

Engineering Academy

Head Office : Sree Sindhi Guru Sangat Sabha Association, "4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-23234419, 040-23234420, 040-24750437

Branch: Electronics \& Communication Engineering - SOLUTIONS

1. Ans: (b)

Sol:

Integral $\oint_{\mathrm{S}} \overrightarrow{\mathrm{G}} . \mathrm{d} \overrightarrow{\mathrm{S}}=\int_{\text {vol }} \nabla \cdot \overrightarrow{\mathrm{G}} \mathrm{dv}$

$$
\overrightarrow{\mathrm{G}}=2 x y \hat{a}_{\mathrm{x}}+3 \hat{\mathrm{a}}_{\mathrm{y}}+\mathrm{z}^{2} y \hat{a}_{z}
$$

$\nabla \cdot \vec{G}=2 y+2 z y$
$\nabla \cdot \vec{G}=2 \mathrm{y}(\mathrm{z}+1)$
$I=\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} 2 y(z+1) d x d y d z$
$=\left.\left.\left.2 \frac{\mathrm{y}^{2}}{2}\right|_{0} ^{1}\left(\frac{\mathrm{z}^{2}}{2}+\mathrm{z}\right)\right|_{0} ^{1} \mathrm{x}\right|_{0} ^{1}$
$\therefore \mathrm{I}=\frac{3}{2} \quad(\mathrm{I} \rightarrow$ Integral $)$
02. Ans: (d)

Sol: For $\mathrm{V}_{\mathrm{i}}<4 \mathrm{~V}$, the diode is ON and the output $\mathrm{V}_{0}=4 \mathrm{~V}$
For $\mathrm{V}_{\mathrm{i}}>4 \mathrm{~V}$, the diode is OFF and the output $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{i}}$.

03. Ans: 2 no range

Sol: The probability density function of uniform distribution is

$$
\begin{aligned}
f(x) & = \begin{cases}1,0<x<1 \\
0, \text { otherwise }\end{cases} \\
\mathrm{E}(\mathrm{y}) & =\mathrm{E}[-2 \log \mathrm{x}]=\int_{0}^{1}-2 \log \mathrm{x} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& =-2 \int_{0}^{1} \log \mathrm{x} \mathrm{dx}=-2\{\mathrm{x} \log \mathrm{x}-\mathrm{x}\}_{0}^{1} \\
& =-2\{(0-1)-(0)\}=2
\end{aligned}
$$

4. Ans: (c)

Sol: Option (a):- Due to multiplication of input terms it is nonlinear, but it is TIV.
Option (b):-Due to multiplication of time variant term ($\mathrm{n}-2$) it is TV., but linear
Option (c): - It is linear and TIV.
Option (d):- $2^{x_{1}(n)+x_{2}(n)} \neq 2^{x_{1}(n)}+2^{x_{2}(n)}$.
So, nonlinear and TIV system
05. Ans: 80 (no range)

Sol: Given that $\frac{\mu^{2}}{2+\mu^{2}}=\frac{1}{9}$

$$
\begin{aligned}
& \Rightarrow 1-\frac{\mu^{2}}{2+\mu^{2}}=\frac{2}{2+\mu^{2}}=\frac{8}{9} \\
& P_{t}=P_{c}\left(1+\frac{\mu^{2}}{2}\right)=P_{c}\left[\frac{2+\mu^{2}}{2}\right] \\
& 3600=P_{c}\left(\frac{9}{8}\right)
\end{aligned}
$$

$\mathrm{P}_{\mathrm{c}}=3200$
$\frac{\mathrm{A}_{\mathrm{c}}^{2}}{2}=3200$
$\mathrm{A}_{\mathrm{c}}=80 \mathrm{~V}$

ESE - MAINS
 Classes Start from:

 $13^{\text {th }}$ FEB 2020

 $13^{\text {th }}$ FEB 2020}

@ DELHI)
(@ hYderabad)

Students who Qualify in Prelims can avail 100 \% Fee Waiver

ESE-2018, 2019 Prelims Oualified Students are also eligible
for more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com www.aceenggacademy.com

HYDERABAD II AHMEDABAD I DELHII PUNE I BHUBANESWAR I LUCKNOW I KOLKATA I VIUAYAWADA I VIZAG I TIRUPATI ICHENNAI I BENGALURU

COAL INDIA LIMITED (CIL) Management Trainees $=$ Online Test Series

6 Full Length Mock Tests Civil | Electrical | Mechanical

Starts From $10^{\text {th }}$ Jan 2020
All tests will be available till $28^{\text {mi }}$ February 2020
06. Ans: (c)

Sol: $\mathrm{OLTF}=\frac{\mathrm{K}}{\mathrm{s}-\mathrm{a}} \quad(\mathrm{a}>0)$

$$
=\frac{K}{j \omega-a}=\frac{K}{\sqrt{\omega^{2}+a^{2}}} \angle-\left(180^{\circ}-\tan ^{-1} \frac{\omega}{a}\right)
$$

The Polar plot is

07. Ans: (a)

Sol: The multiplexer output $\mathrm{I}_{0}=\mathrm{a}, \mathrm{I}_{1}=\overline{\mathrm{a}}_{1}$,
$\mathrm{I}_{2}=\overline{\mathrm{a}}, \mathrm{I}_{3}=\mathrm{a}, \mathrm{S}_{1}=\mathrm{b}, \mathrm{S}_{0}=\mathrm{c}$
$\mathrm{F}=\mathrm{I}_{0} \overline{\mathrm{~S}}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1} \overline{\mathrm{~S}}_{1} \mathrm{~S}_{0}+\mathrm{I}_{2} \mathrm{~S}_{1} \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3} \mathrm{~S}_{1} \mathrm{~S}_{0}$
$\mathrm{F}=\mathrm{a} \overline{\mathrm{b}} \overline{\mathrm{c}}+\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{c}+\mathrm{ab} \overline{\mathrm{c}}+\mathrm{abc}$
$\mathrm{F}=\sum \mathrm{m}(1,2,4,7)$
For a Full Adder circuit:-

a b b	sum	carry		
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum $=\sum \mathrm{m}(1,2,4,7)$
The given multiplexer circuit is equivalent to sum equation of full adder.

08. Ans: 0.3

Sol:

$V_{G}=V_{G S}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{D D}$
$\mathrm{V}_{\mathrm{GS}}=\left(\frac{20 \mathrm{k}}{30 \mathrm{k}+20 \mathrm{k}}\right) 5=2 \mathrm{~V}$
Assume transistor is in saturation

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}} & =\frac{1}{2} \mathrm{k}_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TN}}\right)^{2} \\
& =\frac{1}{2}(0.2 \mathrm{~m})(2-1)^{2}=0.1 \mathrm{~mA}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}=5-(0.1 \mathrm{~m})(20 \mathrm{k})=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TN}} \rightarrow$ transistor is in saturation
$\mathrm{P}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}} \mathrm{V}_{\mathrm{DS}}=(0.1 \mathrm{~m})(3)=0.3 \mathrm{~mW}$
09. Ans: 1.61 (Range: 1.50 to 1.70)

Sol: $V_{P}=186 \times 10^{6}=\frac{3 \times 10^{8}}{\sqrt{\varepsilon_{\mathrm{r}}}}$

$$
\mathrm{n}=\sqrt{\varepsilon_{\mathrm{r}}}=\frac{3 \times 10^{8}}{186 \times 10^{6}}=1.61
$$

10. Ans: (c)

Sol: $\because \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan (a x)}{x}=a$
Now, $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan (4 x)}{4 x}=\frac{1}{4} \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan (4 x)}{x}$
$\therefore \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan (4 \mathrm{x})}{4 \mathrm{x}}=\frac{1}{4}(4)=1$

11. Ans: $\mathbf{0 . 8 3 6}$ (Range: $\mathbf{0 . 8}$ to $\mathbf{0 . 8 5}$)

Sol: $\mathrm{i}_{2}=\frac{24}{4}\left(1-\mathrm{e}^{-4 \mathrm{t} / 8}\right)$

$$
=6\left(1-\mathrm{e}^{-0.5 \mathrm{t}}\right)
$$

At $\mathrm{t}=0.3$
$\mathrm{i}_{2}=0.836 \mathrm{~A}$

12. Ans: (b)

Sol: $\quad \mathrm{V}_{0}=K T \ln \left(\frac{\mathrm{~N}_{\mathrm{DC}} \mathrm{N}_{\mathrm{DB}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$
$\frac{\mathrm{V}_{0}}{\mathrm{KT}}=\ln \left(\frac{\mathrm{N}_{\mathrm{DC}} \mathrm{N}_{\mathrm{DB}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$
$\frac{\mathrm{N}_{\mathrm{DC}} \mathrm{N}_{\mathrm{DB}}}{\mathrm{n}_{\mathrm{i}}^{2}}=\mathrm{e}^{\frac{\mathrm{V}_{0}}{\mathrm{KT}}}$
$\mathrm{n}_{\mathrm{i}}^{2}=\frac{\mathrm{N}_{\mathrm{DC}} \mathrm{N}_{\mathrm{DB}}}{\mathrm{e}^{\frac{\mathrm{V}_{0}}{\mathrm{KT}}}}$
$n_{i}^{2}=\frac{10^{16} \times 10^{14}}{e^{\frac{578 \times 10^{-3}}{0.02586}}}$
$\mathrm{n}_{\mathrm{i}}=1.401 \times 10^{10} / \mathrm{cm}^{3}$
13. Ans: (c)

Sol:

$$
\begin{aligned}
\frac{(s+2)(s+3)}{s} & =\frac{s^{2}+5 s+6}{s}=5+\frac{6}{s}+s \\
& =K_{p}+\frac{K_{I}}{s}+K_{D} s \\
K_{p}=5, K_{I}= & 6, K_{D}=1
\end{aligned}
$$

14. Ans: (c)

Sol: Given $\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}-2 y(t)=x(t)$.
Apply L.T

$$
\begin{aligned}
& \mathrm{s}^{2} \mathrm{Y}(\mathrm{~s})+\mathrm{sY}(\mathrm{~s})-2 \mathrm{Y}(\mathrm{~s})=\mathrm{X}(\mathrm{~s}) \\
& \mathrm{H}(\mathrm{~s})=\frac{1}{\mathrm{~s}^{2}+\mathrm{s}-2}=\frac{1}{(\mathrm{~s}+2)(\mathrm{s}-1)} \\
& \quad=\frac{-1 / 3}{\mathrm{~s}+2}+\frac{1 / 3}{\mathrm{~s}-1}
\end{aligned}
$$

Given that system is stable. So, ROC must include $\mathrm{j} \omega$ axis.

So, ROC $-2<\sigma<1$.
$h(t)=\frac{-1}{3} e^{-2 t} u(t)-\frac{1}{3} e^{t} u(-t)$
15. Ans: 60

Sol:

Fig. Non inverting op-amp circuit with op-amp replaced by its equivalent circuit
$\beta=\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{0}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{1 \mathrm{k}}{1 \mathrm{k}+9 \mathrm{k}}=0.1$
The de-sensitivity factor is $1+\mathrm{A} \beta$

$$
\begin{aligned}
& =1+\left(10^{4} \times 0.1\right) \cong 10^{3} \\
& =20 \log 10^{3} \mathrm{~dB} \\
& =60 \mathrm{~dB}
\end{aligned}
$$

16. Ans: 10 (no range)

Sol: Resolution $=\Delta \mathrm{V}_{\mathrm{i}}=5 \mathrm{mV}$
Maximum Analog input $=\mathrm{V}_{\mathrm{i}(\max)}=5 \mathrm{~V}$
$\Delta \mathrm{V}_{\mathrm{i}}=\frac{1}{2^{\mathrm{n}}-1} \times 5$
$2^{n}-1=1000$
$2^{\mathrm{n}}=1001$
$\mathrm{n} \approx 10$
17. Ans: (c)

Sol: $T . F=\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B$,
$\mathrm{u}(\mathrm{t})=\delta(\mathrm{t}) \xrightarrow{\mathrm{LT}} \mathrm{U}(\mathrm{s})=1$
$\mathrm{Y}(\mathrm{s})=\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}$
$y(t)=C e^{A t} B$, as $e^{A t} \xrightarrow{L T}(s I-A)^{-1}$
18. Ans: (c)

Sol: The circuit is redrawn as a planar circuit for convenience.

We have $\mathrm{V}_{1}=\mathrm{A} \mathrm{V}_{2}+\mathrm{B}\left(-\mathrm{I}_{2}\right)$
$\mathrm{I}_{1}=\mathrm{C} \mathrm{V}_{2}+\mathrm{D}\left(-\mathrm{I}_{2}\right)$
With port 2 open; between $1 \& 1^{\prime}$ there is a 6Ω path $\left(1-2^{\prime}-1^{\prime}\right)$ and another 6Ω path ($1-2-1^{\prime}$).
\therefore Effective resistance between 1 and 1^{\prime}
$=3 \Omega$
$\mathrm{I}_{1}=\mathrm{V}_{1} / 3$

With port 2 open; $\mathrm{I}_{2}=0$. Currents and voltage drops across different resistors are shown in above figure.

By KVL; $\frac{4 \mathrm{~V}_{1}}{6}=\frac{2 \mathrm{~V}_{1}}{6}+\mathrm{V}_{2}$
$\mathrm{V}_{2}=\left.\frac{\mathrm{V}_{1}}{3} \quad \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right|_{\mathrm{I}_{2}=0}=\mathrm{A}=3$
Also, $\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}\right|_{\mathrm{I}_{2}=0}=\mathrm{C}=\frac{\frac{\mathrm{V}_{1}}{3}}{\frac{\mathrm{~V}_{1}}{3}}=1 \mho$

With port 2 shorted, the figure is redrawn below

Between 1 and 1^{\prime}; we have ($4 \Omega / / 2 \Omega$) in series with $(4 \Omega / / 2 \Omega)=\frac{8}{3} \Omega$
$\mathrm{I}_{1}=\frac{3 \mathrm{~V}_{1}}{8} \mathrm{~A}$. From figure, where currents are marked, $\left(-\mathrm{I}_{2}\right)=\frac{\mathrm{V}_{1}}{8} \mathrm{~A}$
$B=\left.\frac{\mathrm{V}_{1}}{\left(-\mathrm{I}_{2}\right)}\right|_{\mathrm{V}_{2}=0}=\frac{\mathrm{V}_{1}}{\frac{\mathrm{~V}_{1}}{8}}=8 \Omega$
$\mathrm{D}=\left.\frac{\mathrm{I}_{1}}{-\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{\frac{3 \mathrm{~V}_{1}}{8}}{\left(\frac{\mathrm{~V}_{1}}{8}\right)}=3$
19. Ans: (c)

Sol:

$$
\begin{aligned}
& \pi \pi 000 \pi
\end{aligned}
$$

20. Ans: 0.0625 (no range)

Sol:
$G(z)=z^{-3} \cdot \frac{1}{1-\frac{1}{4} z^{-1}}$
Let, $x(n) \leftrightarrow X(z)=\frac{1}{1-\frac{1}{4} \cdot \mathrm{z}^{-1}}$
$\therefore \mathrm{x}(\mathrm{n})=\left(\frac{1}{4}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
By Time shifting property,
$\mathrm{x}(\mathrm{n}-3) \stackrel{\mathrm{zT}}{\longleftrightarrow} \mathrm{z}^{-3} \mathrm{X}(\mathrm{z})$
$\left(\frac{1}{4}\right)^{n-3} \mathrm{u}(\mathrm{n}-3) \stackrel{\text { z.T. }}{\longleftrightarrow} \mathrm{z}^{-3} \cdot \frac{1}{1-\frac{1}{4} \cdot \mathrm{z}^{-1}}=\mathrm{G}(\mathrm{z})$
$\therefore \mathrm{z}^{-1}\{\mathrm{G}(\mathrm{z})\}=\mathrm{g}(\mathrm{n})=\left(\frac{1}{4}\right)^{\mathrm{n}-3} \mathrm{u}(\mathrm{n}-3)$
Put $\mathrm{n}=5$
$g(5)=\left(\frac{1}{4}\right)^{5-3}=\left(\frac{1}{4}\right)^{2}$
$g(5)=\frac{1}{16}=0.0625$
21. Ans: (b)

Sol: $\overline{\mathrm{Y}}\left(\mathrm{Z}+\frac{\lambda}{4}\right)=\overline{\mathrm{Z}}(\mathrm{z})$
$\overline{\mathrm{Y}}\left(\mathrm{z}+\frac{\lambda}{4}\right)=(2+\mathrm{j} 3) \mho$

22. Ans: $\mathbf{1 . 1 9}$ range ($\mathbf{1 . 0}$ to $\mathbf{1 . 3}$)

Sol: For first wire, resistivity of conducting material is

$$
\rho=\frac{\mathrm{RA}}{\ell}=\frac{0.56 \times 2 \times 10^{-6}}{50}=2.24 \times 10^{-8} \Omega-\mathrm{m}
$$

\therefore Cross-sectional area of second wire is

$$
\mathrm{A}=\frac{\rho \ell}{\mathrm{R}}=\frac{\left(2.24 \times 10^{-8}\right)(100)}{2}=1.12 \times 10^{-6} \mathrm{~m}^{2}
$$

$\operatorname{Diameter}(\mathrm{d})=2 \sqrt{\frac{\mathrm{~A}}{\pi}}=2 \sqrt{\frac{1.12 \times 10^{-6}}{\pi}}$

$$
=1.19 \times 10^{-3} \mathrm{~m}
$$

23. Ans: (a)

Sol:

At the surface, it has become from p-type to n-type ($\mathrm{E}_{\mathrm{FS}}>\mathrm{E}_{\mathrm{i}} \Rightarrow$ n-type).
Thus strong inversion has taken place.
24. Ans: (c)

Sol: HOLD has highest priority among all other signals.
HOLD > TRAP(RST 4.5) > RST 7.5
> RST 6.5

25. Ans: 0.25

Sol: Given
$\int_{0}^{x} f(t) d t=-2+\frac{x^{2}}{2}+4 x \sin (2 x)+2 \cos (2 x)$
Differentiating both sides of above w.r.t 'x', we get

$$
\begin{aligned}
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dx}}\left[\int_{0}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right]=-0+\frac{2 \mathrm{x}}{2}+4 \sin (2 \mathrm{x}) \\
&+8 \mathrm{x} \cos (2 \mathrm{x})-4 \sin (2 \mathrm{x}) \\
&\left.\Rightarrow\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})\right)[\mathrm{f}(\mathrm{x})]-\left(\frac{\mathrm{d}}{\mathrm{dx}}(0)\right) \cdot \mathrm{f}(0)\right]=\mathrm{x}+8 \mathrm{x} \cos (2 \mathrm{x}) \\
& \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}+8 \mathrm{x} \cdot \cos (2 \mathrm{x}) \\
& \therefore \frac{1}{\pi} \mathrm{f}\left(\frac{\pi}{4}\right)= \frac{1}{\pi}\left[\frac{\pi}{4}+8\left(\frac{\pi}{4}\right) \cdot \cos \left(\frac{2 \pi}{4}\right)\right] \\
& \quad=\frac{1}{4}=0.25
\end{aligned}
\end{aligned}
$$

26. Ans: 3 (range 2.9 t0 3.1)

Sol:

Here,

$$
I=\frac{V_{2}}{6}
$$

Dependent current source supplies current of 0.5I
i.e., $0.5\left(\frac{\mathrm{~V}_{2}}{6}\right)=\frac{\mathrm{V}_{2}}{12}$
dependent voltage source supplies voltage of 12I
i.e., $12\left(\frac{\mathrm{~V}_{2}}{6}\right)=2 \mathrm{~V}_{2}$

Apply KCL at Node (1)
$-\frac{\mathrm{V}_{2}}{12}+\frac{\mathrm{V}_{1}}{12}+\frac{\mathrm{V}_{1}-\mathrm{V}_{2}}{6}=-6$
$\Rightarrow 3 \mathrm{~V}_{1}-3 \mathrm{~V}_{2}=-72$.
Apply KCL at Node (2),
$\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{6}+\frac{\mathrm{V}_{2}}{6}+\frac{\mathrm{V}_{2}-2 \mathrm{~V}_{2}}{18}=6$
$-3 \mathrm{~V}_{1}+5 \mathrm{~V}_{2}=108$
Adding (1) \& (2), we get
$\mathrm{V}_{2}=18 \mathrm{~V}$
$\mathrm{I}=\frac{\mathrm{V}_{2}}{6}=\frac{18}{6}=3 \mathrm{~A}$

27. Ans: 2 no range

Sol: Given that $f(x, y)=x^{2}+2 y^{2}$
with $y-x^{2}+1=0$ \qquad
From (2), we write $y=x^{2}-1$
Put (3) in (1), we get
$f(x, y)=x^{2}+2 y^{2}=x^{2}+2\left(x^{2}-1\right)^{2}$

$$
=x^{2}+2\left[x^{4}-2 x^{2}+1\right]
$$

Let $g(x)=2 x^{4}-3 x^{2}+2$
Then $g^{\prime}(x)=8 x^{3}-6 x$ and $g^{\prime \prime}(x)=24 x^{2}-6$
Consider $\mathrm{g}^{\prime}(\mathrm{x})=0$
$\Rightarrow 8 \mathrm{x}^{3}-6 \mathrm{x}=0$
$\therefore x=0, \frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2}$ are stationary points.
At $\mathrm{x}=0, \mathrm{~g}^{\prime \prime}(0)=-6<0$
At $\mathrm{x}= \pm \frac{\sqrt{3}}{2}, \mathrm{~g}^{\prime \prime}\left(\pm \frac{\sqrt{3}}{2}\right)=12>0$
$\therefore \mathrm{x}=0$ is a local point of maxima.
Hence, the maximum value of the function $f(x, y)$ at $x=0$ is

$$
\begin{aligned}
f(x, y) & =f\left(x, x^{2}-1\right)=f(0,-1) \\
& =0+2[0-0+1] \\
& =2
\end{aligned}
$$

28. Ans: (a)

Sol: $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,3,4,6)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,2,5,7)$
$\mathrm{F}=\overline{\mathrm{F}_{1} \cdot \mathrm{~F}_{2}} \rightarrow \mathrm{~F}=\overline{\mathrm{0}}=1$
29. Ans: $\mathbf{- 1 . 3 2}$ (Range: $\mathbf{- 1 . 3 3}$ to $\mathbf{- 1 . 3 0}$)

Sol: From given data, both MOSFET's are identical.
$\therefore \mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2} \& \mathrm{KCL}$ at Node V_{3}
$\Rightarrow \mathrm{I}_{\mathrm{D} 1}+\mathrm{I}_{\mathrm{D} 2}=200 \mu$
$\therefore \mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=100 \mu$
$\therefore \mathrm{V}_{1}=5-\mathrm{I}_{\mathrm{D} 1}(40 \mathrm{k})=1 \mathrm{~V}$
$\mathrm{V}_{2}=5-\mathrm{I}_{\mathrm{D} 2}(40 \mathrm{k})=1 \mathrm{~V}$
Now, let $\mathrm{M}_{1}, \mathrm{M}_{2}$ are in saturation
$\therefore \mathrm{V}_{\mathrm{D} 1}=\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{3}$,
$\mathrm{V}_{\mathrm{GS} 1}=0-\mathrm{V}_{3}$
$\therefore \mathrm{I}_{\mathrm{D}_{1}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{1} \times\left[\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{T}_{1}}\right]^{2}$
$\Rightarrow 100 \mu=\frac{1}{2} \times 100 \mu \times 20\left[-V_{3}-1\right]^{2}$
$\therefore \mathrm{V}_{3}=-1.32 \mathrm{~V}$
Now test for Assumption \rightarrow

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}_{1}}=\mathrm{V}_{1}-\mathrm{V}_{3}=1-[-1.32]=2.32 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{T}}=-\mathrm{V}_{3}-1=1.32-1=0.32 \mathrm{~V} \\
& \therefore \mathrm{~V}_{\mathrm{DS}_{1}}>\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{T}}
\end{aligned} \quad \Rightarrow \text { Saturation } \quad \begin{aligned}
& \Rightarrow \text { True Assumption } \\
& \Rightarrow \mathrm{V}_{3}=-1.32 \mathrm{~V} \text { is Correct }
\end{aligned}
$$

30. Ans: 0.863 (Range 0.7 to 1.0)

Sol: Maximum width of depletion region is

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{d} \max }=\sqrt{\frac{4 \varepsilon_{\mathrm{s}} \phi_{\mathrm{F}}}{\mathrm{qN}}} \\
& \begin{array}{l}
\phi_{\mathrm{F}} \\
= \\
\quad \mathrm{V}_{\mathrm{T}} \ln \frac{\mathrm{~N}_{\mathrm{A}}}{\mathrm{n}_{\mathrm{i}}}=0.0259 \ln \left(\frac{10^{15}}{1.5 \times 10^{10}}\right) \\
\quad=0.2877 \mathrm{~V}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}_{\mathrm{d} \max } & =\sqrt{\frac{4 \times 11.7 \times 8.85 \times 10^{-14} \times 0.2877}{1.6 \times 10^{-19} \times 10^{15}}} \\
& =8.63 \times 10^{-5} \mathrm{~cm} \\
& =0.863 \mu \mathrm{~m}
\end{aligned}
$$

31. Ans: (b)

Sol: Given that $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$,
where $\quad a_{i j}= \begin{cases}(n+1)^{2}-i, & \forall i=j \\ 0, & \forall i \neq j\end{cases}$

$$
\begin{aligned}
\Rightarrow A & =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
15 & 0 & 0 \\
0 & 14 & 0 \\
0 & 0 & 13
\end{array}\right]_{3 \times 3} \text { for } \mathrm{n}=3
\end{aligned}
$$

$\Rightarrow A_{3 \times 3}$ is a diagonal matrix \& its eigen values are its diagonal elements $15,14,13$. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the eigen values of $\mathrm{A}_{3 \times 3}$ matrix then the eigen values of matrix $A_{3 \times 3}^{2}$ are $\lambda_{1}^{2}, \lambda_{2}^{2}$ and λ_{3}^{2}.
\therefore The eigen values of a required matrix A^{2} are $(15)^{2},(14)^{2}$ and $(13)^{2}$ (i.e., 225, 196, 169)

32. Ans: (b)

Sol: $\quad P_{e}=Q\left[\sqrt{\frac{E_{d}}{2 N_{0}}}\right]$

$$
\begin{aligned}
E_{d} & =\int_{0}^{T}\left[s_{1}(T)-s_{2}(T)\right]^{2} d t \\
& =\int_{0}^{T} s_{1}^{2}(t) d t+\int_{0}^{T} s_{2}^{2}(t) d t-2 \int_{0}^{T} s_{1}(t) s_{2}(t) d t \\
& =A^{2} T+A^{2} T-2\left[-A^{2} T\right] \\
& =4 A^{2} T \\
P_{e} & =Q\left[\sqrt{\frac{2 A^{2} T}{N_{0}}}\right]
\end{aligned}
$$

33. Ans: (d)

Sol: Initial energy $\left(\mathrm{W}_{\mathrm{i}}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}^{2}=\frac{1}{2} \times 100 \times 10^{-6} \times 100 \times 100 \\
& =0.5 \mathrm{~J}
\end{aligned}
$$

When connected in parallel, the initial charge $\mathrm{Q}_{\mathrm{i}}=\mathrm{C}_{1} \mathrm{~V}$

$$
\begin{aligned}
& =100 \times 10^{-6} \times 100 \\
& =10 \mathrm{mC}
\end{aligned}
$$

is redistributed in parallel combination of $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$

$$
=(100+400) \mu \mathrm{F}
$$

\therefore Common voltage becomes

$$
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}=\frac{10 \times 10^{-3}}{500 \times 10^{-6}}=20 \mathrm{~V} \\
& \mathrm{~W}_{1}=\frac{1}{2} \mathrm{C}_{1} \mathrm{~V}^{2}=\frac{1}{2} \times 100 \times 10^{-6} \times(20)^{2}=0.02 \mathrm{~J} \\
& \mathrm{~W}_{2}=\frac{1}{2} \mathrm{C}_{2} \mathrm{~V}^{2}=\frac{1}{2} \times 400 \times 10^{-6} \times(20)^{2}=0.08 \mathrm{~J}
\end{aligned}
$$

Final energy $\left(\mathrm{W}_{\mathrm{f}}\right)=\mathrm{W}_{1}+\mathrm{W}_{2}=0.1 \mathrm{~J}$
Energy dissipated $=\mathrm{W}_{\mathrm{i}}-\mathrm{W}_{\mathrm{f}}=0.5-0.1$

$$
=0.4 \mathrm{~J}
$$

34. Ans: (a)

Sol: On the transmission line wherever V is maximum there the impedance is also maximum.
$\therefore \mathrm{Z}_{\text {max }}=\mathrm{Z}_{0}(\mathrm{VSWR})=25 \times 2.4=60 \Omega$

$\mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {max }}=\mathrm{Z}_{0}\left[\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j}_{0}}{\mathrm{Z}_{0}+\mathrm{j} \mathrm{Z}_{\mathrm{L}}}\right]$
$\left\{\begin{array}{l}\because \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}\left[\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} \mathrm{Z}_{0} \tan \beta \ell}{\mathrm{Z}_{0}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \beta \ell}\right] \\ \because \ell=\frac{\lambda}{8}, \beta \ell=\frac{\pi}{4}\end{array}\right\}$
$60=25\left[\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} 25}{25+\mathrm{j} \mathrm{Z}_{\mathrm{L}}}\right]$

$$
\begin{aligned}
& 2.4\left(25+\mathrm{Z}_{\mathrm{L}}\right)=\mathrm{Z}_{\mathrm{L}}+\mathrm{j} 25 \\
& (60-\mathrm{j} 25)=\mathrm{Z}_{\mathrm{L}}(1-\mathrm{j} 2.4) \\
& \mathrm{Z}_{\mathrm{L}}=\frac{60-\mathrm{j} 25}{1-\mathrm{j} 2.4} \times \frac{1+\mathrm{j} 2.4}{1+\mathrm{j} 2.4} \\
& =\frac{120+\mathrm{j} 119}{6.76}=17.75+\mathrm{j} 17.6 \Omega \\
& \mathrm{Z}_{\mathrm{L}}=17.75+\mathrm{j} 17.6 \Omega
\end{aligned}
$$

35. Ans: (d)

Sol: \% Efficiency of AM System,

$$
\begin{aligned}
& \% \eta=\frac{\mathrm{K}_{\mathrm{a}}^{2} \mathrm{P}_{\mathrm{m}}}{1+\mathrm{K}_{\mathrm{a}}^{2} \cdot \mathrm{P}_{\mathrm{m}}} \times 100 \% \\
& \begin{aligned}
\frac{0.1^{2} \times 100}{1+0.1^{2} \cdot \times 100} \times 100 \% & =\frac{1}{1+1} \times 100 \% \\
& =50 \%
\end{aligned}
\end{aligned}
$$

36. Ans: (c)

Sol:

38. Ans: (d)

Sol:

Q_{1} is OFF since $\mathrm{V}_{\mathrm{EB}}=7.7-8=-0.3<\mathrm{V}_{\mathrm{ON}}$ Q_{2} is ON

4 mA current is passed through Q_{2} transistor and $\mathrm{V}_{0}=0-(4 \mathrm{~mA} \times 1 \mathrm{k})=-4 \mathrm{~V}$.

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre GATE - 2020

 Pre GATE - 2020}

Date of Exam: 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I) ZOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical |Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

39. Ans: 91 (range: $\mathbf{8 8}$ to 93)

Sol: Total energy $=\mathrm{E}_{\mathrm{x}(\mathrm{t})}=\int_{0}^{\infty} \mathrm{e}^{-2 \mathrm{t}} \mathrm{dt}=\frac{1}{2}$
Given, $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
$X(\omega)=\frac{1}{1+j \omega}$
$|X(\omega)|^{2}=\frac{1}{1+\omega^{2}}$
Using parseval's theorem Energy contained

$$
\text { in } \begin{aligned}
|\omega| \leq 7 \mathrm{rad} / \mathrm{sec} & =\frac{1}{2 \pi} \int_{-7}^{7}|\mathrm{X}(\omega)|^{2} \mathrm{~d} \omega \\
& =\frac{1}{2 \pi} \int_{-7}^{7} \frac{1}{1+\omega^{2}} \mathrm{~d} \omega \\
& =\left.\frac{1}{2 \pi} \tan ^{-1}(\omega)\right|_{-7} ^{7} \\
& =\frac{2}{2 \pi} \tan ^{-1}(7) \\
& =0.4548
\end{aligned}
$$

Percentage of energy

$$
=\frac{0.4548}{0.5}=0.9096 \times 100=90.96 \% \approx 91 \%
$$

40. Ans: (a)

Sol: DC analysis

$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{D}}$
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mathrm{~K}_{\mathrm{n}}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}$
Solve quadratic equation in I_{D}
$\mathrm{I}_{\mathrm{D}}=1.06 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=4.4 \mathrm{~V}$

AC Analysis

$\mathrm{R}_{\mathrm{L}}^{\prime}=\mathrm{R}_{\mathrm{L}}\left\|\mathrm{R}_{\mathrm{D}}\right\| \mathrm{r}_{0}$
$A_{V}=-g_{m} R_{L}^{\prime}$
$\mathrm{g}_{\mathrm{m}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)=0.725 \mathrm{~mA} / \mathrm{V}$
$\mathrm{r}_{0}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{D}}}=\frac{50}{1.06}=47 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{L}}=4.52 \mathrm{k} \Omega$
$\therefore \mathrm{A}_{\mathrm{V}}=-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}^{\prime}=-0.725 \times 4.52$

$$
=-3.27 \approx-3.3
$$

41. Ans: 3.2 (3.1 to 3.3)

Sol: $\quad Y_{\text {eq }}=\frac{1}{2+j 4}+\frac{1}{R}=\left(\frac{1}{10}+\frac{1}{R}-\frac{j}{5}\right) v$
For 0.9 lagging, angle of admittance must be $\cos ^{-1}(0.9)=-25.84^{\circ}$
Thus, $\frac{1 / 5}{1 / 10+1 / R}=\tan 25.84=0.482$
$\Rightarrow R=3.2 \Omega$
42. Ans: (d)

Sol: The average power density at the earth is given by

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{W}_{\mathrm{avg}}=\frac{\mathrm{P}_{\mathrm{avg}}}{4 \pi \mathrm{r}^{2}} \\
&=\frac{10}{4 \pi \times\left(380 \times 10^{6}\right)^{2}} \\
& \mathrm{~W}_{\mathrm{avg}}=5.5 \times 10^{-18} \mathrm{~W} / \mathrm{m}^{2} \\
& \text { But, } \mathrm{W}_{\mathrm{avg}}=\frac{\mathrm{E}_{\mathrm{rms}}{ }^{2}}{\eta_{0}} \\
& \mathrm{E}_{\mathrm{rms}}= \sqrt{377 \times 5.5 \times 10^{-18}} \\
& \therefore \mathrm{E}_{\mathrm{rms}}= 45.5 \mathrm{nV} / \mathrm{m}
\end{aligned}
\end{aligned}
$$

43. Ans: (c)

Sol:

MVI B, 0AH
LOOP: MVI C, 50H
DCR C
DCR B
JNZ LOOP
B register initialized with 0AH i.e., 10d.
Effect on zero flag due to "DCR B" instruction will be verified by "JNZ LOOP" instruction in iteration.
Therefore LOOP gets executed for 10 times.
The only instruction outside the LOOP is MVI B, OAH which gets executed for only 1 time.
All the instructions inside the loop gets executed for 10 times.

$$
\begin{aligned}
& \therefore \text { Total } \mathrm{T}-\text { states } \\
& =1 \times 7 \mathrm{~T}+10 \times[7 \mathrm{~T}+4 \mathrm{~T}+4 \mathrm{~T}+10 \mathrm{~T}]-3 \mathrm{~T} \\
& \\
& =7 \mathrm{~T}+10 \times 25 \mathrm{~T}-3 \mathrm{~T}=4 \mathrm{~T}+250 \mathrm{~T} \\
& \\
& =254 \mathrm{~T}
\end{aligned}
$$

44. Ans: (b)

Sol: If $\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$, voltage across Zener diode is $24 \times \frac{15 \times 10^{3}}{(15+5) \times 10^{3}}=24 \times \frac{15}{20}=18 \mathrm{~V}$
$\mathrm{I}_{\mathrm{S}}=\frac{24-18}{5 \times 10^{3}}=1.2 \mathrm{~mA}$
Power through $\mathrm{R}_{\mathrm{S}}=\mathrm{I}_{\mathrm{S}}^{2} \mathrm{R}_{\mathrm{S}}=\left(1.2 \times 10^{-3}\right)^{2} \times 5 \times 10^{3}$

$$
=7.2 \mathrm{~mW}
$$

45. Ans: 50 (no range)

Sol: $C=5000 \log _{2}\left[1+\frac{1.023}{2 \times 5000 \times 10^{-7}}\right]=50 \mathrm{kbps}$

46. Ans: 3.78 (Range: 3.50 to 4.00)

Sol: Given
$E_{y}=10 \sin (5 x) \cos (4 y) \sin (\omega t-24 z)$
Direction of propagation: +z
$\mathrm{E}_{\mathrm{Z}}=0$ and hence TE mode
$\mathrm{a}=1.586 \mathrm{~cm}$
$\mathrm{b}=0.793 \mathrm{~cm}$
$E_{y}=\frac{-j \omega \mu}{h^{2}}\left(\frac{m \pi}{a}\right) c \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j \beta \bar{z}}$
$\frac{\mathrm{m} \pi}{\mathrm{a}}=5$ and $\frac{\mathrm{n} \pi}{\mathrm{b}}=4$
$\mathrm{m}=\frac{5 \times 1.586}{\pi} \quad \mathrm{n}=\frac{4 \times 0.793}{\pi}$
$\mathrm{m}=2.52 \quad \mathrm{n}=1.009$
$\mathrm{m} \simeq 3 \quad \mathrm{n} \simeq 1$
The mode is: TE_{31}
Cutoff frequency is given by

$$
\begin{aligned}
\mathrm{f}_{\mathrm{C}}\left(\mathrm{TE}_{31}\right) & =\frac{\mathrm{c}}{2 \sqrt{\varepsilon_{\mathrm{r}}}} \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{~b}}\right)^{2}} \\
& =\frac{3 \times 10^{10}}{2 \sqrt{81}} \sqrt{\left(\frac{3}{1.586}\right)^{2}+\left(\frac{1}{0.793}\right)^{2}}
\end{aligned}
$$

$$
\therefore \mathrm{f}_{\mathrm{C}}=3.78 \mathrm{GHz}
$$

47. Ans: 0.67 (range: $\mathbf{0 . 6}$ to 0.7)

Sol: $\operatorname{Tri}(\mathrm{t}) \leftrightarrow \operatorname{Sinc}^{2}(\mathrm{f})$
$\mathrm{x}(\mathrm{t})=\operatorname{Tri}(\mathrm{t}), \mathrm{X}(\mathrm{f})=\operatorname{Sinc}^{2}(\mathrm{f})$

Using parseval's theorem

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|\mathrm{x}(\mathrm{t})|^{2} \mathrm{dt}=\int_{-\infty}^{\infty}|\mathrm{X}(\mathrm{f})|^{2} \mathrm{df} \\
& \begin{aligned}
\int_{-\infty}^{\infty} \operatorname{Sinc}^{2}(\mathrm{f}) \cdot \operatorname{Sinc}^{2}(\mathrm{f}) \mathrm{df}=\int_{-\infty}^{\infty} \operatorname{Tri}(\mathrm{t}) \cdot \operatorname{Tri}(\mathrm{t}) \mathrm{dt} \\
\begin{aligned}
\int_{-\infty}^{\infty} \operatorname{Sinc}^{4}(\mathrm{f}) \mathrm{df} & =\int_{-\infty}^{\infty} \operatorname{Tri}(\mathrm{t}) \cdot \operatorname{Tri}(\mathrm{t}) \mathrm{dt} \\
& =\int_{-1}^{0}(\mathrm{t}+1)^{2} \mathrm{dt}+\int_{0}^{1}(1-\mathrm{t})^{2} \mathrm{dt} \\
& =\frac{1}{3}+\frac{1}{3}=\frac{2}{3}=0.67
\end{aligned}
\end{aligned} \text {. }
\end{aligned}
$$

48. Ans: 0.11

Range: 0.1 to 0.2

Sol: Total possible outcomes for both faces even $=(2,2),(2,4),(2,6),(4,2),(4,4),(4,6)$, $(6,2),(6,4),(6,6)=9$
Total favorable outcome for sum smaller than $6=(2,2)$
P (sum is less than 6 given both faces are even) $=\frac{1}{9}=0.11$
49. Ans: (d)

Sol: i) The process transconductance parameter,

$$
\begin{aligned}
\mathrm{k}_{\mathrm{n}}{ }^{\prime} & =\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \\
& =450 \times 10^{-4} \times 8.6 \times 10^{-15} \times 10^{12} \mathrm{~A} / \mathrm{V}^{2} \\
& =387 \mu \mathrm{~A} / \mathrm{V}^{2}
\end{aligned}
$$

ii) The transistor transductance parameter, k_{n}

$$
=\mathrm{k}_{\mathrm{n}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{~L}}\right)=387\left(\frac{2}{0.18}\right)=\frac{4.3 \mathrm{~mA}}{\mathrm{~V}^{2}}
$$

50. Ans: 4 (no range)

Sol: Bitrate, $\mathrm{R}_{\mathrm{b}}=40000 \times 5=200 \mathrm{kbps}$
For M-ary PSK signalling bandwidth

$$
=\frac{\mathrm{R}_{\mathrm{b}}(1+\alpha)}{\log _{2} \mathrm{M}}
$$

$130 \mathrm{k} \geq \frac{(1+\alpha) \mathrm{R}_{\mathrm{b}}}{\log _{2} \mathrm{M}}$
$\log _{2} \mathrm{M} \geq \frac{1.3 \times 200 \mathrm{k}}{130 \mathrm{k}}$
$\log _{2} \mathrm{M} \geq 2$
$\mathrm{M}=4$
51. Ans: (a)

Sol: $\mathrm{CLTF}=\frac{\mathrm{G}(\mathrm{s})}{1+\mathrm{G}(\mathrm{s})}$

$$
\begin{aligned}
& =\frac{\mathrm{k}(\mathrm{~s}+4)}{\mathrm{s}(\mathrm{~s}+1)+\mathrm{k}(\mathrm{~s}+4)} \\
& =\frac{\mathrm{k}(\mathrm{~s}+4)}{\mathrm{s}^{2}+(\mathrm{k}+1) \mathrm{s}+4 \mathrm{k}}
\end{aligned}
$$

By comparing with standard form of second order characteristic equation

$$
\begin{aligned}
& 2 \zeta \omega_{\mathrm{n}}=(\mathrm{k}+1) \text { and } \omega_{\mathrm{n}}=\sqrt{4 \mathrm{k}} \\
& \begin{array}{l}
2 \omega_{\mathrm{n}}=\mathrm{k}+1 \quad \because \zeta=1 \\
2 \times \sqrt{4 \mathrm{k}}=\mathrm{k}+1
\end{array} \quad \Rightarrow 16 \mathrm{k}=\mathrm{k}^{2}+2 \mathrm{k}+1 \\
& \quad \Rightarrow \mathrm{k}^{2}-14 \mathrm{k}+1=0
\end{aligned}
$$

$$
\Rightarrow \mathrm{k}=0.071 \& 13.92
$$

52. Ans: (a)

Sol: $H(s)=\frac{1}{(s+0.1)^{2}+4}$
The relationship between s and z in backward difference method is $\mathrm{s}=\frac{1-\mathrm{z}^{-1}}{\mathrm{~T}_{\mathrm{s}}}$
Given $\mathrm{f}_{\mathrm{s}}=10 \mathrm{~Hz} \Rightarrow \mathrm{~T}_{\mathrm{s}}=\frac{1}{10}=0.1 \mathrm{sec}$
$\mathrm{H}(\mathrm{z})=\frac{1}{\left[\frac{1-\mathrm{z}^{-1}}{0.1}+0.1\right]^{2}+4}$
$\mathrm{H}(\mathrm{z})=\frac{1}{\left(\frac{1-\mathrm{z}^{-1}+0.01}{0.1}\right)^{2}+4}$
$H(z)=\frac{1}{100\left(1.01-z^{-1}\right)^{2}+4}$
$\mathrm{H}(\mathrm{z})=\frac{\frac{1}{100}}{1.02-2.02 \mathrm{z}^{-1}+\mathrm{z}^{-2}+\left(\frac{4}{100}\right)}$
$H(z)=\frac{\frac{1}{100}}{1.06-2.02 z^{-1}+z^{-2}}$
$H(z)=\frac{9.43 \times 10^{-3}}{1-1.91 z^{-1}+0.94 z^{-2}}$
53. Ans: 6

Sol: Consider node ' X ' at inverting input terminal

Apply Nodal analysis technique at node ' X ':
$\frac{\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{\text {in }}}{10 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{X}}-4}{20 \mathrm{k}}=0$
$\Rightarrow \mathrm{V}_{\mathrm{X}}=\frac{2 \mathrm{~V}_{\text {in }}+4}{3}$
Reference voltage at non-inverting terminal, If $\mathrm{V}_{0}=+10 \mathrm{~V}$,
$\mathrm{V}_{\text {ref }}=\mathrm{V}_{0} \times \frac{5 \mathrm{k}}{5 \mathrm{k}+20 \mathrm{k}}=10 \times \frac{1}{5}=2 \mathrm{~V}$
If $\mathrm{V}_{0}=-10 \mathrm{~V}$,
$\mathrm{V}_{\text {ref }}=\mathrm{V}_{0} \times \frac{5 \mathrm{k}}{5 \mathrm{k}+20 \mathrm{k}}=-10 \times \frac{1}{5}=-2 \mathrm{~V}$
For $\mathrm{V}_{\mathrm{X}}>2 \mathrm{~V}, \mathrm{~V}_{0}=-\mathrm{V}_{\text {sat }}$
i.e., $\quad \frac{4+2 \mathrm{~V}_{\mathrm{in}}}{3}>2$
$\Rightarrow \mathrm{V}_{\mathrm{in}}>\frac{6-4}{2}=1 \mathrm{~V}$
\Rightarrow i.e ' V_{0} ' is changing $+\mathrm{V}_{\text {sat }}$ to $-\mathrm{V}_{\text {sat }}$
When $\mathrm{V}_{\text {in }}>1 \mathrm{~V}$
$\therefore \mathrm{V}_{\mathrm{UTP}}=1 \mathrm{~V}$

For $\mathrm{V}_{\mathrm{X}}<-2 \mathrm{~V}, \mathrm{~V}_{0}=+\mathrm{V}_{\text {sat }}$

$$
\text { i.e., } \frac{4+2 \mathrm{~V}_{\mathrm{in}}}{3}<-2
$$

$\Rightarrow \mathrm{V}_{\mathrm{in}}<\frac{-6-4}{2}=-5$
\Rightarrow i.e ' V_{0} ' is changing $-\mathrm{V}_{\text {sat }}$ to $+\mathrm{V}_{\text {sat }}$
When $\mathrm{V}_{\text {in }}<-5 \mathrm{~V}$

$$
\begin{aligned}
& \therefore \mathrm{V}_{\mathrm{LTP}}=-5 \mathrm{~V} \\
& \therefore \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{UTP}}-\mathrm{V}_{\mathrm{LTP}}=1-(-5)=6 \mathrm{~V}
\end{aligned}
$$

54. Ans: 0

Sol: $\mathrm{TF}=\mathrm{K} \frac{\left(1+\frac{\mathrm{s}}{0.5}\right)^{2}}{\left(1+\frac{\mathrm{s}}{10}\right)^{3}}$
It is type 0 system
Velocity error coefficient K_{v}

$$
=\operatorname{Lt}_{s \rightarrow 0} \mathrm{~s} G(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=0
$$

55 Ans: 1.52 no range

Sol: Consider
$\int_{C} \bar{f} . d \bar{r}=\int_{(0,0)}^{(1,1)}\left[\sqrt{x} d x+\left(x+y^{3}\right) d y\right]$.
Given that $\mathrm{C}: \mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}, 0 \leq \mathrm{t} \leq 1$
$\Rightarrow \mathrm{dx}=2 \mathrm{tdt}, \mathrm{dy}=3 \mathrm{t}^{2} \mathrm{dt}$

Using (2), (1) becomes

$$
\begin{aligned}
& \int_{C} \overline{\mathrm{f}} \cdot \mathrm{~d} \overline{\mathrm{r}}=\int_{\mathrm{t}=0}^{1}\left[(\mathrm{t})(2 \mathrm{t}) \mathrm{dt}+\left(\mathrm{t}^{2}+\mathrm{t}^{9}\right)\left(3 \mathrm{t}^{2}\right) \mathrm{dt}\right] \\
& \Rightarrow \int_{\mathrm{C}} \overline{\mathrm{f}} \cdot \mathrm{~d} \overline{\mathrm{r}}=\int_{\mathrm{t}=0}^{1}\left[2 \mathrm{t}^{2}+3 \mathrm{t}^{4}+3 \mathrm{t}^{11}\right] \mathrm{dt} \\
& \Rightarrow \int_{\mathrm{C}} \overline{\mathrm{f}} \cdot \mathrm{dr}=\left(\frac{2 \mathrm{t}^{3}}{3}+\frac{3 \mathrm{t}^{5}}{5}+\frac{3 \mathrm{t}^{12}}{12}\right)_{0}^{1} \\
& \therefore \int_{\mathrm{C}} \overline{\mathrm{f}} \cdot \mathrm{~d} \overline{\mathrm{r}}=\left(\frac{2}{3}+\frac{3}{5}+\frac{3}{12}\right)=1.52
\end{aligned}
$$

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude

56. Ans: (b)

Sol: (so) is wrong because they mean the same.
57. Ans: (c)
58. Ans: (a)
59. Ans: (d)

Sol: Capacity of the tank $=(12 \times 13.5)=162$ litres Capacity of each bucket $=9$ litres.
Number of buckets needed $=162 / 9=18$
60. Ans: (d)

Sol: Volume of Cuboid

$$
=\text { length } \times \text { breadth } \times \text { height }
$$

Number of cuboids

$$
\begin{aligned}
& =\frac{(\text { Volume of cuboids }) \text { formed from }}{(\text { Volume of cuboids }) \text { taken }} \\
& =\frac{18 \times 15 \times 12}{5 \times 3 \times 2}=108
\end{aligned}
$$

61. Ans: (b)

Sol: At the most case: Let the numbers be $\{-45,1,1,1, \ldots . ., 1\}$.
Average is 0 . So, at the most 44 numbers may be >0.
At the least case: Let the numbers be $\{45,-1,-1,-1, \ldots .,-1\}$.
Average is 0 . So, at the least 1 number may be >0.

62. Ans: (b)

Sol: Perimeter = Distance covered in 8 min.

$$
=12000 \times \frac{8}{60} \mathrm{~m}=1600 \mathrm{~m} .
$$

Let length $=3 x$ metres and breadth

$$
=2 x \text { metres. }
$$

Then, $2(3 x+2 x)=1600$ or $x=160$.
\therefore Length $=480 \mathrm{~m}$ and Breadth $=320 \mathrm{~m}$
\therefore Area $=(480 \times 320) \mathrm{m}^{2}=153600 \mathrm{~m}^{2}$

63. Ans: (b)

Sol: Consider CP as 100\%.
Loss $15 \% \Rightarrow$ So, SP = 85\%
Gain $15 \% \Rightarrow$ So, New SP $=115 \%$
Given $115 \%-85 \%=30 \%=450$
$\frac{100}{30} \times 450=1500$

64. Ans: (a)

Sol: GDP at the beginning of 2013 is equal to the GDP at the end of 2012
\Rightarrow GDP growth rate in $2012=7 \%$
GDP at the end of $2011=$ GDP at the beginning of $2012=\$ 1$ trillion
\therefore GDP at the beginning of 2013

$$
\begin{aligned}
& =\frac{100+7}{100} \times 1 \text { trillion } \\
& =\frac{107}{100}=\$ 1.07 \text { trillion }
\end{aligned}
$$

65. Ans: (a)

ISRO

No. of Tests : 15

Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 © testseries@aceenggacademy.com

