ACE

Engineering Academy

Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

Branch: CIVIL ENGINEERING _MOCK-A SOLUTIONS

1. Ans: (B)

Sol: To avoid shrinkage cracks on the surface of rigid pavement reinforcement is provided near the top face of slab.
02. Ans: (A)

Sol: The given function is odd function since $f(-$ $x)=-f(x)$.

For odd function $\int_{-1}^{1} f(x)=0$
03. Ans: (2.82)

No Range
Sol: Total volume $=$ volume of bitumen + volume of aggregate
$\frac{100}{G_{t}}=\frac{7}{G_{b}}+\frac{93}{G_{a}} \quad\left[G=\frac{w}{V}\right]$
$\frac{100}{2.5}=\frac{7}{1.0}+\frac{93}{\mathrm{G}_{\mathrm{a}}} \quad$ (Assume total weight $=100$)
$\mathrm{G}_{\mathrm{a}}=2.82$
04. Ans: (D)

Sol: $\mathrm{P}(\mathrm{x}=1)=0.5 \mathrm{P}(\mathrm{x}=2)$
$\frac{\lambda \mathrm{e}^{-\lambda}}{1!}=\frac{1}{2} \frac{\lambda^{2} \mathrm{e}^{-\lambda}}{2!}$

$$
\begin{aligned}
& \Rightarrow \lambda=4 \\
& \begin{aligned}
\mathrm{P}(\mathrm{x}=4) & =\frac{\lambda^{4} \mathrm{e}^{-\lambda}}{4!} \\
& =\frac{4^{4} \mathrm{e}^{-4}}{24}=\frac{32}{3} \mathrm{e}^{-4}
\end{aligned}
\end{aligned}
$$

5. Ans: (C)

Sol: Equivalency factor

$$
\begin{aligned}
=\left(\frac{\text { Actual wheel load }}{\text { Stan dard wheel load }}\right)^{4} & =\left(\frac{4100}{8200}\right)^{4} \\
& =0.0625
\end{aligned}
$$

6. Ans: (C)

Sol: At critical condition, the upward pressure and downward pressures are equal at the junction of clay and sand.
upward pressure $=$ downward pressure

$$
\begin{aligned}
\gamma_{\mathrm{w}} \times 5 & =\gamma_{\mathrm{sat}} \times(8-\mathrm{h}) \\
10 \times 5 & =20 \times[8-\mathrm{h}] \\
\mathrm{h} & =5.50 \mathrm{~m}
\end{aligned}
$$

07. Ans: (B)

Sol: The given differential equation

$$
\begin{aligned}
& 4 y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}=0 \\
& \Rightarrow 4 \mathrm{D}^{3}+4 \mathrm{D}^{2}+D=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{D}(2 \mathrm{D}+1)^{2}=0 \\
\mathrm{D} & =0, \frac{-1}{2}, \frac{-1}{2} \\
\therefore & \mathrm{y}_{\mathrm{c}}=\mathrm{C}_{1}+\left(\mathrm{C}_{2}+\mathrm{C}_{3} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x} / 2}
\end{aligned}
$$

8. Ans: (B)
9. Ans: (C)

Sol: $\mathrm{C}=\frac{100}{2}=50 \mathrm{kPa}$

$$
\begin{aligned}
\mathrm{q}_{\mathrm{nu}} & =\mathrm{C} \mathrm{~N}_{\mathrm{C}} \\
\mathrm{~N}_{\mathrm{C}}= & 5\left[1+0.2 \frac{\mathrm{D}}{\mathrm{~B}}\right]\left[1+0.2 \frac{\mathrm{~B}}{\mathrm{~L}}\right] \\
& =
\end{aligned}
$$

$5\left[1+0.2 \times \frac{2}{1}\right]\left[1+0.2 \times \frac{1}{2}\right]=7.7$
$\therefore \mathrm{q}_{\mathrm{nu}}=50 \times 7.7=385 \mathrm{kPa}$

10. Ans: (B)

Sol: $X=\frac{F_{2}-F}{F-F_{1}}$
F_{2} - Fineness modulus of coarse aggregate $=6.4$
F_{1} - Fineness modulus of fine aggregate $=2.8$
$\mathrm{F}=$ Fineness modulus of combined aggregate fineness modulus $=5.2$

$$
\mathrm{X}=\frac{6.4-5.2}{5.2-2.8}=0.5
$$

Proportion of fine aggregate Y in percentage

$$
\begin{aligned}
Y & =\frac{X}{1+X} \times 100 \\
& =\frac{0.5}{1+0.5} \times 100=33.33 \%
\end{aligned}
$$

11 Ans: (0.35)
No Range
Sol: Maximum intensity is the maximum of averages of two consecutive Rainfall intensities throughout the storm

Case -1: $\frac{1.5 \times 30+2.6 \times 30}{60}=2.05 \mathrm{~cm} / \mathrm{min}$
Case-2: $\frac{1.4 \times 30+2.8 \times 30}{60}=2.1 \mathrm{~cm} / \mathrm{min}$
\therefore Maximum intensity $=2.1 \mathrm{~cm} / \mathrm{min}$

$$
\begin{aligned}
& =2.1 \times \frac{10}{60} \mathrm{~mm} / \mathrm{sec} \\
& =0.35 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

12 Ans: (A)

Sol: $P=\frac{1}{60} \quad q=\frac{59}{60}$
Probability of occurring atleast once means :
Risk

$$
\begin{aligned}
\mathrm{R} & =1-\mathrm{q}^{\mathrm{n}} \\
& =1-\left(\frac{59}{60}\right)^{30}=0.396
\end{aligned}
$$

13 Ans: (B)

Sol: In a short column subjected to pure axial loading, the strain variation is uniform with a value of 0.002 .

14 Ans: (A)

Sol: Torsion reinforcement to be provided at restraint corners

$$
\begin{aligned}
& =\frac{3}{4}(\text { reinforcement required at midspan }) \\
& =(3 \times 500) / 4=375 \mathrm{~mm}^{2}
\end{aligned}
$$

15 Ans: 125 Range: No range
Sol: Equivalent shear force $=V_{u}+\frac{1.6 T_{u}}{b}$

$$
\begin{aligned}
& =45+\frac{1.6 \times 15 \times 1000}{300} \\
& =125 \mathrm{kN}
\end{aligned}
$$

16 Ans: (B)
Sol: Structure fails when the load exceeds design load or strength is less than characteristic strength or both. Since compressive load is equal characteristic strength, failure occurs only if strength of the structure is less than characteristic strength .

Probability $=0.05$

17 Ans: (C)
Sol: When distance between outer most bolts in the direction of applied load is larger than 15 times the shank diameter of bolt (i.e long joint), the shear distribution is non uniform, the bolts at end of the joint are stressed more. the force shared by the end bolts so
high may lead to progressive joint failure called unbuttoning.

18 Ans: (A)
19. Ans: (D)

Sol: $\quad \tau_{\text {max }}=\frac{9}{8} \times \tau_{\text {avg }}=\frac{9}{8} \times \frac{25000}{200 \times 200}=0.703 \mathrm{MPa}$
20. Ans: (C)

Sol:

Unknown $=5$
Equations $\Sigma \mathrm{F}_{\mathrm{y}}=0, \Sigma \mathrm{M}_{\mathrm{o}}=0$
$\Sigma \mathrm{M}_{\mathrm{x}}=0$
\therefore S.I $=5-3=2$
21. Ans: (C)

Sol: $\mathrm{C}=\sqrt{\mathrm{KRT}}=\sqrt{1.4 \times 287 \times 288}=340 \mathrm{~m} / \mathrm{s}$
Here $\mathrm{C}=$ Velocity of light;
$\mathrm{K}=1.4$ for air;
$\mathrm{R}=$ Characteristic gas constant
$=287 \frac{\mathrm{~J}}{\mathrm{kgK}}$ for air;
$\mathrm{T}=$ Temperature in Kelvin scale $=273+15$

$$
=288 \mathrm{~K}
$$

\therefore Distance of lightning $=340 \times 2=680 \mathrm{~m}$
22. Ans: (D)
23. Ans: (D)

24 Ans: (C)
Sol: $\frac{d y}{d x}=4 x^{3} e^{-y}$
Using variable separable method
$e^{y}=x^{4}+c$
at $\mathrm{x}=1, \mathrm{y}=0, \Rightarrow \mathrm{c}=0$

$$
\Rightarrow \mathrm{e}^{\mathrm{y}}=\mathrm{x}^{4}
$$

25. Ans: (D)

Sol: $z^{2}+9=0 \Rightarrow z= \pm 3 i$
$\mathrm{z}_{0}=3 \mathrm{i}$ lies inside the circle.

$$
\begin{aligned}
\therefore \mathrm{I} & =2 \pi \mathrm{i} \operatorname{Lim}_{\mathrm{z} \rightarrow 3 \mathrm{i}} \frac{(\mathrm{z}-3 \mathrm{i})}{(\mathrm{z}+3 \mathrm{i})(\mathrm{z}-3 \mathrm{i})} \\
& =2 \pi i \cdot \frac{1}{6 i}=\frac{\pi}{3}
\end{aligned}
$$

26. Ans: 8.39

(Range: 8.2 to 8.6)
Sol: Given
$\mathrm{S}=200 \mathrm{~m}$
$\mathrm{L}=1000 \mathrm{~m}$
$\mathrm{R}=500 \mathrm{~m}$
L > S
$\therefore \mathrm{m}=$ set back distance from the centre-line of the road.
$\mathrm{m}=\mathrm{R}-(\mathrm{R}-\mathrm{d}) \cos \alpha / 2$
d : distance between the centre line of the road and the centre line of the inside lane
$\mathrm{d}=3.5 \times 3-\frac{3.5}{2}=8.75 \mathrm{~m}$

$$
\begin{aligned}
\frac{\alpha}{2} & =\frac{180 \mathrm{~S}}{2 \pi(\mathrm{R}-\mathrm{d})} \\
\frac{\alpha}{2} & =\frac{180 \times 200}{2 \pi(500-8.75)}=11.66^{\circ} \\
\mathrm{m} & =500-(500-8.75) \cos (\\
\mathrm{m} & =18.89 \mathrm{~m} \\
\therefore & \text { Distance form inner edge } \mathrm{t} \\
& =18.89-3.5 \times 3 \\
& =8.39 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{m}=500-(500-8.75) \cos (11.66)
$$

\therefore Distance form inner edge to obstruction
27. Ans: (D)

Sol: The Characteristic equation is

$$
\begin{aligned}
& |\mathrm{A}-\lambda \mathrm{I}|=0 \\
\Rightarrow & \left|\begin{array}{cc}
4-\lambda & 1 \\
-1 & 2-\lambda
\end{array}\right|=0 \\
\Rightarrow & \lambda^{2}-6 \lambda+9=0 \\
\Rightarrow & \lambda=3,3
\end{aligned}
$$

The eigen vectors for $\lambda=3$ are given by the equation $[A-3 \Pi] X=0$ where $X=\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
\Rightarrow x+y=0
$$

$\therefore(\mathrm{x}, \mathrm{y})=(2,-2)$ is an eigen vector
28. Ans: 0.7

Range (0.68 to 0.73)
Sol: $\mathrm{R}_{\text {ruling }}=\frac{\mathrm{V}^{2}}{127(\mathrm{e}+\mathrm{f})}$

$$
=\frac{120^{2}}{127(0.07+0.15)}
$$

\because Plain terrain, $\mathrm{e}=0.07$

$$
\simeq 516 \mathrm{~m}
$$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{e}} & =\left(\mathrm{W}_{\mathrm{m}}+\mathrm{Wps}\right) \\
& =\left(\frac{\mathrm{n} \ell^{2}}{2 \mathrm{R}}+\frac{\mathrm{v}}{9.5 \sqrt{\mathrm{R}}}\right) \\
& =\left(\frac{4 \times 6^{2}}{2 \times 516}+\frac{120}{9.5 \sqrt{516}}\right) \\
& \simeq 0.7 \mathrm{~m}
\end{aligned}
$$

29. Ans: (C)

Sol: Coefficient of permeability, $\mathrm{k}=\mathrm{C}_{\mathrm{v}} \cdot \mathrm{m}_{\mathrm{v}} \cdot \gamma_{\mathrm{w}}$
Time factor, $\mathrm{T}_{\mathrm{v}}=\frac{\pi}{4} \mathrm{U}^{2}$
Since both samples reach 50\% consolidation.

$$
\begin{gathered}
\mathrm{T}_{\mathrm{VA}}=\mathrm{T}_{\mathrm{VB}} \\
\frac{\mathrm{C}_{\mathrm{VA}} \cdot \mathrm{t}_{\mathrm{A}}}{\mathrm{~d}^{2}}=\frac{\mathrm{C}_{\mathrm{VB}} \cdot \mathrm{t}_{\mathrm{B}}}{\mathrm{~d}^{2}} \\
\mathrm{C}_{\mathrm{VA}} \cdot \mathrm{t}_{\mathrm{A}}=\mathrm{C}_{\mathrm{VB}} \cdot \mathrm{t}_{\mathrm{B}} \\
\frac{\mathrm{C}_{\mathrm{VA}}}{\mathrm{C}_{\mathrm{VB}}}=\frac{\mathrm{t}_{\mathrm{B}}}{\mathrm{t}_{\mathrm{A}}}=2
\end{gathered}
$$

Coefficient of volume compressibility,
$\mathrm{m}_{\mathrm{v}}=\frac{\mathrm{a}_{\mathrm{v}}}{1+\mathrm{e}_{0}}$
$\mathrm{m}_{\mathrm{v}}=\frac{\Delta \mathrm{e}}{\Delta \sigma\left(1+\mathrm{e}_{0}\right)}$
$\frac{\mathrm{m}_{\mathrm{VA}}}{\mathrm{m}_{\mathrm{VB}}}=\frac{\left[\frac{0.52-0.48}{1.5 \times(1+0.52)}\right]}{\left[\frac{0.63-0.6}{1.5(1+0.63)}\right]}=1.43$
$\therefore \frac{\mathrm{k}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}}=\frac{\mathrm{C}_{\mathrm{VA}}}{\mathrm{C}_{\mathrm{VB}}} \times \frac{\mathrm{m}_{\mathrm{VA}}}{\mathrm{m}_{\mathrm{VB}}}=2 \times 1.43=2.86$

30. Ans: (B)

Sol: $g(x)=\frac{f(x)}{x+1}$
$g(x)$ in continuous and differentiable in [0, 5].

By Lagrange's theorem, there exists a value $c \in(0,5)$, such that

$$
g^{1}(c)=\frac{g(5)-g(0)}{5-0}=\frac{\left(-\frac{1}{6}\right)-4}{5}=\frac{-5}{6}
$$

31. Ans: $\mathbf{3 6 . 6 7}$
(Range: 36 to 38)
Sol: Relative density, $I_{D}=\frac{e_{\text {max }}-e}{e_{\text {max }}-e_{\text {min }}}$
Unit weight, $\gamma=1.9 \times 9.81=18.639 \mathrm{kN} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \gamma=\gamma_{\mathrm{d}}(1+\mathrm{w}) \\
& 18.639=\gamma_{\mathrm{d}}(1+0.2) \\
& \gamma_{\mathrm{d}}=15.53=\frac{\mathrm{G} \gamma_{\mathrm{w}}}{1+\mathrm{e}} \\
& \quad \mathrm{e}=0.69 \\
& \therefore I_{D}=\frac{0.8-0.69}{0.8-0.5} \times 100=36.67 \%
\end{aligned}
$$

32. Ans: (D)

Sol:
$[\mathrm{A} / \mathrm{B}]=\left[\begin{array}{llll}1 & 2 & 3 & 14 \\ 1 & 4 & 7 & 30 \\ 1 & 1 & 1 & \lambda\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 2 & 3 & 14 \\ 0 & 2 & 4 & 16 \\ 0 & 0 & 0 & 2 \lambda-12\end{array}\right]$
To be consistent Rank of augmented matrix
$(\rho(A / B))$ and Rank of A matrix should be equal.
$\rho(\mathrm{A} / \mathrm{B})=\rho(\mathrm{A})=2 \lambda-12=0 \Rightarrow \lambda=6$
33. Ans: (A)

Sol:

Since the soil is loose deposit of silty sand and $\phi=20^{\circ}\left(<28^{\circ}\right)$, local shear failure occurs.
\therefore Effective cohesion, $\mathrm{C}^{\prime}=\frac{2}{3} \mathrm{C}$

$$
\mathrm{C}^{\prime}=\frac{2}{3} \times 1=0.67 \mathrm{t} / \mathrm{m}^{2}
$$

Ultimate bearing capacity,
$q_{u}=1.3 \mathrm{C}^{\prime} \mathrm{N}_{\mathrm{c}}^{1}+\gamma \mathrm{D} \mathrm{N}_{\mathrm{q}}^{1}+0.4 \mathrm{~B} \gamma_{\mathrm{a}} \mathrm{N}^{\prime}{ }_{\gamma}$
For the depth of 2 m below the base of footing average unit weight.

$$
\begin{aligned}
& \gamma_{\mathrm{a}}=\frac{\gamma \times 0.5+\gamma^{\prime} \times 1.5}{0.5+1.5} \\
& =\frac{1.5 \times 0.5+(2-1) \times 1.5}{2} \\
& \begin{aligned}
\gamma_{\mathrm{a}}= & 1.125 \mathrm{t} / \mathrm{m}^{3}
\end{aligned} \\
& \begin{aligned}
\therefore \mathrm{q}_{\mathrm{u}}= & 1.30 .67 \times 11.8+1.5 \times 1.5 \times 3.8+0.4 \\
\quad & \times 2 \times 1.125 \times 1.3
\end{aligned} \\
& \mathrm{q}_{\mathrm{u}}=19.99 \mathrm{t} / \mathrm{m}^{2}
\end{aligned}
$$

34. Ans: (C)

Sol: Load carrying capacity of under reamed pile

$$
\begin{aligned}
\therefore \mathrm{Q}= & \frac{\pi}{4} \times \mathrm{d}_{\mathrm{s}}^{2} \times \mathrm{C} \cdot \mathrm{~N}_{\mathrm{c}}+\frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{u}}{ }^{2}-\mathrm{d}_{\mathrm{s}}{ }^{2}\right) \cdot \mathrm{C}^{\prime} \cdot \mathrm{N}_{\mathrm{c}} \\
& +\pi \times \mathrm{d}_{\mathrm{s}}(\mathrm{~L}-\mathrm{x}) \cdot \alpha \cdot \mathrm{C}
\end{aligned}
$$

Given

S for soft clay $\alpha=1, \mathrm{~d}_{\mathrm{s}}=0.2, \mathrm{x}=0.5 \mathrm{~m}$
$\therefore \mathrm{d}_{\mathrm{u}}=2.5 \mathrm{~d}_{\mathrm{s}}$

$$
=2.5 \times 0.2=0.5 \mathrm{~m}
$$

$\mathrm{Q}=\frac{\pi}{4} \times 0.2^{2} \times 50 \times 9+\frac{\pi}{4}\left(0.5^{2}-0.2\right)^{2} \times 50 \times 9$
$+\pi \times 0.2 \times(5-0.5) \times 1 \times 50$
$=229.728 \mathrm{kN} \simeq 230 \mathrm{kN}$
35. Ans: (C)

Sol: We know that volumetric shrinkage $\left(\mathrm{V}_{\mathrm{s}}\right)$
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\ell}-\mathrm{V}_{\mathrm{d}}}{\mathrm{V}_{\mathrm{d}}} \times 100$
$\therefore\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {atliquid limit }}=\frac{\mathrm{V}_{\ell}-\mathrm{V}_{\mathrm{d}}}{\mathrm{V}_{\mathrm{d}}}$
$\mathrm{V}_{\ell}=$ volume at liquid limit
$\Rightarrow 0.44=\frac{\mathrm{V}_{\ell}}{\mathrm{V}_{\mathrm{d}}}-1$
$\Rightarrow \mathrm{V}_{\ell}=1.44 \mathrm{~V}_{\mathrm{d}}$
$\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {atplastidinit }}=\frac{\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{d}}}{\mathrm{V}_{\mathrm{d}}}$
$\Rightarrow 0.29=\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{V}_{\mathrm{d}}}-1$
$\Rightarrow \mathrm{V}_{\mathrm{p}}=1.29 \mathrm{~V}_{\mathrm{d}}$
Now using the graph between volume and water content.

As the slope of line OAB is constant slope of $\mathrm{OA}=$ slope of AB .

$$
\begin{gathered}
\frac{\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{d}}}{\mathrm{w}_{\mathrm{p}}-\mathrm{w}_{\mathrm{s}}}=\frac{\mathrm{V}_{\ell}-\mathrm{V}_{\mathrm{p}}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{p}}} \\
\Rightarrow \frac{1.29 \mathrm{~V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{d}}}{0.33-\mathrm{w}_{\mathrm{s}}}=\frac{1.44 \mathrm{~V}_{\mathrm{d}}-1.29 \mathrm{~V}_{\mathrm{d}}}{0.47-0.33}
\end{gathered}
$$

36. Ans: 36 Range: No range

Sol:

Time $(\mathbf{h r})$ $(\mathbf{1})$	4hr $\mathbf{U H}\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$ $\mathbf{(2)}$	S-curve addition $\mathbf{(3)}$	S-curve $\mathbf{(4)}$	Offset S-curve $(\mathbf{5})$	S-curve difference $(\mathbf{6})$	(S-curve difference) $\times \frac{4 \mathrm{hr}}{6 \mathrm{hr}}$
0	0		0		0	0
2	9		9		9	6
4	20	0	20		20	13.33
6	35	9	44	0	44	29.33
8	43	20	63	9	54	$\mathbf{3 6}$
10	22	44	66	20	46	30.67
		63		44		
		66		63		

\therefore Max peak ordinate of $6 \mathrm{hr} \mathrm{UH}=36 \mathrm{~m}^{3} / \mathrm{s}$
37. Ans: (C)

Sol: Total load $=45 \mathrm{kN} / \mathrm{m}$
Moment of inertia $=400 \times \frac{600^{3}}{12}$

$$
=72 \times 10^{8} \mathrm{~mm}^{4}
$$

Slope at supports due to pre stress $=\theta_{1}$

$$
\begin{aligned}
=\frac{\mathrm{Pe} \ell}{2 \mathrm{E}_{\mathrm{c}} \mathrm{I}} & =\frac{1200 \times 1000 \times 150 \times 8000}{2 \times 30000 \times 72 \times 10^{8}} \\
& =0.00333 \text { (upwards) }
\end{aligned}
$$

Slope at supports due to load

$$
=\frac{\mathrm{w} \ell^{3}}{24 \mathrm{E}_{\mathrm{C}} \mathrm{I}}=\frac{45 \times 8000^{3}}{24 \times 30000 \times 72 \times 10^{8}}
$$

$$
=0.004444 \text { (downwards) }
$$

Net slope $(\theta)=0.00444-0.00333=0.00111$ (downwards)

Increase in stress

$$
\begin{aligned}
& =\frac{2 \mathrm{e} \theta}{\ell} \mathrm{E}_{\mathrm{s}}=\frac{2 \times 150 \times 0.00111}{8000} \times 2 \times 10^{5} \\
& =8.325 \mathrm{MPa}
\end{aligned}
$$

38. Ans: (C)

Sol: Number of ways we can distribute 5 red balls into 3 numbered boxes

$$
\begin{aligned}
& =C(3-1+5,5) \\
& =21
\end{aligned}
$$

Similarly we can distribute 5 white balls in 21 ways and 5 blue balls in 21 ways.

By product rule, required number of ways $=$ $(21)(21)(21)=9261$

39. Ans:14.14

Range: (14-15)
Sol: $b=200 \mathrm{~mm} ; \mathrm{d}=500 \mathrm{~mm}$

Case I:

Beam is designed as balanced section
Depth of neutral axis $=0.48 \mathrm{~d}$ for Fe 415 steel
$=0.48 \times 500=240 \mathrm{~mm}$
$0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{bx}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
$0.36 \times 25 \times 200 \times 240=0.87 \times 415 \mathrm{~A}_{\mathrm{st}, 1}$
$\mathrm{A}_{\mathrm{st}, 1}=1196.5 \mathrm{~mm}^{2}$
Limiting moment of resistance

$$
\begin{aligned}
=0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2} & =0.138 \times 25 \times 200 \times 500^{2} \\
& =172.5 \mathrm{kNm}
\end{aligned}
$$

Case II:

Moment to be resisted by compressive steel $=200-172.5=27.5 \mathrm{kNm}$

Corresponding area of tensile steel required
$=\mathrm{A}_{\mathrm{st}, 2}$
$0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}, 2}\left(\mathrm{~d}-\mathrm{d}^{\prime}\right)=27.5 \times 10^{6}$
$0.87 \times 415 \times \mathrm{A}_{\mathrm{st}, 2}(500-50)=27.5 \times 10^{6}$
$\mathrm{A}_{\mathrm{st} 2}=169.26 \mathrm{~mm}^{2}$
Total area of steel $=1196.5+169.26$

$$
=1365.76 \mathrm{~mm}^{2}
$$

Percentage increase in tensile steel

$$
=169.26 / 1196.5 \times 100=14.14 \%
$$

40. Ans: (D)

Sol: Effective length of fillet weld $\mathrm{L}_{\mathrm{w}}=2 \times 120$
$+100=340 \mathrm{~mm}$
Effective throat thickness $t_{t}=K \times S$

$$
\begin{aligned}
& =0.7 \times 5 \\
& =3.5 \mathrm{~mm}
\end{aligned}
$$

Design force $\mathrm{P}=$ Smaller of design axial strength of plate $\left(\mathrm{P}_{\mathrm{dp}}\right)$ and design shear strength of fillet weld $\left(\mathrm{P}_{\mathrm{dw}}\right)$

Design shear strength of fillet weld

$$
\begin{aligned}
\mathrm{P}_{\mathrm{dw}} & =\mathrm{L}_{\mathrm{w}} \times \mathrm{t}_{\mathrm{t}} \times \mathrm{f}_{\mathrm{u}} / \sqrt{3} \times \gamma_{\mathrm{mw}} \\
& =340 \times 3.5 \times 410 / \sqrt{3} \times 1.25 \\
& =225.35 \times 10^{3} \mathrm{~N}=225.35 \mathrm{kN}
\end{aligned}
$$

Design axial strength of plate

$$
\begin{aligned}
\mathrm{P}_{\mathrm{dp}} & =\mathrm{A}_{\mathrm{g}} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{mo}} \\
& =100 \times 10 \times 250 / 1.10 \\
& =227.27 \times 10^{3} \mathrm{~N}=227.27 \mathrm{kN}
\end{aligned}
$$

Design force $\mathrm{P}=$ Smaller of P_{dp} and P_{dw}

$$
=225.35 \mathrm{kN}
$$

41. Ans: (B)

Sol: $\rho=950 \mathrm{~kg} / \mathrm{m}^{3} ; \mu=0.2 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} ; \mathrm{D}=0.1 \mathrm{~m}$

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{~L}}=\frac{32 \mu \mathrm{v}_{\text {avg }}}{\mathrm{D}^{2}} \\
& \begin{aligned}
& \mathrm{V}_{\mathrm{avg}}=\frac{\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{D}^{2}}{32 \mu \mathrm{~L}}=\frac{10 \times 10^{3} \times 0.1^{2}}{32 \times 0.20 \times 10} \\
& \quad=1.5625 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

Wall shear stress $\tau_{\mathrm{w}}=\frac{1}{2} \frac{\mathrm{dp}}{\mathrm{dx}} \times \mathrm{R}=\frac{4 \mu \mathrm{~V}_{\text {avg }}}{\mathrm{R}}$

$$
\tau_{\mathrm{w}}=\frac{4 \times 0.2 \times 1.5625}{0.05}=25 \mathrm{~N} / \mathrm{m}^{2}
$$

42. Ans: (A)

Sol: $\quad \mathrm{F}_{\mathrm{V}_{\mathrm{p}}}=\mathrm{F}_{\mathrm{V}_{\mathrm{m}}}$

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{P}}^{2}}{\ell_{\mathrm{p}} \mathrm{~g}_{\mathrm{p}}}=\frac{\mathrm{V}_{\mathrm{m}}^{2}}{\ell_{\mathrm{m}} \mathrm{~g}_{\mathrm{m}}} \\
& \therefore \mathrm{~V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{p}} \times \sqrt{\frac{\ell_{\mathrm{n}}}{\ell_{\mathrm{p}}}} \times \frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{~g}_{\mathrm{p}}} \\
& \quad=15 \times \sqrt{\frac{1}{30}} \times 1=2.74 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~F}_{\mathrm{P}}=\mathrm{F}_{\mathrm{m}} \times \frac{\mathrm{P}_{\mathrm{p}}}{\mathrm{P}_{\mathrm{m}}} \times\left(\frac{\mathrm{R}_{\mathrm{P}}}{\ell_{\mathrm{m}}}\right)^{2} \times\left(\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~V}_{\mathrm{m}}}\right)^{2} \\
& \quad=25 \times 1 \times 30^{2} \mathrm{~m}=2.74^{2} \\
& \therefore \mathrm{~F}_{\mathrm{P}}=168921 \mathrm{~N}=169 \mathrm{kN}
\end{aligned}
$$

43. Ans: (D)

Sol: For hydraulic jump in rectangular channel

$$
\begin{aligned}
& \frac{2 q^{2}}{\mathrm{~g}}=\mathrm{y}_{1} \mathrm{y}_{2}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) \\
& \mathrm{q}^{2}=\frac{0.2 \times 1(1+0.2)}{2} \times 9.81 \\
& \mathrm{q}^{2}=1.1772 \\
& \mathrm{q}=1.085 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
\end{aligned}
$$

$$
\therefore \frac{\mathrm{Q}}{\mathrm{~B}}=\mathrm{q}
$$

$$
\mathrm{Q}=1.085 \times 4
$$

$$
\mathrm{Q}=4.34 \mathrm{~m}^{3} / \mathrm{sec}
$$

44. Ans: (C)

Sol: $\mathrm{T}_{1}=\frac{\mathrm{t}_{\mathrm{i}}}{\sum \mathrm{t}_{\mathrm{i}}}$

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{25}{25+23+40}=0.284 \\
& \mathrm{~T}_{2}=\frac{23}{25+23+40}=0.261 \\
& \mathrm{~T}_{3}=\frac{40}{25+23+40}=0.455
\end{aligned}
$$

Equivalent noise level

$$
\mathrm{L}=10 \log _{10} \sum\left(10^{\frac{\mathrm{Li}}{10}} \times \mathrm{T}_{\mathrm{i}}\right)
$$

$$
=10 \log _{10} \Sigma\left(10^{\frac{95}{10}} \times 0.284+10^{\frac{120}{10}} \times 0.261+10^{\frac{70}{10}} \times 0.455\right)
$$

$=114.18 \mathrm{~dB}$
45. Ans: (B)

Sol: Total marbles $=10+30+20+15=75$
$\mathrm{P}[$ both are white $]=\mathrm{P}[$ first is white and second is white]

$$
=\frac{35}{75} \times \frac{35}{75}=\frac{4}{25}
$$

46. Ans: (C)

Sol: Sulphur containing in coal $=\frac{2.5}{100} \times 8000$

$$
\begin{aligned}
& =200 \mathrm{~kg} / \mathrm{hr} \\
& =\frac{200 \times 10^{3} \mathrm{gm}}{1 \times 60 \times 60 \mathrm{sec}} \\
& =55.56 \mathrm{gm} / \mathrm{sec}
\end{aligned}
$$

$\mathrm{S} \quad+\quad \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{SO}_{2}$
32 2×16 64

32 gm of S produce $=64 \mathrm{gm}$ of SO_{2}
1 gm of S produce $=2 \mathrm{gm}$ of SO_{2}
$55.56 \mathrm{gm} / \mathrm{sec}$ of S produce

$$
=2 \times 55.56 \text { of } \mathrm{SO}_{2}
$$

SO_{2} emission $=111.12 \mathrm{gm} / \mathrm{sec}$

47. Ans: (C)

Sol: $K_{D, T}=K_{D, 20^{\circ}}(1.047)^{T-20^{\circ}}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{D}, 30^{\circ}} & =0.1 \times(1.047)^{30-20} \\
& =0.158
\end{aligned}
$$

To find ultimate BOD,

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=\mathrm{L}\left(1-(10)^{-\mathrm{K}_{\mathrm{D}} \mathrm{t}}\right) \\
& 110=\mathrm{L}\left(1-(10)^{-0.15855}\right)
\end{aligned}
$$

$$
\mathrm{L}=131.3 \mathrm{mg} / \mathrm{lit}
$$

To find 5-days, $20^{\circ} \mathrm{C}$ BOD

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=\mathrm{L}\left(1-(10)^{-\mathrm{K}_{\mathrm{D}}}\right) \\
& \mathrm{y}_{5}=131.3\left(1-(10)^{-0.1 \times 5}\right) \\
& \mathrm{y}_{5}=89.8 \mathrm{mg} / \mathrm{lit}
\end{aligned}
$$

48. Ans: (D)

Sol: Supply of water to be treated per day

$$
=2.7 \times 10^{6} \text { litres } / \text { day }
$$

Supply of water to be treated during the detention period of 4 hours. The capacity of the tank

$$
\begin{aligned}
& =\frac{2.7 \times 10^{6}}{24} \times 4=0.45 \times 10^{6} \text { litres } \\
& =450 \mathrm{~m}^{3}
\end{aligned}
$$

Length of tank $=$ Flow velocity \times detention

$$
\begin{aligned}
& =12 \times 4 \times 60 \\
& =2,880 \mathrm{~cm} \\
& =28.80 \mathrm{~m}
\end{aligned}
$$

Cross sectional area of the tank

$$
\begin{aligned}
& =\frac{\text { Capacity of the tank }}{\text { Length of the tank }} \\
& =\frac{450}{28.8}=15.625 \mathrm{~m}^{2}
\end{aligned}
$$

49. Ans: (B)

Sol: Static indeterminacy $D_{s}=r-s$

$$
\begin{aligned}
& =4-2 \\
& =2
\end{aligned}
$$

No. of plastic hinges required to form a mechanism ' n ' $=\mathrm{D}_{\mathrm{s}}+1=3$
$1^{\text {st }}$ possibility : Plastic hinges at $\mathrm{A}, \mathrm{C} \& \mathrm{~B}$

Using virtual work method

$$
\begin{aligned}
& P_{u} \times \frac{L}{2} \theta=7 M_{P} \theta \\
& P_{u}=\frac{14 M_{P}}{L}
\end{aligned}
$$

$2^{\text {nd }}$ possibility : Plastic hinges at $A . D$ and B

$P_{u} \times \frac{L}{2} \theta=2 M_{P} \theta+5 M_{P} \alpha$

$$
\delta=\delta
$$

$$
\frac{3 \mathrm{~L}}{4} \theta=\frac{\mathrm{L}}{4} \alpha
$$

$$
\alpha=3 \theta
$$

$\mathrm{P}_{\mathrm{u}} \frac{\mathrm{L}}{2} \theta=2 \mathrm{M}_{\mathrm{P}} \theta+5 \mathrm{M}_{\mathrm{P}}(3 \theta)$
$P_{u}=\frac{34 M_{P}}{L}$
Lower load will be the collapse load is $\frac{14 M_{P}}{L}$
50. Ans: (B)

Sol:

Equivalent stiffness at joint B

$$
\begin{aligned}
& =K_{B}=\frac{4 E I}{L}+\frac{3 E I}{L} \\
& =\frac{7 E I}{L}
\end{aligned}
$$

$K_{B}=\frac{M}{\theta_{B}}$
$\theta_{B}=\frac{M}{\mathrm{~K}_{\mathrm{B}}}=\frac{20}{\frac{7 \mathrm{EI}}{6}}=\frac{120}{7 \mathrm{EI}}$
51. Ans: (B)

Sol: $\Sigma \mathrm{M}_{\mathrm{B}}=0$
$\mathrm{V}_{\mathrm{A}} \times 20-\mathrm{P}(20-\mathrm{X})=0$
$\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{P}(20-\mathrm{X})}{20}$
$\& \Sigma \mathrm{M}_{\mathrm{C}}=0($ from left $)$

$$
\begin{aligned}
& -\mathrm{H}_{\mathrm{A}} \times 5+\mathrm{V}_{\mathrm{A}} \times 10-\mathrm{P} \times(10-\mathrm{X})=0 \\
& -5 \mathrm{H}_{\mathrm{A}}+\frac{\mathrm{P}(20-\mathrm{x})}{20} \times 10-\mathrm{P}(10-\mathrm{X})=0
\end{aligned}
$$

$$
\rightarrow \mathrm{H}_{\mathrm{A}}=\frac{\mathrm{PX}}{10}
$$

Given that left hinge reaction is inclined with a slope of two vertical on one horizontal
$\therefore \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{H}_{\mathrm{A}}}=\frac{2}{1} \Rightarrow \mathrm{~V}_{\mathrm{A}}=2 \mathrm{H}_{\mathrm{A}}$
$\frac{P(20-X)}{20}=2 \frac{P X}{10}$
$\mathrm{P}(20-\mathrm{X})=4 \mathrm{PX}$
$\therefore \mathrm{X}=4 \mathrm{~m}$ from left support

52. Ans: 8000

Range: No range

Sol: D = KS + C
for anallatic lens
$K=100, C=0$, given $S=0.8 \mathrm{~m}$
$\mathrm{D}=0.8 \times 100+0$
$=80 \mathrm{~m}=8000 \mathrm{~cm}$
53. Ans: (B)

Sol: Given

$\mathrm{H} \rightarrow$ Flying height of a camera
$\mathrm{H}=1000 \mathrm{~m}$
$r \rightarrow$ Distance of top of a minar from nadir point
$\mathrm{r}=10 \mathrm{~cm}=\frac{10}{100} \mathrm{~m}=0.1 \mathrm{~m}$
$\mathrm{d} \rightarrow$ relief displacement
$\mathrm{d}=7.2 \mathrm{~mm}=\frac{7.2}{1000} \mathrm{~m}=0.0072 \mathrm{~m}$
$\mathrm{h} \rightarrow$ height of the tower ?
To calculate the height of tower, when relief displacement is given use the formula,
$\mathrm{h}-\frac{\mathrm{dH}}{\mathrm{r}}$
$\therefore \mathrm{h}=\frac{0.0072 \times 1000}{0.1}=72 \mathrm{~m}$
54. Ans: (C)

Sol:

55. Ans: (C)

Sol:

$\downarrow\left(\mathrm{y}_{\mathrm{p}}\right)_{\mathrm{B}}=\uparrow\left(\mathrm{y}_{\mathrm{R}_{\mathrm{B}}}\right)_{\mathrm{B}} \rightarrow$ Compatibil ity condition
$\frac{\mathrm{P}\left(\frac{\ell}{2}\right)^{3}}{3 \mathrm{EI}}+\frac{\mathrm{P}\left(\frac{\ell}{2}\right)^{2}}{2 \mathrm{EI}}\left(\frac{\ell}{2}\right)=\frac{\mathrm{R}_{\mathrm{B}} \ell^{3}}{3 \mathrm{EI}}$
$\frac{5 \mathrm{P} \ell^{3}}{48 \mathrm{EI}}=\frac{\mathrm{R}_{\mathrm{B}} \ell^{3}}{3 \mathrm{EI}}$
$\therefore \mathrm{R}_{\mathrm{B}}=\frac{5 \mathrm{P}}{16}$

$\therefore \quad$ S.F. $@ \frac{\mathrm{~L}}{4}$ from prop $=\frac{5 \mathrm{P}}{16}$
56. Ans: (A)

Sol: Vulgarity (n.) means offensive speech or conduct.
59. Ans: (A)

Sol: Cylinder volume $=\pi r^{2} h=\frac{22}{7} \times 10 \times 10 \times$

$$
14=4400 \mathrm{~m}^{3}
$$

60. Ans: (D)

Sol: Speed $=10 \mathrm{kmph}=10 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}$

$$
=\frac{50}{18} \mathrm{~m} / \mathrm{sec}
$$

Man walks 50 m in 18 sec .
61. Ans: (D)

Sol: Rate downstream $=(24 / 2) \mathrm{kmph}=12 \mathrm{kmph}$.
Rate upstream $=(24 / 4) \mathrm{kmph}=6 \mathrm{kmph}$.
Therefore, speed in still water

$$
=1 / 2 \times(12+6)=9 \mathrm{kmph} .
$$

62. Ans: (B)

Sol: Let principle be 4 . Then amount $=4 \times \frac{7}{4}=7$
Interest $=7-4=3$
Rate of interest $=\frac{3 \times 100}{4 \times 4}=18 \frac{3}{4} \%$
63. Ans: (C)

Sol: Net part filled in 1 hour

$$
\begin{aligned}
& =\frac{1}{10}+\frac{1}{12}-\frac{1}{20}=\frac{6+5-3}{60} \\
& =\frac{11-3}{60}=\frac{8}{60}=\frac{2}{15}
\end{aligned}
$$

The tank will be full in $\frac{15}{2} \mathrm{hrs}$
$=7 \mathrm{hrs} .30 \mathrm{~min}$.
64. Ans: (A)

Sol: Share of wealth that C gets (in Rs lakhs)

$$
=20
$$

Tax $=40 \%$
\Rightarrow Wealth tax (in Rs lakhs) that C has to pay
$=\frac{40}{100} \times 20=8$

65. Ans: (A)

Sol: Note that an assumption is like a premise in that if it is wrong the argument is invalid, and if it is right it supports the conclusion. If the statement in (A) is correct, it supports the idea that point and shoot is not art, but if it is wrong, and choosing what to point the camera at involves art, then the argument is invalid. Hence, (A) is an assumption.

