st}}}=\frac{\left((0.2)^{2}+1\right)(0.065)}{(0.2)^{2}+(0.065)^{2}}$
$\Rightarrow \mathrm{T}_{\mathrm{st}}=24.5 \mathrm{Nm}$
\therefore Starting torque $=24.5 \mathrm{Nm}$

06.

Sol: Given,
Line voltage, $\mathrm{V}_{\mathrm{L}}=230 \mathrm{~V}$
Line current, $\mathrm{I}_{\mathrm{L}}=60 \mathrm{~A}$
Power factor, $\cos \phi_{1}=0.866$. lagging
Stator copper losses, $\mathrm{P}_{\mathrm{scu}}=850 \mathrm{~W}$
Core losses, $\mathrm{P}_{\mathrm{C}}=450 \mathrm{~W}$
Rotor losses, $\mathrm{P}_{\text {cur }}=1050 \mathrm{~W}$
Rotational losses $\mathrm{P}_{\text {rot }}=500 \mathrm{~W}$
Power input $\left(\mathrm{P}_{\text {in }}\right)=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi_{1}$
$\mathrm{P}_{\text {in }}=20700 \mathrm{~W}$
Total stator losses $\left(\mathrm{P}_{\mathrm{sL}}\right)=\mathrm{P}_{\mathrm{scu}}+\mathrm{P}_{\mathrm{c}}$

$$
\begin{aligned}
& =850+450 \\
\mathrm{P}_{\mathrm{sl}} & =1300 \mathrm{~W}
\end{aligned}
$$

(i) Air gap power $\left(\mathrm{P}_{\mathrm{ag}}\right)$

$$
\begin{aligned}
& =\text { power input }\left(\mathrm{P}_{\text {in }}\right)-\text { stator losses }\left(\mathrm{P}_{\mathrm{s} l}\right) \\
& =20700-130 \\
& =19400 \mathrm{~W} \\
\mathrm{P}_{\mathrm{ag}} & =19.4 \mathrm{~kW}
\end{aligned}
$$

(ii) Slip, $\mathrm{S}=\frac{\text { Rotor copper losses }\left(\mathrm{P}_{\mathrm{cur}}\right)}{\text { Air gap power }\left(\mathrm{P}_{\mathrm{ag}}\right)}$

$$
\begin{aligned}
= & \frac{1050}{19400} \\
S & =5.41 \%
\end{aligned}
$$

(iii) Mechanical power developed,

$$
\begin{aligned}
\left(\mathrm{P}_{\mathrm{em}}\right) & =(1-\mathrm{s}) \mathrm{P}_{\mathrm{ag}} \\
\therefore \mathrm{P}_{\mathrm{em}} & =(1-0.0541) \mathrm{P}_{\mathrm{ag}} \\
\mathrm{P}_{\mathrm{em}} & =18350 \mathrm{~W}
\end{aligned}
$$

(iv) Output power $\left(\mathrm{P}_{0}\right)=\mathrm{P}_{\mathrm{em}}-\mathrm{P}_{\text {rot }}=18350-500$

$$
\mathrm{P}_{0}=17850 \mathrm{~W}
$$

(v) Efficiency $(\eta)=\frac{\text { power output }}{\text { power input }}$

$$
\begin{aligned}
& =\frac{17850}{20700} \\
\eta & =86.23 \%
\end{aligned}
$$

7.

Sol: Given,
Poles, $\mathrm{P}=4$
Frequency, $\mathrm{f}=50 \mathrm{~Hz}$
Starting torque (T_{st})
$=160 \%$ of full load torque $\left(\mathrm{T}_{\mathrm{fl}}\right)$
$\therefore \mathrm{T}_{\mathrm{st}}=1.6 \mathrm{~T}_{\mathrm{fl}}$ \qquad
Maximum torque $\left(\mathrm{T}_{\max }\right)=200 \%$ of full load torque (T_{fl})

$$
\begin{equation*}
\therefore \mathrm{T}_{\max }=2 \mathrm{~T}_{\mathrm{fl}} \tag{2}
\end{equation*}
$$

\qquad
(i) From (1) and (2)
$\frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\max }}=\frac{1.6 \mathrm{~T}_{\mathrm{f} 1}}{2 \mathrm{~T}_{\mathrm{f} 1}}$
$\frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\text {max }}}=\frac{4}{5}$
But we know that
$\frac{\mathrm{T}_{\mathrm{st}}}{\mathrm{T}_{\text {max }}}=\frac{2 \mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{mT}}^{2}+1}$
[$\mathrm{S}_{\mathrm{mT}}=$ slip at maximum torque]
$\frac{4}{5}=\frac{2 \mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{mT}}{ }^{2}+1}$
$2 \mathrm{~S}_{\mathrm{mT}}^{2}-5 \mathrm{~S}_{\mathrm{mT}}+2=0$
$\mathrm{S}_{\mathrm{mT}}=2,1 / 2$
$\therefore \mathrm{S}_{\mathrm{mT}}=0.5 \ldots \ldots$.(4)
$[\therefore$ for a motor $\rightarrow 0<\mathrm{s}<1$]
Synchronous speed $N_{S}=\frac{120 f}{p}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{S}}=\frac{120 \times 50}{4} \\
& \mathrm{~N}_{\mathrm{S}}=1500 \mathrm{rpm}
\end{aligned}
$$

Speed at maximum torque, $\mathrm{N}_{\mathrm{mT}}=\mathrm{N}_{\mathrm{s}}\left(1-\mathrm{S}_{\mathrm{mT}}\right)$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{mT}}=1500(1-0.5) \\
& \mathrm{N}_{\mathrm{mT}}=750 \mathrm{rpm}
\end{aligned}
$$

(ii) In induction motor we know that,
$\frac{\mathrm{T}}{\mathrm{T}_{\max }}=\frac{2}{\frac{\mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}}+\frac{\mathrm{S}}{\mathrm{S}_{\mathrm{mT}}}}$
$\frac{\mathrm{T}_{\mathrm{f} 1}}{\mathrm{~T}_{\max }}=\frac{2}{\frac{\mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{f} 1}}+\frac{\mathrm{S}_{\mathrm{f} 1}}{\mathrm{~S}_{\mathrm{mT}}}}$
$\frac{1}{2}=\frac{2}{\frac{0.5}{\mathrm{~S}_{\mathrm{f} 1}}+\frac{\mathrm{S}_{\mathrm{f} 1}}{0.5}}[$ from (2)and (4)]
$\frac{1}{2}=\frac{2 \mathrm{~S}_{\mathrm{f} 1} \times 0.5}{\mathrm{~S}_{\mathrm{f} 1}^{2}+0.25}$
$\mathrm{S}_{\mathrm{f} 1}^{2}+0.25=25 \mathrm{f}_{1}$
$4 \mathrm{~S}_{\mathrm{f} 1}^{2}-8 \mathrm{~S}_{\mathrm{f} 1}+1=0$
$\mathrm{S}_{\mathrm{f} 1}=0.134,1.866$
$\therefore \mathrm{S}_{\mathrm{fl}}=0.134[\therefore$ for motor $\Rightarrow 0<\mathrm{S}<1]$
\therefore Speed at full load, $\mathrm{N}_{\mathrm{fl}}=\mathrm{N}_{\mathrm{S}}\left(1-\mathrm{S}_{\mathrm{fl}}\right)$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{f} 1} & =1500(1-0.134) \\
\mathrm{N}_{\mathrm{f} 1} & =1299 \mathrm{rpm}
\end{aligned}
$$

8.

Sol: Given,
Poles, $\mathrm{P}=4$
Frequency, $\mathrm{f}=60 \mathrm{~Hz}$
Full load speed, $\mathrm{N}_{\mathrm{fl}}=1710 \mathrm{rpm}$
\therefore Synchronous speed, $\mathrm{N}_{\mathrm{S}}=\frac{120 \mathrm{f}}{\mathrm{p}}$
$\mathrm{N}_{\mathrm{S}}=\frac{120 \times 60}{4}=1800 \mathrm{rpm}$
$\mathrm{N}_{\mathrm{S}}=1800 \mathrm{rpm}$
Full load slip $\mathrm{S}_{\mathrm{fl}}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{\mathrm{f} 1}}{\mathrm{~N}_{\mathrm{S}}}$
$\therefore \mathrm{S}_{\mathrm{f} 1}=\frac{1800-1710}{1800}[$ from (1)]
$\mathrm{S}_{\mathrm{fl}}=0.05$
Given that
Starting current $\left(\mathrm{I}_{\mathrm{st}}\right)=6 \times$ full load current ($\mathrm{Ifl}_{\mathrm{fl}}$)

$$
\therefore \frac{I_{\mathrm{st}}}{\mathrm{I}_{\mathrm{f} 1}}=6 \ldots . . .(3)
$$

(a) In induction motors we know that

Torque (T) $=3 \mathrm{I}_{2}^{2} \frac{\mathrm{R}_{2}}{\mathrm{~S}}$
$\therefore \frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\mathrm{f} 1}}=\left(\frac{\mathrm{I}_{\mathrm{St}}}{\mathrm{I}_{\mathrm{f} 1}}\right)^{2} \mathrm{~S}_{\mathrm{f} 1} \ldots \ldots . .(4)$
$\therefore \frac{\mathrm{T}_{\mathrm{st}}}{\mathrm{T}_{\mathrm{f} 1}}=6^{2}(0.05) \quad[$ from (2) and (3)]
$\frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\mathrm{f} 1}}=1.8$
\therefore Starling torque $\left(\mathrm{T}_{\mathrm{st}}\right)$ $=180 \%$ of full load torque $\left(\mathrm{T}_{\mathrm{fl}}\right)$
(b) We know that,
$\frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\text {max }}}=\frac{2 \mathrm{~S}_{\mathrm{mT}}}{\mathrm{S}_{\mathrm{mT}}^{2}+1}$
$\frac{\mathrm{T}_{\mathrm{fl}}}{\mathrm{T}_{\mathrm{max}}}=\frac{2 \mathrm{~S}_{\mathrm{mT}} \mathrm{S}_{\mathrm{f} 1}}{\mathrm{~S}_{\mathrm{mT}}^{2}+\mathrm{S}_{\mathrm{f} 1}^{2}}$
$\therefore \frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{T}_{\mathrm{f} 1}}=\frac{\left(\mathrm{S}_{\mathrm{mT}}^{2}+\mathrm{S}_{\mathrm{f} 1}^{2}\right)}{\left(\mathrm{S}_{\mathrm{mT}}^{2}+1\right) \mathrm{S}_{\mathrm{f} 1}}$
$1.8=\frac{\left(\mathrm{S}_{\mathrm{mT}}^{2}+(0.05)^{2}\right)}{\left(\mathrm{S}_{\mathrm{mT}}^{2}+1\right)(0.05)}$
$\mathrm{S}_{\mathrm{mT}}^{2}+0.0025=0.09\left(\mathrm{~S}_{\mathrm{mT}}^{2}+1\right)$
$\mathrm{S}_{\mathrm{mT}}^{2}(0.91)=0.0875$
$\mathrm{S}_{\mathrm{mT}}=0.31$
Speed at maximum torque, $\mathrm{N}_{\mathrm{mT}}=\mathrm{N}_{\mathrm{S}}\left(1-\mathrm{S}_{\mathrm{mT}}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{N}_{\mathrm{mT}}=1800(1-0.31) \\
& \mathrm{N}_{\mathrm{mT}}=1242 \mathrm{rpm}
\end{aligned}
$$

(c) $\frac{\mathrm{T}_{\max }}{\mathrm{T}_{\mathrm{f} 1}}=\frac{\mathrm{S}_{\mathrm{mT}}^{2}+\mathrm{S}_{\mathrm{f} 1}^{2}}{2 \mathrm{~S}_{\mathrm{mT}} \mathrm{S}_{\mathrm{f} 1}}$

$$
\begin{aligned}
& =\frac{(0.05)^{2}+(0.31)^{2}}{2(0.05)(0.31)} \\
& =3.18
\end{aligned}
$$

\therefore Maximum toque

$$
=318 \% \text { of full load torque }
$$

9.

Sol: Given
Slip at maximum torque, $\mathrm{S}_{\mathrm{mT}}=0.2$
External resistance, $\mathrm{R}_{\mathrm{ext}}=0.5 \Omega$

Let,
$\mathrm{R}_{2}=$ Rotor resistance
$\mathrm{X}_{2}=$ Rotor reactance
We know that
$\mathrm{S}_{\mathrm{mT}}=\frac{\mathrm{R}_{2}}{\mathrm{X}_{2}}$
$0.2=\frac{\mathrm{R}_{2}}{\mathrm{X}_{2}}$
$\mathrm{X}_{2}=5 \mathrm{R}_{2}$
Equivalent rotor circuit resistance
$\mathrm{R}^{1}=\mathrm{R}_{2}+\mathrm{R}_{\mathrm{ext}}$
$\Rightarrow \mathrm{R}^{1}=\mathrm{R}_{2}+0.5$
Given that, after adding external resistance
Starting torque $=75 \%$ of maximum torque
$\mathrm{T}_{\mathrm{st}}=0.75 \mathrm{~T}_{\text {max }}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{T}_{\mathrm{St}}}{\mathrm{~T}_{\max }}=0.75=\frac{2 \mathrm{~S}_{\mathrm{mT}}^{1}}{\left(\mathrm{~S}_{\mathrm{mT}}^{1}\right)^{2}+1} \\
& \Rightarrow 3 \mathrm{~S}_{\mathrm{mT}}^{2}-8 \mathrm{~S}_{\mathrm{mT}}^{1}+3=0 \\
& \mathrm{~S}_{\mathrm{mT}}^{1}=0.451 \\
& \Rightarrow \mathrm{~S}_{\mathrm{mT}}^{1}=\frac{\mathrm{R}_{2}^{1}}{\mathrm{X}_{2}} \\
& \Rightarrow 0.451=\frac{\mathrm{R}_{2}+0.5}{\mathrm{X}_{2}} \\
& \Rightarrow 0.451=\frac{\mathrm{R}_{2}+0.5}{5 \mathrm{R}_{2}}
\end{aligned}
$$

$2.255 \mathrm{R}_{2}=\mathrm{R}_{2}+0.5 \Rightarrow \mathrm{R}_{2}=0.4 \Omega$
$\mathrm{X}_{2}=5 \mathrm{R}_{2}$

$$
=5(0.4)
$$

$X_{2}=2 \Omega$
Rotor reactance $\left(\mathrm{X}_{2}\right)=2 \Omega$
Rotor resistance $\left(\mathrm{R}_{2}\right)=0.4 \Omega$
10.

Sol: Given,
Poles, $\mathrm{P}=4$
Frequency, $\mathrm{f}=50 \mathrm{~Hz}$
Rotor resistance, $\mathrm{R}_{2}=4.5 \Omega$ phase
Stand still rotor reactance, $\mathrm{X}_{2}=8.5 \Omega$ phase
Starting Torque, $\mathrm{T}_{\mathrm{st}}=85 \mathrm{Nm}$

Synchronous speed $\mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{s}}=\frac{120 \times 50}{4} \\
& \mathrm{~N}_{\mathrm{s}}=1500 \mathrm{rpm}
\end{aligned}
$$

(1) Let, $E_{2}=$ stand still rotor voltage
$\therefore \mathrm{T}_{\mathrm{st}}=\frac{3}{\omega_{\mathrm{s}}} \cdot \frac{\mathrm{E}_{2}^{2}}{\mathrm{R}_{2}^{2}+\mathrm{X}_{2}^{2}} . \mathrm{R}_{2}$
$85=\frac{3}{\frac{1500}{60} \times 2 \pi} \cdot \frac{\mathrm{E}_{2}^{2}}{\left(4.5^{2}+8.5^{2}\right)}$
$85=\frac{3}{50 \pi} \frac{\mathrm{E}_{2}^{2}(4.5)}{\left(4.5^{2}+8.5^{2}\right)}$
$\Rightarrow \mathrm{E}_{2}=302.46 \mathrm{~V}$
(2) External resistance added is $\mathrm{R}_{\text {ext }}=2 \Omega$
\therefore Rotor circuit resistance $\mathrm{R}_{2}^{1}=\mathrm{R}_{2}+\mathrm{R}_{\text {ext }}$
$\therefore \mathrm{R}_{2}^{1}=2+4.5=6.5 \Omega$
$\therefore \mathrm{R}_{2}^{1}=6.5 \Omega$
Starting torque, $T_{s t}=\frac{3}{\omega_{\mathrm{s}}} \frac{\mathrm{E}_{2}^{2} \mathrm{R}_{2}^{1}}{\mathrm{R}_{2}^{12}+\mathrm{x}_{2}^{2}}$
$\therefore \mathrm{T}_{\mathrm{St}}=\frac{3}{\frac{1500}{60} \times 2 \pi} \frac{(302.46)^{2}(6.5)}{\left(6.5^{2}+8.5^{2}\right)}$

$$
\mathrm{T}_{\mathrm{st}}=99.2 \mathrm{Nm}
$$

11.

Sol: Given,
Rated frequency, $\mathrm{f}_{1}=50 \mathrm{~Hz}$
Applied frequency, $\mathrm{f}_{2}=40 \mathrm{~Hz}$
Rated voltage, $=\mathrm{V}_{1}$
Applied voltage, $\mathrm{V}_{2}=1.5 \mathrm{~V}_{1}$
(1) We know that

Starting torque $T_{\text {st }} \alpha \frac{V^{2}}{f^{3}}$
$\therefore \frac{\mathrm{T}_{\mathrm{St} 1}}{\mathrm{~T}_{\mathrm{St} 2}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{2}\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)^{3}$
$\frac{\mathrm{T}_{\mathrm{St} 1}}{\mathrm{~T}_{\mathrm{St} 2}}=\left(\frac{\mathrm{V}_{1}}{1.5 \mathrm{~V}_{1}}\right)^{2}\left(\frac{40}{50}\right)^{3}$
$\frac{\mathrm{T}_{\mathrm{St} 1}}{\mathrm{~T}_{\mathrm{St} 2}}=0.227$
Starting torque $\mathrm{T}_{\mathrm{St}} \alpha \frac{\mathrm{V}}{\mathrm{f}}$
$\therefore \frac{\mathrm{I}_{\mathrm{St} 1}}{\mathrm{I}_{\mathrm{St} 2}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)$
$\frac{\mathrm{I}_{\mathrm{stl}}}{\mathrm{I}_{\mathrm{tt} 2}}=\left(\frac{\mathrm{V}_{1}}{1.5 \mathrm{~V}_{1}}\right)\left(\frac{40}{50}\right)=0.533$
Maximum torque $T_{\text {max }} \alpha \frac{\mathrm{V}^{2}}{\mathrm{f}^{2}}$
$\therefore \frac{\mathrm{T}_{\max 1}}{\mathrm{~T}_{\max 2}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{2}\left(\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}\right)^{2}=\left(\frac{\mathrm{V}_{1}}{1.5 \mathrm{~V}_{1}}\right)^{2}\left(\frac{40}{50}\right)^{2}$
$\frac{T_{\max 1}}{T_{\max 2}}=0.284$
(ii) Given that starting torque are equal
$\therefore \mathrm{T}_{\mathrm{st} 1}=\mathrm{T}_{\mathrm{St} 2}$
$\frac{\mathrm{V}_{1}^{2}}{\mathrm{f}_{1}^{3}}=\frac{\mathrm{V}_{2}^{2}}{\mathrm{f}_{2}^{3}}$
$\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{2}=\left(\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}\right)^{3}=\left(\frac{50}{40}\right)^{3}$
$\Rightarrow\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)=1.397$
12.

Sol: Given,
Poles, $\mathrm{P}=6$
Frequency $=60 \mathrm{~Hz}$
Speed of motor, $\mathrm{N}_{1}=1140 \mathrm{rpm}$
Synchronous speed, $\mathrm{N}_{\mathrm{S}}=\frac{120 \mathrm{f}}{\mathrm{P}}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{S}}=\frac{120 \times(60)}{6} \\
& \mathrm{~N}_{\mathrm{S}}=1200 \mathrm{rpm}
\end{aligned}
$$

Slip, $\mathrm{S}_{1}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{1}}{\mathrm{~N}_{\mathrm{S}}}$

$$
\begin{aligned}
& \mathrm{S}_{1}=\frac{1200-1140}{1200} \\
& \mathrm{~S}_{1}=5 \%
\end{aligned}
$$

Let additional resistance to be added $=\mathrm{R}_{\mathrm{x}}$.
Rotor resistance, $\mathrm{R}_{2}=0.2 \Omega$ phase. It is given that motor is driving a constant torque load
$\therefore \mathrm{T}_{1}=\mathrm{T}_{2}$
$\Rightarrow \frac{3}{\omega_{\mathrm{s}}} \frac{\mathrm{E}_{2}^{2}}{\left(\frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}\right)^{2}+\mathrm{X}_{2}^{2}}\left(\frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}\right)=\frac{3}{\omega_{\mathrm{S}}} \frac{\mathrm{E}_{2}^{2}}{\left(\frac{\mathrm{R}_{2}^{1}}{\mathrm{~S}_{2}}\right)^{2}+\mathrm{X}_{2}^{2}}\left(\frac{\mathrm{R}_{2}^{1}}{\mathrm{~S}_{2}}\right)$
$\Rightarrow \frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}=\frac{\mathrm{R}_{2}^{1}}{\mathrm{~S}_{2}}$
Given that final speed, $\mathrm{N}_{2}=1000 \mathrm{rpm}$
$\therefore \mathrm{S}_{2}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{2}}{\mathrm{~N}_{\mathrm{S}}}$
$\mathrm{S}_{2}=\frac{1200-1000}{1200}$
$\mathrm{S}_{2}=\frac{1}{6}$
From (1)
$\frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}=\frac{\mathrm{R}_{2}^{1}}{\mathrm{~S}_{2}}$
$\frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}=\frac{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{x}}}{\mathrm{S}_{2}}$
$\frac{0.2}{0.05}=\frac{.2+\mathrm{R}_{\mathrm{x}}}{(1 / 6)}$
$0.2+\mathrm{R}_{\mathrm{x}}=0.667$
$\mathrm{R}_{\mathrm{x}}=0.467 \Omega$
13.

Sol: Given,
Poles, $\mathrm{P}=6$
Frequency, $\mathrm{f}=50 \mathrm{~Hz}$
Rotor resistance, $\mathrm{R}_{2}=0.2 \Omega$
Initial speed, $\mathrm{N}_{1}=960 \mathrm{rpm}$
Final speed, $\mathrm{N}_{2}=800 \mathrm{rpm}$

Synchronous speed, $N_{S}=\frac{120 f}{p}$
$\Rightarrow \mathrm{N}_{\mathrm{S}}=\frac{120 \times 50}{6}=1000 \mathrm{rpm}$
$\mathrm{N}_{\mathrm{S}}=1000 \mathrm{rpm}$
Slip, $\mathrm{S}_{1}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{1}}{\mathrm{~N}_{\mathrm{S}}}$

$$
=\frac{1000-960}{1000}
$$

$\mathrm{S}_{1}=0.04$
Slip, $\mathrm{S}_{2}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}_{2}}{\mathrm{~N}_{\mathrm{S}}}=\frac{1000-800}{1000}$

$$
\mathrm{S}_{2}=0.2
$$

When load torque is constant, $\mathrm{T}_{1}=\mathrm{T}_{2}$
$\Rightarrow \frac{\mathrm{R}_{2}}{\mathrm{~S}_{1}}=\frac{\mathrm{R}_{2}^{1}}{\mathrm{~S}_{2}}$
$\Rightarrow \frac{0.2}{0.04}=\frac{\mathrm{R}_{2}^{1}}{0.2}$
$\Rightarrow R_{2}^{1}=1 \Omega$
But $\mathrm{R}_{2}^{1}=\mathrm{R}_{2}+\mathrm{R}_{\text {ext }}=1$
$0.2+\mathrm{R}_{\mathrm{ext}}=1$
$\mathrm{R}_{\mathrm{ext}}=0.8 \Omega$

14.

Sol: 1. Using given data, equivalent circuit per phase of the motor is as shown in fig. 1 .

Data regarding R_{c}, X_{n}, r_{1} and x_{1} is not given, so these are ignored fig. 1

Shaft torque at $(\mathrm{s}=0.019)=$ developed torque (if mechanical losses are neglected) $=$
$\mathrm{T}=\frac{3 \mathrm{~V}^{2}(0.25)}{\mathrm{s} \omega_{\mathrm{s}}\left[(0.25 / \mathrm{s})^{2}+1.5^{2}\right]}=2400 \mathrm{~N}-\mathrm{m} / \mathrm{r}$

V and ω_{s} are not given. ω_{s} (synchronous speed in mechanical $\mathrm{rad} / \mathrm{sec}$) can be calculated as follows:
$\mathrm{T}=2400 \mathrm{~N}-\mathrm{m} / \mathrm{r}$. output $=373 \mathrm{~kW}$.
$\mathrm{T} \omega_{\mathrm{r}}=$ torque \times actual rotor speed $=$ shaft power (since mechanical losses are neglected)
$=373 \mathrm{~kW} . \omega_{\mathrm{r}}$
$=\left(373 \times 10^{3} / 2400\right)$
$=155.42 \mathrm{r} / \mathrm{s}$ (mech)
Hence $\omega_{\mathrm{s}}=155.42 /(1-0.019)$

$$
=158.43 \mathrm{r} / \mathrm{s}(\mathrm{mech})
$$

Which gives $\mathrm{P}=3.97$ poles, which can be corrected to 4 poles. With 4 poles, $\omega_{\text {s }}$ will be $157.08 \mathrm{r} / \mathrm{s}$ (mech).

Substituting in (1); V = 1294.2 Volts/ph.

Full load current

$$
\begin{aligned}
& =1294.2 \sqrt{\left.(0.25 / 0.019)^{2}+1.5^{2}\right]} \\
& =97.7 \mathrm{~A} .
\end{aligned}
$$

2. Now external resistances of $2 \Omega / \mathrm{ph}$ are inserted into the rotor. The current is given to be unchanged. It is assumed that the applied voltage/ph is also unchanged.

2.1 Finding the new slip:

The new equivalent circuit/ph is shown in fig. 2 .

fig. 2

$$
\begin{equation*}
\mathrm{I}=\frac{1294.2}{\sqrt{\left[\left(2.25 / \mathrm{s}_{\text {new }}\right)^{2}+1.5^{2}\right]}}=97.7 \tag{2}
\end{equation*}
$$

From eq (2), the new slip $\mathrm{s}_{\text {new }}=0.171$.

Finding the new power output:

The stator current is given to be unchanged. If r_{21} and r_{22} are the rotor resistances and s_{1} and s_{2} are the slips before and after change, we have
$\frac{V}{\sqrt{\left(\frac{r_{21}}{s_{1}}\right)^{2}+x^{2}}}=\frac{V}{\sqrt{\left(\frac{r_{22}}{s_{2}}\right)^{2}+x^{2}}}$

From which $\frac{\mathrm{r}_{21}}{\mathrm{~s}_{1}}=\frac{\mathrm{r}_{22}}{\mathrm{~s}_{2}}$.

The torque before and after the change are, respectively,

$$
\frac{3 V^{2}\left(\mathrm{r}_{21} / \mathrm{s}_{1}\right)}{\omega_{\mathrm{s}}\left[\left(\frac{r_{21}}{\mathrm{~s}_{1}}\right)^{2}+\mathrm{x}^{2}\right]} \text { and } \frac{3 \mathrm{~V}^{2}\left(\mathrm{r}_{22} / \mathrm{s}_{2}\right)}{\omega_{\mathrm{s}}\left[\left(\frac{\mathrm{r}_{22}}{\mathrm{~s}_{2}}\right)^{2}+\mathrm{x}^{2}\right]} .
$$

With $\frac{\mathrm{r}_{21}}{\mathrm{~s}_{1}}=\frac{\mathrm{r}_{22}}{\mathrm{~s}_{2}}$, these torques are the same.

The torque initially is given to be $2400 \mathrm{~N}-\mathrm{m} / \mathrm{r}$. So after changing the rotor resistance also, the torque will be $2400 \mathrm{~N}-\mathrm{m} / \mathrm{r}$.

$$
\begin{aligned}
\text { New slip } \mathrm{s}_{2} & =\left(\mathrm{r}_{22} / \mathrm{r}_{21}\right) \mathrm{s}_{1} \\
& =0.171
\end{aligned}
$$

New power output

$$
\begin{aligned}
& =2400(1-0.171)(157.08) \\
& =312.53 \mathrm{~kW} .
\end{aligned}
$$

15.

Sol:

1. The problem specifies rotational losses as negligible. Hence the load torque is the same as the developed (or electromagnetic) torque.
2. The full load speed is 1440 rpm and full load shaft output is $20,000 \mathrm{~W}$ (from the given ratings). Hence rated load torque T_{R} is given by
$\frac{\mathrm{T}_{\mathrm{R}}(1440 \times 2 \pi)}{60}=20,000$ from which
$\mathrm{T}_{\mathrm{R}}=132.6 \mathrm{~N}-\mathrm{m} / \mathrm{r}$.
3. There is another method of calculating the rated load torque, which should give the same value as above. This method is given below:

The problem specifies the frequency as 50 Hz , but does not specify the number of poles. With a full load speed of

1440 rpm , the synchronous speed will be the nearest possible value greater than 1440 rpm . This is 1500 rpm , which will be obtained for 4 poles, at 50 Hz . Hence full load slip $=0.04$.

Developed torque at this slip,
$\mathrm{T}_{\mathrm{d}}=\left(3 \mathrm{~V}^{2} \mathrm{r}_{2}\right) /\left[\mathrm{s} \omega_{\mathrm{s}}\left\{\left(\mathrm{r}_{2} / \mathrm{s}\right)^{2}+\mathrm{x}_{2}^{2}\right\}\right]$
Substituting numerical values
$\mathrm{T}_{\mathrm{d}}=99.32 \mathrm{~N}-\mathrm{m} / \mathrm{r}=\mathrm{T}_{\mathrm{R}}$
Thus does not agree with earlier result.
Let the slip at $120 \mathrm{~Hz}, 400 \mathrm{~V}$ operation be s .
At $120 \mathrm{~Hz}, \mathrm{x}_{2}$ becomes [(1.6×120)/50]
$=3.84 \Omega$.

Full load torque

$$
\mathrm{T}=\frac{3 \times(400 / \sqrt{3})^{2}(0.4)}{\mathrm{s}(120 \pi)\left[\left(\frac{0.4}{\mathrm{~s}}\right)^{2}+3.84\right]}
$$

Irrespective of whichever value of torque we use, slip comes out as a complex quantity which is not acceptable.

Slip for maximum torque $=(0.4 / 3.84)$

$$
=0.1042
$$

Chapter
 Power Systems

Objective Practice Solutions

01. Ans: (d)

Sol: Water used $=60 \times 10^{6}$ cubic meter/year
$\therefore \mathrm{Q}=\frac{60 \times 10^{6}}{365 \times 24 \times 3600}=1.9 \mathrm{~m}^{3} / \mathrm{sec}$
Head $=40 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{P} & =\frac{735.5}{75} \mathrm{QH} \mathrm{\eta} \mathrm{~kW} \\
& =\frac{735.5}{75} \times 1.9 \times 40 \times 1 \\
& =745.3 \mathrm{~kW}
\end{aligned}
$$

2. Ans: (c)

Sol: Overall efficiency of the power station is
$\eta_{\text {overall }}=\eta_{\text {thermal }} \times \eta_{\text {elect }}=0.30 \times 0.92=0.276$
Units generated $/$ hour $=\left(100 \times 10^{3}\right) \times 1$

$$
=10^{5} \mathrm{kWh}
$$

Heat produced / hour,
$\mathrm{H}=\frac{\text { Electricaloutput in heat units }}{\eta_{\text {overall }}}$
$\frac{10^{5} \times 860}{0.276}=311.6 \times 10^{6} \mathrm{kcal}$
$(\therefore 1 \mathrm{kWh}=860 \mathrm{kcal})$
\therefore Coal consumption/hour $=\frac{\mathrm{H}}{\text { Calorific value }}$

$$
\begin{aligned}
& =\frac{311.6 \times 10^{6}}{6400} \\
& =48687 \mathrm{~kg}
\end{aligned}
$$

3. Ans: (c)

Sol: $1 \mathrm{Hp}=735.5 \mathrm{~W}$

$$
\begin{aligned}
& \text { (or) } \\
& \quad=0.735 \mathrm{~kW}
\end{aligned}
$$

Developed power,
$\mathrm{P}=\frac{735.5}{75} \times \mathrm{Q} \times \mathrm{W} \times \mathrm{H} \times \eta$ Watts
Here, Density of water W $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Discharge of water $(\mathrm{Q})=1 \mathrm{~m}^{3} / \mathrm{s}$,
efficiency $(\eta)=100 \%$ and
Water head $(\mathrm{H})=1 \mathrm{~m}$
$\therefore \mathrm{P}=\frac{735.5}{75} \times 1000 \times 1 \times 1=9.80 \mathrm{~kW}$
04. Ans: (d)

Sol: $\mathrm{H}=102 \mathrm{~m}$
$\mathrm{Q}=30 \mathrm{~m}^{3} / \mathrm{sec}$
$\eta=80 \%$
$\mathrm{P}=\eta \mathrm{WQH} \times 1000$
$\mathrm{P}=0.8 \times 30 \times 102 \times 9.81$
$\mathrm{P}=24,014.88$
$\mathrm{P}=24,014.88 \times 1000$
$\mathrm{P}=24 \mathrm{MW}$
05. Ans: (b)

Sol: $H=204 \mathrm{~m}$
$\mathrm{Q}=8 \mathrm{~m}^{3} / \mathrm{sec}$
$\eta=0.8$
$\mathrm{P}=\frac{0.736}{75} \times \mathrm{W} \eta \mathrm{QH}$
$\mathrm{P}=\frac{0.8 \times 1000 \times 8 \times 204 \times 0.736}{75}$
$=12812.288 \mathrm{~kW} \approx 12,800 \mathrm{~kW}$
06. Ans: (a)

Sol: Weight of water
$=$ volume of water is stored \times density
$=\left(10 \times 10^{5}\right) \times 993 \mathrm{~kg}$

57

$$
\begin{aligned}
& =\left(10 \times 10^{5}\right) \times 993 \times 9.81 \mathrm{~N} \\
& =9741.33 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

Energy produced $=\mathrm{W} \times \mathrm{H} \times \eta_{\text {overall }}$ by volume of water

$$
=9741.33 \times 10^{6} \times 50 \times 1.00 \text { watt-sec }
$$

(losses are neglected, overall efficiency is 100\%)

$$
\begin{aligned}
& =\frac{9741.33 \times 10^{6} \times 50}{3600} \mathrm{Whr} \\
& =135.3 \mathrm{MWhr}
\end{aligned}
$$

7. Ans: (d)

Sol: $\mathrm{N}_{\mathrm{s}}=300 \mathrm{rpm}$
$\mathrm{f}=50 \mathrm{~Hz}$
$\mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}} \Rightarrow \mathrm{P}=\frac{120 \mathrm{f}}{\mathrm{N}_{\mathrm{s}}}=\frac{120 \times 50}{300}=20$
$\mathrm{P}=20$.
08. Ans: (c)

Sol: In the fully charged state, the negative plate consists of lead, and the positive plate lead dioxide, with the electrolyte of concentrated sulfuric acid. Overcharging with high charging voltages generates oxygen and hydrogen gas by electrolysis of water, which is lost to the cell. A lead acid battery cell is fully charged with a specific gravity of 1.265 at $80^{\circ} \mathrm{F}$. For temperature adjustments, get a specific gravity reading and adjust to temperature by adding.
09. Ans: (b)

Sol: The state of discharge of a lead acid cell is determined by specific gravity of electrolyte
10. Ans: (a)

Sol: The storage battery, which is generally used in electric power station is lead acid cell.
11. Ans: (c)

Sol: In general terms, the capacity of a cell/battery is the amount of charge available expressed in ampere-hour(Ah).
12. Ans: (c)

Sol: Given data
Four identical batteries is 1.5 V
Internal resistance 1Ω
Series feed load of 2Ω

The current in the circuit $=\frac{6}{6}=1 \mathrm{~A}$
13. Ans: (c)

Sol: The capacity of the battery is usually expressed as a number of ampere-hour. One ampere-hour is the amount charge delivered when a current of one ampere is delivered for one hour. Ampere-hour efficiency always greater than watt-hour efficiency.
14. Ans: (c)

Sol: Storage cell in an auto mobile has lead for negative, PbO_{4} for positive electrode and sulphuric acid for electrolyte
15. Ans: (c)

Sol: A commonly used primary cell is dry ice
16. Ans: (c)

Sol: In lead acid battery, the density of acid indicates charge of battery.
17. Ans: (a)

Sol: For the process of electrolysis, the supply required is dc supply.
18. Ans: (c)

Sol: As each cell of voltage V of n are connected in series the total voltage becomes $=n V$ and the capacity of each cell is same. So capacity of battery is nothing but capacity of each cell.

19. Ans: (c)

Sol: Cells (or) batteries connected in series have the positive terminals of one cell (or) battery connected in the negative terminals of another cell (or) battery. This has the effect of increasing the overall voltage but the overall capacity remains the same.
20. Ans: (b)

Sol: Sulphation in a lead-acid battery occurs due to incomplete charging.

21. Ans: (b)

Sol: Electrolyte of lead acid battery cell is a solution of sulfuric acid and distilled water. The specific gravity of pure sulfuric acid is about 1.84.
22. Ans: (b)

Sol: Trickle charging means charging a fully charged battery under no-load at a rate equal to its self-discharge rate, thus enabling the battery to remain at it's fully charged level.

23. Ans: (c)

Sol: Given data

A battery is charged at 5 A for 8 hours,
Discharged at 4A in 9 hours,
Output $=9 \times 4=36$
Input $=5 \times 8=40$
$\% \eta=\frac{\text { output }}{\text { input }}=\frac{36}{40}=90 \%$

Conventional Practice Solutions

01.

Sol: Given,

Mean head $(H)=50 \mathrm{~m}$
Catchment area $(\mathrm{A})=200 \mathrm{~km}^{2}$
Annual rainfall (h) $=420 \mathrm{~cm}$
Loss due to evaporation $\left(\mathrm{e}_{\mathrm{L}}\right)=30 \%$
Turbine efficiency $\left(\eta_{t}\right)=85 \%$
Alternator efficiency $\left(\eta_{\mathrm{a}}\right)=80 \%$
Evaporation efficiency $\left(\eta_{\mathrm{e}}\right)=1-\mathrm{e}_{\mathrm{L}}=70 \%$
Let,
$\mathrm{P}=$ Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$E_{t}=$ Total energy that can be generated by the hydro power plant.
$\mathrm{E}_{\mathrm{t}}=(\mathrm{MgH}) \times \eta_{\mathrm{t}} \times \eta_{\mathrm{a}} \times \eta_{\mathrm{e}}$
$\mathrm{E}_{\mathrm{t}}=((\mathrm{PV}) \mathrm{gH}) \times \eta_{\mathrm{t}} \times \eta_{\mathrm{a}} \times \eta_{\mathrm{e}}$
$\mathrm{E}_{\mathrm{t}}=\mathrm{P}(\mathrm{Ah}) \mathrm{gH} \times \eta_{\mathrm{t}} \times \eta_{\mathrm{a}} \times \eta_{\mathrm{e}}$
$=1000 \times 200 \times 10^{6} \times 4.2 \times 9.8 \times 50 \times 0.85 \times 0.8 \times 0.7$
$=1.959216 \times 10^{14} \mathrm{~J}$
$\mathrm{E}_{\mathrm{t}}=54422.67 \mathrm{MWh}$
Average power that can be generated $\left(\mathrm{P}_{0}\right)=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{t}(\mathrm{hrs})}$
$\left(P_{0}\right)=\frac{E_{t}}{365 \times 24}$
$=\frac{54422.67}{8760}$
$\mathrm{P}_{0}=6.21 \mathrm{MW}$
02.

Sol: $u_{0}=$ Speed of free wind in unperturbed state A = Area through which air column passing $\rho=$ Density of air

Then power available in wind
$\mathrm{P}_{0}=\frac{1}{2}\left(\rho \cdot \mathrm{~A} \cdot \mathrm{u}_{0}\right) \cdot \mathrm{u}_{0}^{2}=1 / 2(\rho \mathrm{~A}) \mathrm{u}_{0}^{3}$
$\frac{\mathrm{P}_{0}}{\mathrm{~A}}=\frac{1}{2} \rho \mathrm{u}_{0}^{3}$
Energy content of the wind per unit area for a specified period is

$$
\frac{\mathrm{E}_{0}}{\mathrm{~A}}=\int_{0}^{\tau} \frac{\mathrm{P}_{0}}{\mathrm{~A}} \cdot \mathrm{~d} \tau=\frac{1}{2} \rho \int_{0}^{\tau} \mathrm{u}_{0}^{3} \mathrm{~d} \tau
$$

Power Extraction from Wind:

- Wind turbine is used to harness useful mechanical power from wind.
- The rotor of the turbine collets energy from the whole area swept by the rotor.
- The maximum power extraction can be bound by the help of betz model.

Unperturbed Wind stream tube in absence of turbine

Wind stream tube in presence of turbine Betz model for expanding air-stream tube

60

Wind stream tube in presence of turbine
Mass flow rate (incompressible fluid)

$$
\begin{equation*}
\dot{\mathrm{m}}=\rho \mathrm{A}_{0} \mathrm{u}_{0}=\rho \mathrm{A}_{1} \mathrm{u}_{1}=\rho \mathrm{A}_{2} \mathrm{u}_{2} \tag{3}
\end{equation*}
$$

Force or thrust on Rotor

$$
\begin{equation*}
(\mathrm{F})=\dot{\mathrm{m}} \mathrm{u}_{0}-\dot{\mathrm{m}} \mathrm{u}_{2} \ldots \ldots \tag{4}
\end{equation*}
$$

Power extracted by turbine

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T}}=\mathrm{F} . \mathrm{u}_{1}=\dot{\mathrm{m}}\left(\mathrm{u}_{0}-\mathrm{u}_{2}\right) \mathrm{u}_{1} \tag{5}
\end{equation*}
$$

Power extraction can also be written like difference in kinetic energy at the upstream and downstream.
$\mathrm{P}_{\mathrm{T}}=1 / 2 \dot{\mathrm{~m}}\left(\mathrm{u}_{0}^{2}-\mathrm{u}_{2}^{2}\right)$
(5) $=(6)$
$\mathrm{u}_{1}=\left(\frac{\mathrm{u}_{0}+\mathrm{u}_{2}}{2}\right)$
$\mathrm{a}=$ interference factor defined as
$\mathrm{a}=\mathrm{u}_{0}-\mathrm{u}_{1} / \mathrm{u}_{0}$
$u_{1}=(1-a) u_{0}$
or $\mathrm{a}=\left(\mathrm{u}_{0}-\mathrm{u}_{2}\right) / 2 \mathrm{u}_{0}$

Now by the help of equations $3,5,7,8$
$\mathrm{P}_{\mathrm{T}}=4 \mathrm{a}(1-\mathrm{a})^{2}\left(\frac{1}{2} \rho \mathrm{~A}_{1} \mathrm{u}_{0}^{3}\right)$
Compare with equation (2)
$\mathrm{P}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}} \mathrm{P}_{0}$

(11)

$C_{P}=$ Fraction of available power in the wind or power coefficient.
$C_{P}=4 a(1-a)^{2}$
Maximum value of C_{ρ} can be
$\mathrm{C}_{\mathrm{P}, \text { max }}=0.593$

So According to Betz Model 59.3\% is the maximum energy that can be extracted from wind.

Variation of Power coefficient (C_{P})

 with interference factor (a)Note: Likewise we can also calculate Axial thrust on turbine and torque developed by the turbine.
03.

Sol: Given, power output, $\mathrm{P}_{0}=500 \mathrm{MW}$
Efficiency of power plant, $\eta=33 \%$
Energy output per fission, $\mathrm{e}_{\mathrm{f}}=190 \mathrm{Mev}$
Molecular weight of $4.235(\mathrm{~m})=253 \mathrm{~g} /$ mole
Enrichment (e) $=3 \%$

1 kg of fuel rods contain 30 g of 4.235 (enrichment is 3\%)

30 g of U-235 contain $6.023 \times 10^{23} \times \frac{30}{235}$
atoms of 4.235
1 atoms of $\mathrm{U}-235$ produces 190 MeV of energy
$6.023 \times 10^{23} \times \frac{30}{235}$ atoms produces

$$
\begin{aligned}
= & 190 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \\
& \times 6.023 \times 10^{23} \times \frac{30}{235} \text { of energy } \\
= & 233.74 \times 10^{10} \mathrm{~J} \text { of energy }
\end{aligned}
$$

But efficiency is 33%
\therefore Electrical energy output $/ 1 \mathrm{~kg}$ of fuel rods is $\mathrm{e}_{0}=0.33 \times 2.33 .74 \times 10^{10} \mathrm{~J}$
$\mathrm{e}_{0}=77.135 \times 10^{10} \mathrm{~J} / \mathrm{kg}$
(a) Total energy output of the plant is

$$
\begin{aligned}
\mathrm{E}_{0} & =\mathrm{P}_{0} \times \mathrm{t} \\
& =500 \times 10^{6} \times(8760) \times(3600) \\
& =1.5768 \times 10^{16} \mathrm{~J}
\end{aligned}
$$

Total mass of fuel consumed in kg is
$M=\frac{E_{0}}{e_{0}}$
$\mathrm{M}=\frac{1.5768 \times 10^{16}}{77.135 \times 10^{10}}$
$\mathrm{M}=20442 \mathrm{~kg}$
(b) Energy output of 1 kg of fuel burn up is

$$
=233.74 \times 10^{10} \mathrm{~J}
$$

Energy output for 1 tonne (1000 kg) of fuel burn up is

$$
\begin{aligned}
\mathrm{E}_{\mathrm{x} 0} & =233.74 \times 10^{13} \mathrm{~J} \\
& =2.3374 \times 10^{7} \mathrm{MJ} \\
& =\frac{233.74 \times 10^{7}}{3600 \times 24} \mathrm{MWdays} \\
\mathrm{E}_{\mathrm{x} 0} & =27053.24 \mathrm{MWd}
\end{aligned}
$$

4.

Sol: $\mathrm{r}=12 \mathrm{~m}$
$\mathrm{v}_{1}=16 \mathrm{~ms}^{-1}$ (initial velocity)
$\mathrm{v}_{2}=8 \mathrm{~ms}^{-1}$ (final velocity)
$\mathrm{P}=1.2 \mathrm{kgm}^{-3}$
\Rightarrow velocity of the blades is
$\mathrm{v}=\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}$
$\Rightarrow \mathrm{v}=\frac{16+8}{2}$
$\mathrm{v}=12 \mathrm{~ms}^{-1}$
\Rightarrow Power generated by wind mill is
$\mathrm{P}=\frac{1}{2} \mathrm{C}_{\mathrm{P}} \mathrm{PAV}^{3} \quad\left[\mathrm{C}_{\mathrm{P}}=1\right.$ in ideal case $]$
$\Rightarrow \mathrm{P}=\frac{1}{2} \times 1 \times 1.2 \times \pi(12)^{2} \times(12)^{3}$
$\mathrm{P}=469.03 \mathrm{~kW}$
05.

Sol: Given,

Gross, power output $\left(\mathrm{P}_{0}\right)=1000 \mathrm{MW}$
Internal power consumption $\left(\mathrm{P}_{\text {aux }}\right)=9 \%$
Total mass of coal wxd /day (M)
$=9800$ tonnes per day
Heating value of coal $\left(\mathrm{C}_{\mathrm{c}}\right)=26 \mathrm{MJ} / \mathrm{kg}$
Total gross electrical output per day in terms
of energy is $\left(\mathrm{E}_{\mathrm{g} 0}\right)=\mathrm{P}_{\mathrm{c}} \times \mathrm{t}$

$$
\begin{aligned}
& =1000 \mathrm{Mw} \times 24 \times 3600 \\
& =864 \times 10^{11} \mathrm{~J}
\end{aligned}
$$

Total Heat energy input $\left(\mathrm{E}_{\mathrm{i}}\right)=\mathrm{M} \mathrm{C}_{\mathrm{c}}$
$\mathrm{E}_{\mathrm{i}}=9800 \times 10^{3} \times 26 \times 10^{6}$
$\mathrm{E}_{\mathrm{i}}=2548 \times 10^{11} \mathrm{~J}$
Gross efficiency $\left(\eta_{\mathrm{g}}\right)=\frac{\mathrm{E}_{\mathrm{g} 0}}{\mathrm{E}_{\mathrm{i}}}$

$$
=\frac{864 \times 10^{11}}{2548 \times 10^{11}}
$$

Gross efficiency $=33.9 \%$

Net efficiency $\left(\eta_{\mathrm{n}}\right)=\eta_{\mathrm{g}} \times \eta_{\text {aux }}$

$$
=33.9 \times(1-0.09)
$$

Net efficiency, $\eta_{\mathrm{n}}=30.8 \%$

06.

Sol: Given,
Total volume of water (V)
$=1$ million cubic meters
Density of water $\left(\mathrm{P}_{\mathrm{w}}\right)=993 \mathrm{~kg} / \mathrm{m}^{3}$
Mean head $(H)=50 \mathrm{~m}$
Losses $=$ negligible
\Rightarrow Efficiency $=100 \%$
Energy produced by the water is
$\mathrm{E}_{0}=\eta \mathrm{mgH}$
$\mathrm{E}_{0}=\eta(\mathrm{PV}) \mathrm{gH}$
$=(1.0)\left(993 \times 10^{6}\right) \times 9.8 \times 50$
$=4.8657 \times 10^{11} \mathrm{~J}$
$=4.8657 \times 10^{5} \mathrm{MJ}$
$=135.16 \mathrm{MWh}$
Energy output $=135.16 \mathrm{MWh}$
07.

Sol: Given,
Annual load factor $(\mathrm{Plf})=0.75$
Annual capacity factor $(\mathrm{pcf})=0.6$
Plant use factor (puf) $=0.65$
Maximum demand $\left(\mathrm{P}_{\mathrm{m}}\right)=60 \mathrm{Mw}$
Let, $\mathrm{C}=$ plant capacity
(a) $\mathrm{PLF}=\frac{\text { Average demand }}{\text { Maximum demand }}$
$0.75=\frac{\text { Average demand }}{60 \mathrm{MW}}$
\therefore Average demand $=45 \mathrm{MW}$
Annual energy production $\left(\mathrm{E}_{0}\right)$
$=$ Average demand $\times 8760$ (hrs)
$\therefore \mathrm{E}_{0}=45 \times 8760=394200 \mathrm{MWh}$
$\mathrm{E}_{0}=394.2 \times 10^{6} \mathrm{KWh}$
(b) $\mathrm{PCF}=\frac{\text { Average load }}{\text { Plant capacity }}$
$0.6=\frac{45 \mathrm{MW}}{\mathrm{C}}$
$\mathrm{C}=75 \mathrm{Mw}$
Plant capacity $=75 \mathrm{Mw}$
Reserve capacity
$=$ Plant capacity - Peak load
\therefore Reserve capacity $=75-60=15 \mathrm{MW}$
(c) PUF $=\frac{\text { Energy genrated per year }}{\text { Plant capacity } \times \text { hours in operation }}$
$0.65=\frac{\text { average load } \times 8760 \text { (hours) }}{\mathrm{C} \times(\text { hours in operation })}$

63

Hours in operation $=\frac{45 \times 8760}{75 \times 0.65}$
Hours in operation $=8086.15$ Hours

Total hours plant is not operated
$=8760$ - Total hours of operation
\therefore Total hours plant is not in service $=674$ hours

08.

Sol: Given,
Peak load $\left(\mathrm{P}_{\mathrm{P}}\right)=60 \mathrm{MW}$
Maximum demand of load 1 is $\left(\mathrm{P}_{1}\right)$ $=30 \mathrm{MW}$

Maximum demand of load 2 is $\left(\mathrm{P}_{2}\right)$
$=20 \mathrm{MW}$
Maximum demand of load 3 is $\left(\mathrm{P}_{3}\right)$
$=10 \mathrm{MW}$

Maximum demand of load 4 is $\left(\mathrm{P}_{4}\right)$

$$
=14 \mathrm{MW}
$$

Annual load factor (PLF) $=0.5$
(a) PLF $=\frac{\text { Average load }}{\text { Peak load }}$

$$
0.5=\frac{\text { Average load }}{60}
$$

Average load $=30 \mathrm{MW}$
(b) Energy supplied (E_{0})

$$
=\text { Average load } \times \text { time }(\mathrm{h})
$$

$\mathrm{E}_{0}=30 \times 10^{6} \times 8760$
$\mathrm{E}_{0}=2.628 \times 10^{11} \mathrm{~Wh}$

$$
=2.628 \times 10^{8} \mathrm{KWh}
$$

$\mathrm{E}_{0}=2.628 \times 10^{5} \mathrm{MWh}$
(d) Diversity factor $\left(D_{f}\right)=\frac{P_{1}+P_{2}+P_{3}+P_{4}}{P_{\ell}}$

$$
\begin{aligned}
& =\frac{30+20+10+14}{60} \\
\mathrm{D}_{\mathrm{f}} & =1.233
\end{aligned}
$$

(c) Demand factor $=\frac{1}{\mathrm{D}_{\mathrm{f}}}=\frac{1}{1.233}$

Demand factor $=0.81$
09.

Sol: Given,
Charging rate $\left(\mathrm{C}_{\mathrm{c}}\right)=2 \mathrm{C}$
Charging current $\left(\mathrm{I}_{\mathrm{c}}\right)=10 \mathrm{~A}$
Discharge rate $\left(\mathrm{C}_{\mathrm{d}}\right)=0.2 \mathrm{C}$
Let,
$\mathrm{t}_{\mathrm{c}}=$ charging time
$\mathrm{t}_{\mathrm{d}}=$ discharging time
$\mathrm{I}_{\mathrm{d}}=$ discharge current
$\mathrm{Ah}=$ Ampere hours stored in the battery.
(a) We know that
$\mathrm{C}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}=1$
$2 \times \mathrm{t}_{\mathrm{c}}=1$
$\mathrm{t}_{\mathrm{c}}=0.5$ hours
(b) $\mathrm{Ah}=\mathrm{I}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}$

$$
=10 \times 0.5
$$

$\mathrm{Ah}=5 \mathrm{Ah}$
(c) $A h=I_{d} t_{d}$
$5=I_{d} t_{d}$
But, $\mathrm{C}_{\mathrm{d}}+\mathrm{t}_{\mathrm{d}}=1$
$0.2 \times \mathrm{t}_{\mathrm{d}}=1$
$\mathrm{t}_{\mathrm{d}}=5$ hours
$\therefore 5=\mathrm{I}_{\mathrm{d} \times \mathrm{t}_{\mathrm{d}}}$
$\mathrm{I}_{\mathrm{d}}=\frac{5}{5}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{d}}=1 \mathrm{~A}$
10.

Sol: Given, Source voltage $\left(\mathrm{V}_{\mathrm{s}}\right)=10 \mathrm{~V}$
Ampere hour of each battery $(\mathrm{Ah})=10 \mathrm{Ah}$
Terminal voltage of battery $\left(V_{b}\right)=2 \mathrm{~V}$
Load resistance, $\left(\mathrm{R}_{\mathrm{L}}\right)=1.9 \Omega$
Internal resistance during charging (r_{c})

$$
=0.25 \Omega
$$

Internal resistance during discharging $\left(\mathrm{r}_{\mathrm{d}}\right)$

$$
=0.4 \Omega
$$

Let,

$\mathrm{I}_{\mathrm{c}}=$ charging current of each battery
$\mathrm{I}_{\mathrm{d}}=$ discharging current of each battery
$\mathrm{I}_{\mathrm{L}}=$ load current
$\mathrm{C}_{\mathrm{c}}=$ charge rate
$\mathrm{C}_{\mathrm{d}}=$ discharge rate
$\mathrm{t}_{\mathrm{c}}=$ charging time
$\mathrm{t}_{\mathrm{d}}=$ discharge time
During charging.

Circuit is as follows:

(a) From the above equivalent circuit,
$\mathrm{I}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{beq}}}{\mathrm{r}_{\mathrm{eq}}}$
$=\frac{10-8}{1}$
$\mathrm{I}_{\mathrm{c}}=2 \mathrm{~A}$
(b) $\mathrm{Ah}=\mathrm{I}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}=\mathrm{I}_{\mathrm{d}} \mathrm{t}_{\mathrm{d}}$
$10=2 \times \mathrm{t}_{\mathrm{c}}$
$\mathrm{t}_{\mathrm{c}}=5$ hours
$\mathrm{C}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}=\mathrm{C}_{\mathrm{d}} \mathrm{t}_{\mathrm{d}}=1$
$\mathrm{C}_{\mathrm{c}} \times 5=1$
$\mathrm{C}_{\mathrm{c}}=0.2 \mathrm{C}$ rate
(c) Ah stored $=10 \mathrm{Ah}$ (given)

Wh stored $=\mathrm{V}_{\mathrm{b}} \times \mathrm{Ah}$

$$
=2 \times 10
$$

Wh stored $=20 \mathrm{~Wh}$
(d) Circuit during discharge is as follows,

§

From the above circuit we can say that
$4 \mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{L}}$
$4 \mathrm{I}_{\mathrm{d}}=1$
$\mathrm{I}_{\mathrm{d}}=0.25 \mathrm{~A}$
$I_{L}=\frac{V_{d}}{r_{e q}+R_{L}}$
$I_{L}=\frac{2}{0.1+1.9}$
$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$
(e) $A h=I_{d} t_{d}$
$10=(0.25) t_{d}$
$\mathrm{t}_{\mathrm{d}}=40$ hours
$\mathrm{C}_{\mathrm{d}} \mathrm{t}_{\mathrm{d}}=1$
$\mathrm{C}_{\mathrm{d}} \times 40=1$
$\mathrm{C}_{\mathrm{d}}=0.025 \mathrm{C}$ rate
(f) load current $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$

Load voltage $V_{L}=I_{L} R_{L}$
$\mathrm{V}_{\mathrm{L}}=1 \times 1.9$
$\mathrm{V}_{\mathrm{L}}=1.9 \mathrm{~V}$
(g) Energy supplied by supply during charging is
$\mathrm{E}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}=10 \times 2 \times 5=100 \mathrm{~Wh}$
$\Rightarrow \mathrm{E}_{\mathrm{s}}=100 \mathrm{~Wh}$
Energy given to load during discharge is
$\mathrm{E}_{\mathrm{d}}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \mathrm{t}_{\mathrm{d}}=1.9 \times 1 \times 40=76 \mathrm{~Wh}$
Charge discharge efficiency (η)
$=\frac{\mathrm{E}_{\mathrm{d}}}{\mathrm{E}_{\mathrm{s}}}=76 \%$

