

Hyderabad | Delhi | Ahmedabad | Pune | Bhubaneswar | Bengaluru | Lucknow | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE-2020

Questions with Detailed Solutions

ELECTRONICS & COMMUNICATION ENGINEERING

ACE Engineering Academy has taken utmost care in preparing the **GATE-2020** Examination Solutions. Discrepancies, if any, may please be brought to our notice. **ACE** Engineering Academy does not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. **ACE** Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (**GATE/ESE/PSUs/PSC/GENCO/TRANSCO** etc.,).

All Queries related to **GATE-2020 Solutions** are to be sent to the following email address **hyderabad@aceenggacademy.com** | Contact Us : **040 - 23234418, 19, 20**

www.aceenggacademy.com

GATE - 2020 Electronics & Communication Engg. Question with Detailed Solutions

SUBJECTWISE WEIGHTAGE

S. No.	NAME OF THE SUBJECT	1 MARK QUESTIONS	2 MARKS QUESTIONS	Total Marks
1	Verbal Ability	2	3	8
2	Numerical Ability	3	2	7
3	Engineering Mathematics	5	3	11
4	Network Theory	3	2	7
5	Control Systems	2	3	8
6	Digital Circuits & Microprocessors	3	3	9
7	Signals & System	2	3	8
8	EDC & VLSI	2	4	10
9	Analog Circuits	3	5	13
10	EMT	3	4	11
11	Communication Systems	2	3	8
	Total No. of Marks	30	35	100

Section : General Aptitude

A superadditive function f(.) satisfies the following 01. property

 $f(x_1 + x_2) \ge f(x_1) + f(x_2)$

Which of the following functions is a superadditive function for x > 1?

(a) $\frac{1}{x}$	(b) e ^x
(c) e ^{-x}	(d) \sqrt{x}

01. Ans: (b)

Sol: a^m is super additive function, if a > 1.

example $2^5 > 2^2 + 2^3$

 $f(x_1 + x_2) > f(x_1) + f(x_2)$

So, e^x is super additive function. ($\cdot \cdot e > 1$)

02 The Canadian constitution requires equal importance be given to English and French. Last year, Air Canada lost a lawsuit, and had to pay a six- figure fine to French-speaking couple after they filed a complaints about formal in-flight announcements in English lasting 15 seconds, as compared to informal 5 seconds messages in French.

The French-speaking couple were upset at

- (a) the in-flight announcement being made in English.
- (b) the English announcements being clearer than French ones
- (c) equal importance being given to English and French.
- (d) the English announcements being longer than French ones.

Ans: (d) 02.

The global financial crisis in 2008 as considered 03. to be the most serious world-wide financial crisis, which started with the sub-prime landing crisis in USA in 2007. The sub-prime lending crisis led to the banking crisis in 2008 with the collapse of Lehman Brothers in 2008. The sub-prime lending refers to the provision of loans to those borrowers

who may have difficulties in repaying loans, and its arises because of excess liquidity following the East Asian crisis.

Which one of the following sequences show the correct precedence as per the given passage?

- (a) Banking crisis Sub-prime lending crisis Global financial crisis - East Asian crisis
- (b) East Asian crisis Sub-prime landing crisis - Banking crisis - Global financial crisis
- (c) Sub-prime lending crisis Global financial crisis — Banking crisis — East Asian crisis
- (d) Global financial crisis East Asian crisis Banking crisis — Sub-prime landing crisis

03. Ans: (b)

04. a,b,c are real numbers. The quadratic equation $ax^2 - bx + c = 0$ has equal roots, which is β , then

- (b) $\beta = b/a$ (a) $\beta^2 = ac$ (c) $b^2 \neq 4ac$
 - (d) $\beta^3 = bc / (2a^2)$

04. Ans: (d)

Sol: $ax^2 - bx + c = 0$ Sum of roots = $\beta + \beta = \frac{b}{a} \Rightarrow 2\beta = \frac{b}{a} - \dots - (1)$ Product of roots = $\beta * \beta = \frac{c}{a} \Rightarrow \beta^2 = \frac{c}{a} - \dots - (2)$ Now (1) × (2) \Rightarrow (2 β)(β^2) = (b/a)(c/a) $(2\beta^3) = bc/a^2$ 199 $\beta^3 = bc/(2a^2)$

05. A circle with centre O is shown in the figure. A rectangle PORS of maximum possible area is inscribed in the circle. If the radius of the circle is a, then the area of the shaded portion is .

Find shaded area

(a) $\pi a^2 - 3a^2$	(b) $\pi a^2 - 2a^2$
(c) $\pi a^2 - a^2$	(d) $\pi a^2 - \sqrt{2} a^2$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

2

		3		GATE_2020_Questions with Solutions
05.	Ans: (b)		09.	The following figure shows the data of students
Sol:	Area of shaded portion = Area of circle – Area of rectangle Area of rectangle is maximum, when it becomes square.			enrolled in 5 years (2014 t0 2018) for two schools
				P and Q. During this period, the ratio of the average
				number of the students enrolled in school P to the
				average of the difference of the number of students
				enrolled in schools P and Q is
	s a o			(spues of the second se
	Diagonal = 2a Area of square = $\frac{1}{2}$ (diagonal) ² = 2a ²			er of student
	∴ Area of shaded portion = Area of circle – Area of square	RU	VC	
	$=\pi a^2 - 2a^2$			0 2014 2015 2016 2017 2018 Year
06.	Select the word that fits the analogy:			(a) 8 : 23 (b) 31 : 23
	Explicit: Implicit:: Express:			(c) $23:8$ (d) $23:31$
	(a) Repress (b) Impress		09.	Ans: (c)
	(c) Suppress (d) compress		Sol:	Average number of students enrolled in school P
06.	Ans: (c)			in 5 years = $\frac{3000 + 5000 + 5000 + 6000 + 4000}{5}$ = 4600
07.	The untimely loss of life is a cause of seriou	s		Average number of students enrolled in school O
	global concern as thousands of people get killer	1		in 5 years = $\frac{4000 + 7000 + 8000 + 7000 + 5000}{5}$
	accidents every year while many other did	se 1	99	5 = 6200
	diseases like cardio vascular disease, cancer	;		Average of the difference of the number of students
	etc.			in school P and $Q = 6200 - 4600 = 1600$
	(a) from, of			Desired ratio = $\frac{4600}{1600} = \frac{23}{8}$
	(b) from, from			23:8
	(c) during, from			
	(d) in, of		10.	It is quarter past three in your watch. The angle
07.	Ans: (d)			between the hour hand and the minute hand is
				(a) 0° (b) 7.5°
08.	He was not only accused of theft of conspiracy	<i>r</i> .		(c) 22.5° (d) 15°
	(a) rather than		10.	Ans: (b)
	(b) rather		Sol:	Time: 03 : 15
	(c) but also			Angle between hands $\theta = \left 30h - \frac{11m}{2} \right $
	(d) but even			Here, $h = 3$ and $m = 15$
08.	Ans: (c)			So, $\theta = \left 30 \times 3 - \frac{165}{2} \right = 7.5^{\circ}$

Engineering Publications	4	Electronics & Communication Engineering
Section : Electronics & Communication Engineering	1	Circle of radius 1 with centre at (0, 0) indicates pure induction and capacitive load.
01. The current in the RL-circuit shown below is $i(t) = 10 \cos(5t - \pi/4)A$. The value of the inductor (rounded off to two decimal places) is H. R i(t) $200\cos(5t) V \bigcirc^+$	s D E R I/	 03. For a vector field A , which one of the following is FALSE ? (a) A is irrotational if ∇²A = 0 (b) ∇×(∇×A) = ∇(∇.A) - ∇²A (c) ∇×A is also another vector field (d) A is solenoidal if ∇.A = 0 03. Ans: (a) Sol: For a vector field A (a) A is irrotational (or) conservative only if ∇×A = 0 (b) ∇×(∇×A) = ∇(∇.A) - ∇²A
01. Ans: 2.828 Sol: $\overline{\nabla} = 200 \angle 0^{\circ}$ $\overline{I} = 10 \angle -45^{\circ}$ $Z = \frac{V}{I} = 20 \angle +45^{\circ}$ Z=14.14+j14.14 \downarrow X_L $X_L = \omega L = 14.14 \Rightarrow L = \frac{14.14}{\omega} = \frac{14.14}{5}$ L = 2.828H		 (d) VA(VA) V(VA) VA is used to obtain EM wave equation. (c) curl of a vector, Ä is an another vector field. (d) Ä is said to be solenoidal if ∇.Ă = 0 Therefore option (a) is FALSE 04. A 10-bit D/A converter is calibrated over the full range from 0 to 10V. If the input to the D/A converter is 13A (in hex), the output (rounded off to three decimal places) is V.
 02. The impedances Z = jX, for all X in the range (-∞, ∞), map to the Smith chart as (a) a circle of radius 1 with centre at (0, 0) (b) a point at the centre of the chart. (c) a circle of radius 0.5 with centre at (0.5, 0) (d) a line passing through the centre of the chart. 	ce 1	Sol: DAC output = Number of steps for given digital input × step size Where Number of steps for digital input $13A_{\rm H}$ is $\Rightarrow 1 \times 16^2 + 3 \times 16^1 + 10 \times 16^0 = 314$ step size $= \frac{10}{2^{10}} = \frac{10}{1024}$ Thus. DAC output
02. Ans: (a) Sol: z = +jx z = -jx x = +1 x = +1 x = -1	Bangala	$= 314 \times \frac{10}{1024} = \frac{3140}{1024} = 3.066 \text{ volts}.$ 05. The general solution of $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$ is (a) $y = C_1 e^{3x} + C_2 e^{-3x}$ (b) $y = (C_1 + C_2 x) e^{-3x}$ (c) $y = C_1 e^{3x}$ (d) $y = (C_1 + C_2 x) e^{3x}$

	ACE Engineering Publications	7		GATE_2020_Questions with Solutions
08.	Consider the recombination process via bulk	<u> </u>		By multiply equation (2) with 3, then we get
	traps in a forward biased pn homojunction diode			$-3V + 6V_{TH} = 18$ (2A)
	The maximum recombination rate is U_{max} . If the	e		By adding equation (1) with (2A), then we get
	electron and the hole capture cross-sections are	e		$5 V_{TH} = 18$
	equal, which one of the following is FALSE ?			$V_{TH} = \frac{18}{5} = 3.6V$
	(a) U_{max} depends exponentially on the applied bias	5		
	(b) U_{max} occurs at the edges of the depletion region	1	10.	The two sides of a fair coin are labelled as 0
	in the device			and 1. The coin is tossed two times independently.
	(c) With all other parameters unchanged, $\boldsymbol{U}_{_{\rm ma}}$	x		Let M and N denote the labels corresponding to the
	decreases if the intrinsic carrier density is	5		outcomes of those tosses. For a random variable X,
	reduced.		7	defined as $X = min(M,N)$, the expected value $E(X)$
	(d) With all other parameters unchanged, $\boldsymbol{U}_{_{\text{ma}}}$	x		(rounded off to two decimal places) is
	increases if the thermal velocity of the carrier	r	10.	Ans: 0.25
	increases.		Sol:	Coin tossed two times:
08.	Ans: (c)			Outcomes $X = \min(m, N)$
Sol:	Intrinsic carrier density will not affect generation	1		0 0 0
	and recombination rate. so, statement (c) is false.			0 1 0
				1 0 0
09.	In the circuit shown below, the Thevenin voltage	e		1 1 1
	$V_{\rm TH}$ is 2V 20 40			P(X = 0) = 3/4, P(X = 1) = 1/4
				$E(X) = \sum_{i} x_{i} P(X = x_{i})$
	$1 \wedge (1) \stackrel{+}{\underset{1}{\overset{1}{\overset{1}{}}}} = 10 \qquad (1) 2 \wedge \stackrel{+}{\underset{2}{\overset{1}{}}} = 20 \qquad V_{}$			$E(X) = 0 \times \frac{3}{4} + 1 \times \frac{1}{4} = 0.25$
			11.	In the given circuit, the two-port network has the
	(a) 2.8 V (b) 4.5 V	~e 1	00	impedance matrix $[Z] = \begin{bmatrix} 40 & 60 \\ 60 & 120 \end{bmatrix}$. The value of Z_{L}
00	(c) 3.6 V (d) 2.4 V			for which maximum power is transferred to the
09. Soli	Ans: (c)			load is Ω .
501:	Nodal Analysis:			10Ω I_1 I_2
	$V_{\rm H} \stackrel{2V}{\simeq} 2\Omega = V_{\rm TH} \stackrel{4\Omega}{\simeq}$			
				$\begin{array}{c c} 120 \ \lor \begin{array}{c} \bullet \\ \hline \\$
	$1A(\uparrow) \leq 1\Omega$ $(\uparrow) 2A \leq 2\Omega$ V_{TH}			
			11.	Ans: 48
		\$	Sol:	$V_1 = 40I_1 + 60I_2$ (1)
	$\mathbf{X} = \begin{pmatrix} \mathbf{V} - \mathbf{V} + 2 \end{pmatrix}$			$V_2 = 60I_1 + 120I_2$ (2)
	$-1 + \frac{V_1}{1} + \frac{(V_1 - V_{\text{TH}} + 2)}{2} = 0$			S-I $Z_{\rm L} = \frac{V_2}{I_2}$
	$3V_1 - V_{TH} = 0$ (1)			10Ω I_1 I_2
	$V_{\rm TH} = (V_{\rm TH} - V_{\rm l} - 2)$			
	$\frac{1}{2} - 2 + \frac{1}{2} = 0$			
	$-V_1 + 2V_{TH} = 6$ (2)			$Z_{L} = \frac{V_{2}}{I_{2}}$
ACE E	ngineering Publications Hyderabad + Delhi + Pune + Bhubaneswar +	Bengalui	ru + I	Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE Engineering Publications

also, 10 I₁ + V₁ = 0____(3) (3) in (1) -10I₁ = 40 I₁ + 60I₂ -50I₁ = 60 I₂ \rightarrow I₁ = $-\frac{6}{5}$ I₂____(4) (4) in (2) V₂ = $60\left[\frac{-6}{5}\right]$ I₂ + 120I₂ V₂ = -72 I₂ + 120I₂ V₂ = 48I₂ \Rightarrow Z_L = $\frac{V_2}{I_2}$ = 48Ω

12. In the circuit shown below, all the components are ideal. If V_i is +2V, the current I_0 sourced by the opamp is _____ mA.

12. Ans: 6 Sol:

Given op-amp is in non-inverting mode, then output

$$\mathbf{V}_{o} = \left(1 + \frac{\mathbf{R}_{f}}{\mathbf{R}_{i}}\right) \mathbf{V}_{in} = \left(1 + \frac{1k}{1k}\right) + 2\mathbf{V} = 4\mathbf{V}$$

KCL at node V_o $\frac{V_o - V_i}{1k} + \frac{V_o}{1k} - I_o = 0$

$$I_{o} = \frac{4-2}{1k} + \frac{4}{1k}$$
$$I_{o} = 6mA$$

Electronics & Communication Engineering A transmission line of length $3\lambda/4$ and having a 13. characteristic impedance of 50Ω is terminated with a load of 400Ω . The impedance (rounded off to two decimal places) seen at the input end of the transmission line is Ω Ans: 6.25 13. Sol: Given: Length of transmission line: $\ell = \frac{3\lambda}{4}$ $Z_o = 50\Omega$ $Z_R = 400\Omega$ As length of the transmission line is $\frac{3\lambda}{4}$ As length of the transmission line is (odd multiples of quarter wavelengths like $\frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}$) and hence this line must be a quarter wave transmission line. Assume this quarter wave transmission line is lossless then $Z_{in} = \frac{Z_o^2}{Z_p}$ $= 6.25\Omega$ The random variable 14. $Y = \int W(t)\phi(t)dt,$ where $\phi(t) = \begin{cases} 1; 5 \le t \le 7\\ 0; \text{ otherwise} \end{cases}$ and W(t) is a real white Gaussian noise process with two-sided power spectral density $S_w(f) = 3$ 199 W/Hz, for all f. The variance of Y is 14. Ans: 6 **Sol:** $Y = \int_{-\infty}^{\infty} W(t)\phi(t)dt$ Let $\phi(t) = h(-(t-\tau)) \Rightarrow$ where τ is the symbol duration $Y = \int^{\infty} W(t) h(-(t-\tau)) dt \text{ Let } t = \tau \Longrightarrow dt = d\tau$ $Y = \int^{\infty} W(\tau) h(\tau - t) d\tau$

$$\begin{split} &Y(t) = W(t) * h(t) \\ &\Rightarrow S_{Y}(f) = |H(f)|^{2} s_{W}(f) \\ &\sigma_{Y}^{2} = E[Y^{2}] - E[Y]^{2} \\ &E[Y^{2}] = \int_{-\infty}^{\infty} S_{Y}(f) df = \int_{-\infty}^{\infty} |H(f)|^{2} s_{W}(f) df \\ &E[Y] = E\left[\int_{-\infty}^{\infty} W(t) \phi(t)\right] dt \end{split}$$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

8

		_
Ś		
	$= E\left[\int_{-\infty}^{\infty} E[W(t)]\phi(t)dt\right]$	
	= 0	
	$S_{W}(f) = \frac{N_0}{2}$	
	$=\frac{N_0}{2}\int_{-\infty}^{\infty} H(f) ^2df$	
	$= \frac{N_0}{2} \int_{-\infty}^{\infty} \phi(f) ^2 df \Big(\because \phi(t) = h(-(t-\tau)) \Big)$	
	$ \phi(\mathbf{f}) ^2 = \mathbf{H}(\mathbf{f}) ^2$	
	$=\frac{N_0}{2}\int_{-\infty}^{\infty} \phi(t) ^2 dt (\text{from the rayleigh's energy theorem})$)
	$=\left(\frac{N_0}{2}\right)E_{\phi}$	
	$= 3 \times 2(:: E_{\phi} = 2)$	
	=6	
15	If $y = y$, are six vectors in \mathbb{R}^4 , which one of	f

- 15. If v_1, v_2, \dots, v_6 are six vectors in R⁴, which one of the following statements is FALSE ?
 - (a) These vectors are not linearly independent
 - (b) Any four of these vectors form a basis for \mathbb{R}^4
 - (c) It is not necessary that these vectors span $R^4\,$
 - (d) If $\{v_1, v_3, v_5, v_6\}$ spans R^4 , then it forms a basis for R^4

15. Ans: (d)

- **Sol:** option (d) is a wrong statement.
 - if $\{v_1, v_3, v_5, v_6\}$ spans R⁴ then it may (or) may not be a basis for R⁴.

i.e. To form a basis, the set $\{v_1, v_3, v_5, v_6\}$ should be linearly independent set.

16. A binary random variable X takes the value +2 or -2. The probability $P(X = +2) = \alpha$. The value of α (rounded off to one decimal place), for which the entropy of X is maximum, is _____

Entropy will be maximum when the probabilities are equal i.e P(X = +2) = 1/2 = 0.5

GATE_2020_Questions with Solutions

17. A single crystal intrinsic semiconductor is at a temperature of 300K with effective density of states for holes twice that of electrons. The thermal voltage is 26mV. The intrinsic Fermi level is shifted from mid-bandgap energy level by

17. Ans: (d)

9

Sol:
$$T = 300K, N_v = 2 N_c V_T = 26mV$$

$$E_{\rm F} = \frac{E_{\rm c} + E_{\rm v}}{2} - \frac{KT}{2} \ln\left(\frac{N_{\rm c}}{N_{\rm v}}\right)$$

if $N_c \equiv N_v$ then $E_{Fi} \equiv \frac{E_c + E_v}{2} \Rightarrow$ Midband gap energy Given $N_v \equiv 2N_c$ $E_F \equiv E_{Fi} - \frac{KT}{2} \ln\left(\frac{N_c}{2N_c}\right)$ $= E_{Fi} - \frac{KT}{2} \ln\left(\frac{1}{2}\right)$

$$= E_{Fi} - \frac{0.026}{2} \ln\left(\frac{1}{2}\right)$$
$$= E_{Fi} + 9.01 \times 10^{-3}$$
$$= 9.01 \text{ meV}$$

18. The figure below shows a multiplexer where S_1 and S_0 are the select lines, I_0 to I_3 are the input data lines, EN is the enable line, and F(P, Q, R) is the output F is

	ACE Engineering Publications	11	GATE_2020_Questions with Solutions
18. Sol:	Ans: (a) As $EN = 0 \rightarrow$ The multiplexer is Enabled. The output $F = \overline{S}_1 \overline{S}_0 I_0 + \overline{S}_1 S_0 I_1 + S_1 \overline{S}_0 I_2 + S_1 S_0 I_3$ $F = \overline{P} \overline{Q}.R + \overline{P}.Q.0 + P.\overline{Q}.R + P.Q.1$ $= \overline{Q}R + PQ$.		$f_x = \frac{\partial f}{\partial x} = e^{1 - x\cos y} (-\cos y) + z \cdot e^{\frac{-1}{1 + y^2}}$ $\therefore (f_x)_{(1,0,e)} = e^{1-1} (-\cos 0) + (e) \cdot e^{\frac{-1}{1+0}} = -1 + 1 = 0$ Hence, option (b) is correct 21. A digital communication system transmits a block
19.	The loop transfer function of a negative feedback system is $G(s)H(s) = \frac{K(s+11)}{s(s+2)(s+8)}.$ The value of K, for which the system is marginally stable, is	ζ	of N bits. The probability of error in decoding a bit is α . The error event of each bit is independent of the error events of the other bits. The received block is declared erroneous if at least one of its bits is decoded wrongly. The probability that the received block is erroneous is (a) $1 - \alpha^N$ (b) $1 - (1-\alpha)^N$
19. Sol:	Ans:160 $G(s)H(s) = \frac{K(s+11)}{s(s+2)(s+8)}$ Characteristic equation: 1 + G(s)H(s) = 0 : s(s+2) (s+8) + K(s+11) = 0 : s^3 + 10s^2 + 16s + Ks + 11K = 0 : s^3 + 10s^2 + (16+K) s+ 11K = 0 $\frac{10}{11K}$ $S^{1} = \frac{10(16 + K) - 11K}{10}$ Since		(a) $1 - \alpha$ (b) $1 - (1 - \alpha)$ (c) α^{N} (d) $N(1 - \alpha)$ 21. Ans: (b) Sol: 1 2 3 N P(1 bit error) = α , P(1 bit correct) = $1 - \alpha$ P(N bit error) = α^{N} , P(N bit correct) = $(1 - \alpha)^{N}$ (N bits are independent) The received block declared erroneous if atleast one of bits decoding wrongly (i.e correct) probability means all bits should be correct) P(received block is erroneous) = $1 - (1 - \alpha)^{N}$ = $1 - P$ (all bits correct) 995 = P (any one bit or more error)
	For marginal stability, $\left(\frac{10(K+16)-11K}{10}\right) = 0$ $10K + 160 - 11K = 0$ $K = 160$	C	22. The components in the circuit shown below are ideal. If the op-amp is in positive feedback and the input voltage V_i is a sine wave of amplitude 1 V, the output voltage V_0 is $\frac{1k\Omega}{1}$
20.	The partial derivative of the function $f(x,y,z) = e^{1-x\cos y} + xze^{-\frac{1}{(1+y^2)}}$ with respect to x at the point (1, 0, e) is Options (a) 1 (b) 0 (c) $\frac{1}{2}$ (d) -1		$1V \xrightarrow{+5V} \\ -1V \xrightarrow{+5V} \\ \downarrow $
20. Sol:	Ans: (b) Given $f(x,y,z) = e^{1-x\cos y} + xze^{\frac{-1}{1+y^2}}$ and $(x, y, z) = (1, 0, e)$		 (a) a square wave of 5V amplitude. (b) an inverted sine wave of 1V amplitude. (c) a constant of either +5 V or -5V. (d) a non-inverted sine wave of 2V amplitude.
ACE E	ngineering Publications Hyderabad + Delhi + Pune + Bhubaneswar +	Bengalu	u) a non-mverteu Sine wave of 2 v amphtude. ru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$= \frac{z^3 - z^2 + z - 1}{z^3} = \frac{(z - 1)(z^2 + 1)}{z^3}$$

one zero at z = 1 & 2 zeros at $z = \pm j$ 3poles at z = 0From the given pole-zero plot answer will be option (c)

24. In the circuit shown below, all the components are ideal and the input voltage is sinusoidal. The magnitude of the steady-state output V_0 (rounded off to two decimal places) is V.

$$\begin{array}{c} C_1=0.1\mu F & D_2 \\ \downarrow & \downarrow & \downarrow \\ 230 \text{ V(rms)} & \downarrow & D_1 & \downarrow \\ \downarrow & - & \downarrow \\ \downarrow & - & \downarrow \\ \downarrow & - & \downarrow \\ \hline \end{array}$$

24. Ans: 650.54

Sol: $V_{in_{max}} = 230 \times \sqrt{2} = V_m$ During negative cycle C_1 charges [D₁ forward biased]

KVL,
$$-V_m + V_{C1} = 0$$

 $V_{C1} = V_m$

During positive cycle D₂ forward biased

In an 8085 microprocessor, the number of address lines required to access a 16K byte memory bank is _____.

25. Ans: 14

Sol: In 8085 microprocessor, the number of address lines required to a access a 16KB memory bank is $2^n \ge 16KB \Longrightarrow 2^n \ge 2^{14} \times 8$

The number of adder lines required are n = 14.

26. For the components in sequential circuit shown below, t_{pd} is the propagation delay, t_{setup} is the setup time, and t_{hold} is the hold time. The maximum clock frequency (rounded off to the nearest integer), at which given circuit can operate reliably is ______ MHz.

26. Ans: 76.92

Sol: In any sequential circuit, the condition for proper operation is

 $Clock period (T) \ge t_{pd} + t_{comb \ logic} + t_{setup}$

Thus,

For Flipflop $1 \Rightarrow T \ge 8 + 5 \Rightarrow T \ge 13$ ns

For Flipflop $2 \Rightarrow T \ge 3 + 2 + 2 + 4 \Rightarrow T \ge 11$ ns

Thus $T \ge 13$ ns

 \Rightarrow frequency of operation $f \le \frac{1}{13 \times 10^{-9}}$

 $f_{max} = 0.07692 \times 10^9$ $f_{max} = 76.92$ MHz.

<image/> <text><text><text></text></text></text>	Image: Sector
HYDERABAD Streams: EC, EE, ME, CE, CSIT, IN & PI 28 th April, 5 th May, 10 th May, 17 th May, 25 th May, 1 st June, 8 th June, 2020 Course Duration: 55 to 60 Days 9 040-23234418/19/20, 040-24750437 Hyderabad@aceenggacademy.com	© DELHI Streams: EC, EE, ME, CE, IN & PI 10 th & 20 th May 2020 Course Duration: 60 to 70 Days ♥ 7838971777 (Call or Whatsapp) M delhi@aceenggacademy.com
Early Bird Offer Rs. 3,000/- R	egister before 31 st March 2020
New Batches @ HYDERABAD	New Batches @ DELH
GATE+PSUs-2021Spark Batches: 10 th May, 8 th & 23 rd June 2020.Regular Batches: 26 th April, 10 th , 24 th May, 8 th , 23 rd June, 7 th , 22 nd July, 5 th & 20 th August 2020.ESE+GATE+PSUs-2021Spark Batches: 10 th May, 8 th & 23 rd June 2020.Regular Batches: 29 th March, 26 th April, 10 th , 24 th May, 8 th , 23 rd June & 7 th July 2020.	GATE+PSUs-2021 Regular Batches : 21" March, 10" & 20" May 2020. ESE+GATE+PSUs-2021 Regular Batches : 21" March, 10" & 20" May 2020. New Batches @ PUNE GATE+PSUs-2021 Regular Batches : 1" & 15" June, 6" July 2020. ESE+GATE+PSUs-2021 Regular Batches : 1" & 15" June, 6" July 2020. ESE+GATE+PSUs-2021 Regular Batches : 1" & 15" June, 6" July 2020.
SSC-JE Batches for Civil, Mechanical & Electrical Starts from (@ Hyderabad : 10 th May (@ Pune : 15 th June (@ Kolkata : 20 th June	Scan QR Code for Upcoming Batches Details
● www.aceenggacademy.com	follow us on: 🕞 🕣 🎯 🎯

Engineering Publications	16		Electronics & Communication Engineering
Current sources \rightarrow Links			(c) (-3, -2) (d) (-1, 0)
		31.	(u) (-1, 0) Ans: (d)
$\begin{pmatrix} & & \\ & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $		Sol:	Characteristic Equation:
$V_{2\Omega}$ – $i_{1\Omega}$ i_2			$s^3 + 3s^2 + (K+2)s + 3K = 0$
			$s^3 + 3s^2 + 2s + Ks + 3K = 0$
Dy KCI			$s(s^2 + 3s + 2) + K(s + 3) = 0$
By KCL, $i \pm i = C \frac{dV_c}{dV_c} \pm i$ (1)			$G(s)H(s) = \frac{K(s+3)}{s(s+1)(s+2)}$
$I_{L} + I_{Z} = C - \frac{1}{dt} + I_{10} - (1)$ By KVL,			
$-V_{2\Omega} + L \frac{di_{L}}{dt} + V_{C} = 0$ (2)			
Now, voltage across 2Ω , current theory 1Ω	ERI	NG	
$i_1 = \frac{\mathbf{v}_{2\Omega}}{2} + i_L \qquad \Rightarrow \mathbf{V}_{2\Omega} = 2[i_1 - i_L] $ (3)			$\begin{array}{c c} K = \infty \\ \hline \\ K = 0 \\ \hline \\ Re \\ K = 0 \\ \hline \\ Re \\ Re \\ \hline \\ Re \\ Re \\ Re \\ Re \\$
$1. i_{1\Omega} - V_{C} = 0 \Longrightarrow i_{1\Omega} = V_{C} $ (4)			
$\mathbf{i}_{\mathrm{L}} + \mathbf{i}_{2} = \frac{1}{4} \left[\frac{\mathrm{d} \mathbf{V}_{\mathrm{C}}}{\mathrm{d} t} \right] + \mathbf{V}_{\mathrm{C}}$			
$-[2(i_1 - i_L)] + \frac{1}{2}\frac{di_L}{dt} + V_C = 0$			Break point exist between (-1, 0)
$1 \mathrm{dV}_{\mathrm{c}}$			
$\frac{1}{4} \frac{1}{dt} = -V_{\rm C} + i_{\rm L} + i_{\rm 2}$		32	In a digital communication system a symbol
$\frac{1}{2}\frac{di_{L}}{dt} = -V_{C} - 2i_{L} + 2i_{1}$		52.	S randomly chosen from the set $\{s_1, s_2, s_3, s_4\}$ is
$dV_c = -4V + 4i + 4i$		100	transmitted. It is given that $s_1 = -3$, $s_2 = -1$, $s_3 =$
$\frac{dt}{dt} = -4 v_{c} + 4I_{L} + 4I_{2}$	Ce	177:	+1 and $s_4 = +2$. The received symbol is $Y = S + W$.
$\frac{d \mathbf{u}_{\rm L}}{d t} = -2 \mathbf{V}_{\rm C} - 4 \mathbf{i}_{\rm L} + 4 \mathbf{i}_{\rm I}$			W is a zero-mean unit-variance Gaussian random
$\left[\frac{\mathrm{d}V_{\mathrm{c}}}{\mathrm{d}t}\right] \begin{bmatrix} -4 & 4 \end{bmatrix} \begin{bmatrix} V_{\mathrm{c}} \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$			probability of symbol error for the maximum
$\begin{bmatrix} \frac{di}{dt} \\ \frac{di_{\rm L}}{dt} \end{bmatrix} = \begin{bmatrix} -2 & -4 \end{bmatrix} \begin{bmatrix} -6 \\ i_{\rm L} \end{bmatrix} + \begin{bmatrix} 6 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ i_{\rm L} \end{bmatrix}$			likelihood (ML) decoding when the transmitted
լայ			symbol $S = s_i$. The index i for which the condional
			symbol error probability P ₁ is the highest is

31. The characteristic equation of a system is s³ + 3s² + (K + 2)s + 3K = 0.
In the root locus plot for the given system, as K varies from 0 to ∞, the break-away or break-in point(s) lie within

(a)
$$(-2, -1)$$

(b) $(-\infty, -3)$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

32. Ans: 3

Y = S + W

Sol: $S_1 = -3, S_2 = -1, S_3 = +1, S_4 = +2$

W = N(0, 1) = $\frac{1}{\sqrt{2\pi}} e^{-\omega^2/2}$

 $f_{s_1}(s_1) \Rightarrow -3 + W = S_1$

Since all symmbols are equally likely, decision boundaries are mid points.

i.e., for S_1 , decision boundary -2 V i.e., anything Since below -2 V considered as S_1 .

For S_2 decision boundaries are -2 & 0V, i.e., any thing -2V to 0V considered as S₂.

For S_3 decision boundaries are 0V & 1.5V.

For S_4 decision boundaries is 1.5V i.e., 1.5V to ∞ considered as S_4 .

P(Correct symbol receiveing is less for S₃ only therefore S₃ has highest conditional symbol error probability).

33. In the voltage regulator shown below, V_1 is the unregulated input at 15V. Assume $V_{BE} = 0.7V$ and the base current is negligible for both the BJTs. If the regulated output V_0 is 9V, the value of R_2 is Ω.

33. Ans: 800

17

Sol: $V_{R2} = 0.7 + 3.3 = 4V$ $V_0 = IR_1 + IR_2$ $9 = I(R_1 + R_2)$ [Given V₂ = 9V] Neglect base current $9 = \frac{4}{R_2} (1k + R_2)$ $R_{2} = 800\Omega$ ۰V₀ $I \ge R_1 = 1k$

The state diagram of a sequence detector is shown 34. below. State S₀ is the initial state of sequence detector. If the output is 1, then

- (a) the sequence 01011 is detected.
- (b) the sequence 01001 is detected.
- (c) the sequence 01010 is detected.
- (d) the sequence 01110 is detected.

		19	GATE_2020_Questions with Solutions
34.	Ans: (c)		short circuited at signal frequencies. The input v _i
Sol:	Given S_0 is initial state		is direct coupled. The low frequency voltage gain
	For output to be 1, the sequence of states traversed	d	$v_o^{\prime}/v_i^{\prime}$ of the amplifier is
	are		$V_{cc} = 10V$
	$S_0, S_1, S_2, S_3, S_4, S_3$		$\begin{cases} 1 \ R_c \\ 10 \ k\Omega \end{cases}$
	1.e., input is $\rightarrow 0 \ 1 \ 0 \ 1 \ 0$		
35.	A system with transfer function $G(s) = \frac{1}{(s+1)(s+a)}$,	$v_i \bigotimes R_{E} = C_{E}$
	a > 0 is subjected to an input 5cos3t. The steady	у	$ \begin{array}{c} \downarrow 20 k \Omega \\ \downarrow \\ \downarrow$
	state output of the system is $\frac{1}{\sqrt{10}}\cos(3t-1.892)$		$V_{EE} = -10V$
	The value of a is		
35.	Ans: 4		(a) -89.42 (b) -256.42
Sol:	$G(s) = \frac{1}{(s+1)(s+a)}a = 0$	ERI	$N_{\rm C}$ (c) - 178.85 (d) - 128.21
	$x(t) = 5 \cos 3t$		ACA
	$y_{ss}(t) = \frac{1}{\sqrt{10}} \cos(3t - 1.892)$		36. Ans: (a) Sol: DC Analysis:
	$\mathbf{x}(t) = \mathbf{A}\cos(\omega_0 t + \theta)$		$I = \frac{-0.7 - (-10V)}{10V}$
	$\mathbf{H}(\mathbf{s}) _{\mathbf{s}=\mathbf{j}\omega_{0}}= \mathbf{H}(\omega_{0}) \angle\mathbf{H}(\omega_{0})$		$P_{\rm E} = 20k$ $R_{\rm C} \ge 10k\Omega$
	$\mathbf{y}_{ss}(\mathbf{t}) = \mathbf{A} \mathbf{H}(\boldsymbol{\omega}_0) \cos(\boldsymbol{\omega}_0 \mathbf{t} + \boldsymbol{\theta} + \angle \mathbf{H}(\boldsymbol{\omega}_0))$		$= \frac{1}{20V} = 0.465 \text{mA} = I_{C_{\text{DC}}}$
			$g_{\rm m} = \frac{-C_{\rm DC}}{V_{\rm t}} = 0.0178$
	$5\cos 3t$ $G(s) = \frac{1}{(1-s)(1-s)}$		$=$ $\geq 20k\Omega$
	(s+1)(s+a)		$I_E \downarrow \square R_E$
	$A = 5 \omega_0 = 3$		-10V
	$G(s) _{s=j_3} = \frac{1}{(j_3+1)(j_3+a)}$		1005
	c(i2) = 1		AC Analysis:
	$ G(J3) = \frac{1}{\sqrt{a^2 + 9}\sqrt{1 + 9}}$		
	From the above expression		$\bigvee_{be} \bigvee_{g_m} v_{be} \Leftrightarrow R_c \Leftrightarrow R_L$
	$A[G(w)] = \frac{1}{1}$		
	$A[\mathbf{G}(\omega_0)] = \sqrt{10}$		-
	$\frac{5}{\sqrt{10}\sqrt{a^2+9}} = \frac{1}{\sqrt{10}} \Rightarrow 5\sqrt{a^2+9}$		$V_{o} = -g_{m} (R_{c} R_{L}) V_{be}$
	$25 - a^2 + 9$		$V_i = V_{be}$
	a=4		$\mathbf{V} = -\mathbf{\sigma} \left(\mathbf{R}_{c} \mathbf{R}_{t} \right) \mathbf{V}$
			$\frac{V_{o}}{V_{i}} = \frac{S_{m}(-C_{i}) + V_{be}}{V_{be}} = -g_{m}(R_{c} R_{L})$
36.	For the BJT in the amplifier shown below	Ζ,	= -0.0178(10k 10k)
	$V_{BE} = 0.7V, kT/q = 26 \text{ mV}.$ Assume that BJT output	ıt	= -0.0178(5k)
	resistance (r_0) is very high and the base current i	s	= -89.423
	negligible. The capacitors are also assumed to be	e	

	Ű.	ACE
--	----	-----

39. Ans: (2.25)

Sol: From the figures, the limits of te integral are given by

 $\lim_{x \to 0} \operatorname{to} x = 3$

$$\left[z = 0 \text{ to } z = 1 - y \right]$$

$$I = \int_{x=0}^{3} \left[\int_{y=0}^{1} \left\{ \int_{z=0}^{1-y} x dz \right\} dy \right] dx$$

$$= \int_{x=0}^{3} \left[\int_{y=0}^{1} x (z)_{0}^{1-y} dy \right] dx$$

$$= \int_{x=0}^{3} \left[\int_{y=0}^{1} x (1-y) dy \right] dx$$

$$= \left(\frac{x^{2}}{2} \right)_{0}^{3} \cdot \left(y - \frac{y^{2}}{2} \right)_{0}^{1}$$

$$= \frac{9}{4} = 2.25$$

$$z = 1$$

$$z = 1 - y$$

$$z = 1 - y$$

$$z + y = 1$$

$$y = 0$$

$$y = 1$$

$$z = 0$$

 $S_{PM}(t)$ and $S_{FM}(t)$ as defined below, are the phase modulated and the frequency modulated waveforms, respectively, corresponding to the message signal m(t) shown in the figure. $S_{\rm PM}(t) = \cos(1000\pi t + K_{\rm p}m(t))$

and $S_{FM}(t) = \cos\left(1000\pi t + K_f \int_{-\infty}^{t} m(\tau) d\tau\right)$ where K_p is the phase deviation constant in radians/volt and K_f is the frequency deviation constant in radians/second/volt. If the highest instantaneous frequencies of $S_{PM}(t)_{T}$ and $S_{FM}(t)$

are same, then the value of the ratio $\frac{K_p}{K_f}$ is _____ seconds.

21

40.

40. Ans:2 **Sol:** highest instantaneous frequencies are same. -f ia f

i.e.,
$$f_{i, \max, PM} = f_{i, \max, FM}$$

 $f_{c} + \frac{K_{p}}{2\pi} \frac{dm(t)}{dt} \Big|_{max} = f_{c} + \frac{K_{f}}{2\pi} m(t) \Big|_{max}$
 $K_{p} \frac{dm(t)}{dt} \Big|_{max} = K_{f} m(t) \Big|_{max}$
 $m(t)$

-10

 $\frac{K_{\rm p}}{K_{\rm f}} = \frac{10}{5} = 2 \, \text{sec}$

 $K_{p} \cdot 5 = K_{f} \cdot 10$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since 1995

HYDERABAD || AHMEDABAD | DELHI | PUNE | BHUBANESWAR | LUCKNOW | KOLKATA | VIJAYAWADA | VIZAG | TIRUPATI | CHENNAI | BENGALURU

@ HYDERABAD

ESE+GATE+PSUs-2021

Regular & Spark Batches

Early Bird Discount Available Get Rs.3,000/- Off

Register before 31st March 2020

for more info please visit: www.aceenggacademy.com

Ő		24		Electronics &	& Communication Engineering
44.	Consider the following closed loop control system	1		(a) λ	(b) 0.25λ
	+ ~			(c) 0.75λ	(d) 0.5λ
R($S \longrightarrow C(S) \longrightarrow G(S) \longrightarrow Y(S)$) .	45.	Ans: (a)	
			Sol:	Consider an infinit	esimal electric dipole
				$(d\ell \lambda)$, which is	s vertically placed at height 'h'
	where $G(s) = \frac{1}{s(s+1)}$ and $C(s) = K \frac{s+1}{s(s+3)}$.			above an infinite g	rounded conductor.
	If the steady state error for a unit ramp input is 0.1 .			The resultant electric	ric field intensity is given by
	then the value of K is			$E_{\theta} = \frac{j\eta I_{o}\beta d\ell \sin\theta}{4\pi r}$	$e^{-j\beta r} 2\cos(\beta h\cos\theta); z \ge 0$
44.	Ans: 30			= 0	; z < 0
Sol: R(s) $\xrightarrow{+}$ $C(s)$ $G(s)$ $Y(s)$)		(or) $E_{\theta} = \frac{j\eta I_{o}kd\ell\sin\theta}{4\pi r}$	$e^{-jkr} 2\cos(kh\cos\theta); z \ge 0$
	INE.		VC		; z < 0
	k(s+1)			where k (or) β is p	hase shift constant (or) wave
	$C(s)G(s) = \frac{K(s+1)}{s(s+1)(s+3)} = \frac{K}{s(s+3)}$			number.	
	e (ramp) = $\frac{1}{1}$ = 0.1			$\beta(or)k = \frac{2\pi}{\lambda}$	
	k_{v}			Given $\theta_{max} = 60^{\circ}$	
	$k_v = \lim_{s \to 0} S(s)G(s) = \lim_{s \to 0} S(s) = \frac{K}{S(s+3)} = \frac{K}{3}$			Field will have ma	xima,
	$e = \frac{1}{1} = \frac{3}{1} = 0.1$			when $ \cos(kh\cos\theta_m) $	$ _{\max} =1$
	k = 30			\Rightarrow khcos $\theta_{max} = \pi$	
				$\frac{2\pi}{\lambda} h\cos 60^\circ = \pi$	
45.	For an infinitesimally small dipole in free			$\frac{2\pi}{\lambda}$.h. $\frac{1}{2} = \pi$	
	space, the electric field E_{θ} in the far field is $\left(e^{-jkr}\right)$, 2π	ce 1	99	5: $h = \lambda$	
	proportional to $\left(\frac{\sigma}{r}\right)\sin\theta$, where $k = \frac{2\pi}{\lambda}$			(or)	
	A vertical infinitesimally small electric dipole	3		$\partial E_{\theta} = 0$	
	$(\delta I << \lambda)$ is placed at a distance h(h > 0) above an infinite ideal conducting plane, as shown in forms	1		$\partial h = 0$	
	The minimum value of 'h' for which one of the	• •		$let \frac{J\eta \kappa \Gamma_0 dte^{-r} \sin t}{4\pi r}$	P = P
	maxima in the far field radiation pattern occurs a	t		$\frac{\partial}{\partial t}$ {2P cos(kh cos)	$(\theta_{mm}) = 0$
	$\theta = 60^\circ$ is			$\partial_h (21000)$	$(\max) = 0$
	Z ♠				$\cos\theta_{\rm max} = 0$
				$\sin(\mathrm{khcos}\theta_{\mathrm{max}}) = 0$	
				$kh\cos\theta_{max} = n\pi$	
	h A			assume n = 1 kh cos60 = π	
	у			$\frac{2\pi}{2\pi} \times h \frac{1}{2\pi} = \pi$	
	0			$\lambda = \frac{1}{2} \lambda$ $\cdot \mathbf{h} = \lambda$	
	Infinite conduction plate			•••••	

Ð	ACE Engineering Publications	27		GATE_2020_Questions with Solutions
48. Sol:	(c) Only X(4) is non-zero (d) All X(k) are non-zero Ans: (a) $x(t) = cos(200\pi t)$ $x(t) = \frac{Samples}{t = \frac{n}{400}} x(n)$		19.	The transfer function of a stable discrete time LTI system is $H(z) = \frac{K(z-\alpha)}{(z+0.5)}$, where K and α are real numbers. The value of α (rounded off to one decimal place) with $ \alpha > 1$, for which the magnitude response of the system is constant over all frequencies is
	$x(nT_{s}) = \cos\left(\frac{200\pi n}{400}\right) \Rightarrow x(n) = \cos\left(\frac{\pi n}{2}\right)$ $x(n) = \{1, 0, -1, 0, 1, 0, -1, 0\}$ $X(k) = \sum_{n=1}^{N-1} x(n) W_{n}^{kn}$	2	49. Sol:	Ans: -2 $H(z) = \frac{K(z-\alpha)}{z+0.5}, \alpha = 1$
	$= \sum_{n=0}^{7} x(n) e^{-j\frac{\pi kn}{4}}$ $X(4) = \sum_{n=0}^{7} x(n) e^{-j\pi n} = \sum_{n=0}^{7} x(n) (-1)^{n}$	RI	VG	 H(e^{iω}) = 1 ∀ ω For an all pass filter poles & zeros are reciprocal to each other. To get constant magnitude for all frequency pole
	X(4) = 1 - 1 + 1 - 1 = 0 $X(2) = \sum_{n=0}^{7} x(n) e^{-j\frac{\pi n}{2}} = 1 + 1 + 1 + 1 = 4$ As X(k) = X*(N - K)			located at $z = -0.5$ \therefore zero is located at $= \frac{1}{-0.5} = -2$ $H(z) = \frac{k(z+2)}{z+0.5}$
	$X(2) = X^*(8-2) = X^*(6)$ Only X(2) & (6) are non zero. (or) when we look at x(n), it contains only even samples. If we assume z(n) = {1-1, 1-1}	1	50.	The base of an npn BJT T1 has a linear doping profile $N_B(x)$ as shown below. The base of another non BJT T2 has a uniform doping N_B of 10^{17} cm ⁻³ .
	$Z(\mathbf{k}) = \begin{bmatrix} Z(0) \\ Z(1) \\ Z(2) \\ Z(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 0 \end{bmatrix}$ Since	ce 1	99	All other parameters are identical for both the devices. Assuming that the hole density profile is the same as that of doping, the common-emitter current gain of T2 is
	We know zero interpolation in time domain corresponds to replication of DFT spectrum $\mathbf{x}(n) = \mathbf{z}\left(\frac{n}{2}\right) \xleftarrow{\text{DFT}} \mathbf{X}(k) = \{\mathbf{Z}(k), \mathbf{Z}(k)\}$ $= \{0, 0, 4, 0, 0, 0, 4, 0\}$ (or)	1		$N_{\rm B}({\rm x})$
	$\cos\left(\frac{2\pi}{N}k_{0}n\right) \leftrightarrow \frac{N}{2}\left[\delta(k-k_{0})+\delta(k+k_{0})\right]$ $\cos\left(\frac{n\pi}{2}\right) = \cos\left(\frac{2\pi}{8}2n\right) \leftrightarrow \frac{8}{2}\left[\delta(k-2)+\delta(k+2)\right]$			(a) approximately 0.3 times that of T1. (b) approximately 0.7 times that of T1. (c) approximately 0.7 times that of T1.

So, non zero samples are -2, 2. From periodicity property non zero samples are -2+8, 2 = 6,2.

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

(d) approximately 2.5 times that of T1.

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

- 53. P, Q, and R are the decimal integers corresponding to the 4-bit binary number 1100 considered in signed magnitude, 1's complement and 2's complement representations, respectively. The 6-bit 2's complement representation of (P+Q+R) is
 - (a) 111101
 - (b) 110101
 - (c) 110010
 - (d) 111001
- 53. Ans: (b)
- Sol: P = The decimal value of sign magnitude no 1100 = -4
 - Q = The decimal value of 1's complement no 1100 = -3
 - R = The decimal value of 1's complement no 1100 = -4

Thus P+Q+R = (-4) + (-3) + (-4)

P+O+R = -11

- = 2's complement of +11
 - = 2's complement of 001011
 - = 110101

Thus P+Q+R in 6-bit 2's complement representation is 110101.

54. The band diagram of a p-type semiconductor with a band-gap of 1 eV is shown, using this semiconductor, a MOS capacitor having V_{TH} of -0.16 V, C'_{ox} of 100 nF/cm² and a metal work function of 3.87 eV is fabricated. There is no charge within the oxide. If the voltage across the capacitor is V_{TH} , the magnitude of depletion charge PC per unit area (in C/cm²) is

۶Ó		30	Electronics & Communication Engineering		
55. 55. Sol:	$\begin{split} \phi_{t} &= 2 \ \phi_{F}, \phi_{F} = 0.3V \\ \phi_{t} &= 2 \times 0.3 = 0.6V \\ &-0.16 - (-0.93) = \frac{ Q_{dinv} }{100n} + 0.6 \\ Q_{dinv} &= 0.17 \times 100 \times 10^{-9} = 17 \times 10^{-9} \\ &= 1.7 \times 10^{-8}C/cm^{2} \\ \text{Consider the following system of linear equation.} \\ x_{1} + 2x_{2} &= b_{1} \ ; 2x_{1} + 4x_{2} &= b_{2} \ ; 3x_{1} + 7x_{2} &= b_{3} \ ; \\ 3x_{1} + 9x_{2} &= b_{4} \\ \text{Which one of the following conditions ensures that a solution exists for the above system?} \\ (a) b_{2} &= 2b_{1} \ and \ 3b_{1} - 6b_{3} + b_{4} &= 0 \\ (b) b_{3} &= 2b_{1} \ and \ 3b_{1} - 6b_{3} + b_{4} &= 0 \\ (c) b_{3} &= 2b_{1} \ and \ 6b_{1} - 3b_{3} + b_{4} &= 0 \\ (d) b_{2} &= 2b_{1} \ and \ 6b_{1} - 3b_{3} + b_{4} &= 0 \\ (d) b_{2} &= 2b_{1} \ and \ 6b_{1} - 3b_{3} + b_{4} &= 0 \\ \text{Ans: (d)} \\ \text{Consider augmented matrix} \\ (A B) &= \begin{bmatrix} 1 & 2 & b_{1} \\ 2 & 4 & b_{2} \\ 3 & 7 & b_{3} \\ 3 & 9 & b_{4} \end{bmatrix} \\ R_{2} \rightarrow R_{2} - 2R_{1}; R_{3} \rightarrow R_{3} - 3R_{1}; R_{4} \rightarrow R_{4} - 3R_{1} \\ (A B) &\sim \begin{bmatrix} 1 & 2 & b_{1} \\ 0 & 0 & b_{2} - 2b_{1} \\ 0 & 0 & b_{3} - 3b_{1} \\ 0 & 3 & b_{4} - 3b_{1} \end{bmatrix} \\ \text{Since} \\ \end{array}$	t	$R_{2} ↔ R_{3}$ $(A B) \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} - 2b_{1} \\ 0 & 3 \end{bmatrix} \begin{bmatrix} R_{4} → R_{4} - 3R_{2} \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ b_{1} \\ b_{2} - 2b_{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_{2} - 2b_{1} \\ b_{2} - 2b_{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} - 2b_{1} \\ 0 & 0 \end{bmatrix} = 0 \text{ and } 6b_{1} - 3b_{3} + b_{4} = 0 \text{ then } p(A B) = 2$ $\therefore \text{ solution exists if } b_{2} = 2b_{1}$ $and 6b_{1} - 3b_{3} + b_{4} = 0$ Hence, option (d) is correct.		
ACE					

Hearty Congratulations to our GATE-2019 Top Rankers

1

-

E 9 74

C TOP10 TOP100 I TOP100 TOP100 P TOP100 TOP100 S 5 28 N 10 74 I 10 49

Hearty Congratulations to our ESE-2019 Top Rankers

ABHISHEK ANAND EE

ROHIT KUMAR E&T

KABIL BHARGAVA CE

ME

ANKIT KUMAR CE

UMAR CHANDAN ME

KARTIKEY SINGH (EE)

YOGESH KUMAR CE

CE

AMARJEET

RAHUL JAIN E&T)

DEEPITA ROY EE

SHUBHAM KARNANI E&T

and many more ...

Total Selections in Top 10: 33 | EE : 9 | E&T : 8 | ME : 9 | CE : 7

ANKITA SHARMA EE GAURAY SRIVASTAVA E&T SUMIT BHAMBOO ME