ELECTRICAL ENGINEERING

Analog Electronics

Text Book: Theory with worked out Examples and Practice Questions

GATE | PSUs

Analog Electronics

(Solutions for Text Book Practice Questions)
01.

Sol:

$\Rightarrow D_{1}, D_{2}$ are reverse biased and D_{3} is forward biased.
i.e., D_{3} only conducts.
$\therefore \mathrm{I}_{0}=3 / 5 \mathrm{~K}=0.6 \mathrm{~mA}$
02.

Sol:

$\Rightarrow D_{2} \& D_{3}$ are reverse biased and ' D_{1} ' is forward biased.
i.e., D_{1} only conduct
$\therefore \mathrm{I}_{0}=\frac{5-1}{5 \mathrm{~K}}=0.8 \mathrm{~mA}$
03.

Sol: Let diodes $\mathrm{D}_{1} \& \mathrm{D}_{2}$ are forward biased.
$\Rightarrow \mathrm{V}_{0}=0$ volt
$\mathrm{I}_{2}=\frac{10-0}{5 \mathrm{~K}}=2 \mathrm{~mA}$
$\mathrm{I}_{3}=\frac{0-(-10)}{10 \mathrm{~K}}=1 \mathrm{~mA}$
Apply KVL at nodes ' V_{0} ':
$-\mathrm{I}_{1}+\mathrm{I}_{3}-\mathrm{I}_{2}=0$
$\Rightarrow \mathrm{I}_{1}=-\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)=-1 \mathrm{~mA}$

So, D_{1} is reverse biased \& D_{2} is forward biased
$\Rightarrow{ }^{`} D_{1}{ }^{\prime}$ act as an open circuit \& D_{2} is act as short circuit.

Then circuit becomes

$\Rightarrow \mathrm{V}_{0}=10 \mathrm{k} \times\left(\frac{20}{15 \mathrm{k}}\right)-10$
$\therefore \mathrm{V}_{0}=3.33 \mathrm{~V}$
04.

Sol:

Apply KVL to the loop:
$\mathrm{V}_{\mathrm{in}}-2-\mathrm{V}_{\mathrm{x}}=0$
$\Rightarrow V_{x}=V_{\text {in }}-2$
Given, $\mathrm{V}_{\text {in }}$ range $=-5 \mathrm{~V}$ to 5 V
$\Rightarrow \mathrm{V}_{\mathrm{x}}$ range $=-7 \mathrm{~V}$ to 3 V
$[\because$ from eq $(1)]$
Diode ON for $\mathrm{V}_{\mathrm{x}}>0 \mathrm{~V}$
$\Rightarrow V_{0}=V_{x}$
Diode OFF for $\mathrm{V}_{\mathrm{x}}<0 \mathrm{~V}$
$\Rightarrow \mathrm{V}_{0}=0 \mathrm{~V}$
$\therefore \mathrm{V}_{0}$ range $=0$ to 3 V

Output wave form:

Transfer characteristics:

05.

Sol:

For $\mathrm{V}_{\mathrm{i}}<-2$ Volt, Diode ON
$\Rightarrow \mathrm{V}_{0}=-2$ Volt
For $\mathrm{V}_{\mathrm{i}}>-2$ Volt, Diode OFF
$\Rightarrow \mathrm{V}_{0}=\mathrm{V}_{\mathrm{i}}$

06. Ans: (a \& c)

Sol: In positive half, of input \rightarrow

Capacitor C_{1} is charging so, $\underset{\text { Char }}{T}=\mathrm{R}_{\mathrm{F}_{1}} \mathrm{C}_{1}=0$

For $\theta \rightarrow$ Range from $0 \rightarrow \frac{\pi}{2}$,

Now at $\theta=\frac{\pi}{2}, V_{\mathrm{C}_{1}}=\mathrm{V}_{\mathrm{m}}$
$\mathrm{D}_{1} \& \mathrm{D}_{2}$ both are OFF

So, C_{1} has no discharging path \Rightarrow steady state,
So, at steady state $\mathrm{V}_{\mathrm{C}_{1}}=+\mathrm{V}_{\mathrm{m}}=+5 \mathrm{~V}$.
Since in ANALOG circuit, for either clampers (or) for Ripple removal shunt capacitor filter,
$\mathrm{T}_{\text {discharge }} \ggg \mathrm{T}$, where $\mathrm{T} \rightarrow$ Time period.
Now for $\theta>\frac{\pi}{2}, \mathrm{~V}_{\mathrm{C}_{1}}=\mathrm{V}_{\mathrm{m}}>\mathrm{V}_{\mathrm{i}}$
\Rightarrow Due to $\mathrm{V}_{\mathrm{C}_{1}}, \mathrm{D}_{1}$ is OFF
D_{2} is ON
Now circuit is \rightarrow

Now, $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{C}_{1}}-\mathrm{V}_{\mathrm{C}_{2}} \Rightarrow \mathrm{~V}_{\mathrm{C}_{2}}=\mathrm{V}_{\mathrm{C}_{1}}-\mathrm{V}_{\mathrm{i}}$
Now, at $\theta=\frac{3 \pi}{2}, \mathrm{~V}_{\mathrm{i}}=-\mathrm{V}_{\mathrm{m}}$

$$
\Rightarrow \mathrm{V}_{\mathrm{C}_{2}}=2 \mathrm{~V}_{\mathrm{m}}=10 \mathrm{~V}
$$

Now, at $\theta=\frac{3 \pi}{2}, \mathrm{~V}_{\mathrm{C}_{1}}=5 \mathrm{~V}$ from the circuit such that, $\mathrm{V}_{\mathrm{C}_{2}}=10 \mathrm{~V}$
Due to $\mathrm{V}_{\mathrm{C}_{2}}, \mathrm{D}_{2}$ act as open circuit
So, at $\theta=\frac{3 \pi}{2}$, the circuit looks like \rightarrow

Now, as no discharge path for $\mathrm{C}_{1} \& \mathrm{C}_{2}$

$$
\Rightarrow \text { Steady state }
$$

So, at steady state, $\mathrm{V}_{\mathrm{C}_{2}}=10 \mathrm{~V}$, but form circuit $\mathrm{V}_{\mathrm{C}_{2}}$ polarity is opposite

$$
\Rightarrow \mathrm{V}_{\mathrm{C}_{2}}=-10 \mathrm{~V}
$$

So, options (a) \& (c) are correct.
07.

Sol: For positive half cycle diode Forward biased and Capacitor start charging towards peak value.

$$
\begin{aligned}
& \Rightarrow \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{m}}=5 \mathrm{~V} \\
& \Rightarrow \mathrm{~V}_{0}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {in }}-5 \\
& \mathrm{~V}_{\text {in }} \text { range }=-5 \mathrm{~V} \text { to }+5 \mathrm{~V} \\
& \therefore \mathrm{~V}_{0} \text { range }=-10 \mathrm{~V} \text { to } 0 \mathrm{~V}
\end{aligned}
$$

8.

Sol: For +ve cycle, diode ' ON ', then capacitor starts charging
$\Rightarrow \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{m}}-7=10-7=3 \mathrm{~V}$

Now diode OFF for rest of cycle

$$
\begin{aligned}
\Rightarrow \mathrm{V}_{0} & =-\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\text {in }} \\
& =\mathrm{V}_{\mathrm{in}}-3
\end{aligned}
$$

$\mathrm{V}_{\text {in }}$ range $:-10 \mathrm{~V}$ to +10 V
$\therefore \mathrm{V}_{0}$ range: -13 V to 7 V

09.

Sol: Always start the analysis of clamping circuit with that part of the cycle that will forward bias the diodes this diode is forward bias during negative cycle.

For negative cycle diode ON, then capacitor starts charging

$$
\begin{aligned}
\Rightarrow V_{C} & =V_{P}+9 \\
& =12+9=21 \mathrm{~V}
\end{aligned}
$$

Now diode OFF for rest of cycle.

$$
\begin{aligned}
\Rightarrow \mathrm{V}_{0} & =\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\text {in }} \\
& =21+\mathrm{V}_{\text {in }}
\end{aligned}
$$

$\mathrm{V}_{\text {in }}$ range: -12 to +12 V
V_{0} range: 9 V to 33 V

10.

Sol: During positive cycle,
D_{1} forward biased \& D_{2} Reverse biased.

During negative cycle,
D_{1} reverse biased \& D_{2} forward biased.

Capacitor C_{2} will charge to negative voltage of magnitude 12 V
11.

Sol:

Let transisotr in active region
$\Rightarrow \mathrm{I}_{\mathrm{C}}=\beta /(\beta+1) . \mathrm{I}_{\mathrm{E}}=0.99 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} / \beta=9.9 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{C}}=10-4.7 \times 10^{3} \times 0.99 \times 10^{-3}=5.347 \mathrm{~V}$
$\Rightarrow \mathrm{V}_{\mathrm{C}}>\mathrm{V}_{\mathrm{B}}$
\therefore Transistor in the active region.

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee \| Available 1M |3M|6M |12M |18M and 24 Months Subscription Packages
12.

Sol:

$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=6-0.7=5.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{E}}=\frac{5.3}{3.3 \mathrm{~K}}=1.6 \mathrm{~mA}$
Let transistor is active region
$\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\beta}{(1+\beta)} \mathrm{I}_{\mathrm{E}}$
$\mathrm{I}_{\mathrm{C}}=1.59 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{C}}=2.55 \mathrm{~V}$
$\Rightarrow V_{C}<V_{B}$
\therefore Transistor in saturation region
$\Rightarrow \mathrm{V}_{\mathrm{CE}}(\mathrm{sat})=0.2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}=0.2$
$\mathrm{V}_{\mathrm{C}}=5.3+0.2$
$\Rightarrow \mathrm{V}_{\mathrm{C}}=5.5 \mathrm{~V}$

$\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{10-5.5}{4.7 \mathrm{~K}}=0.957 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{B}}=1.6-0.957=0.643 \mathrm{~mA}$
$\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}=\frac{0.957 \mathrm{~mA}}{0.643 \mathrm{~mA}}=1.483$
$\beta_{\text {forced }}<\beta_{\text {active }}$
13.

Sol:

14.

Sol:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=0.7 \mathrm{~V}\left[\because \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}\right] \\
& \Rightarrow \mathrm{I}_{\mathrm{E}}=\frac{10-0.7}{5 \mathrm{~K}}=1.86 \mathrm{~mA}
\end{aligned}
$$

Let transistor in active region.

$$
\begin{aligned}
& \Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\beta}{(\beta+1)} \mathrm{I}_{\mathrm{E}}=1.84 \mathrm{~mA} \\
& \Rightarrow \mathrm{~V}_{\mathrm{C}}=-10+1 \mathrm{~K} \times 1.84 \mathrm{~m} \\
& \mathrm{~V}_{\mathrm{C}}=-8.16 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{EC}}=\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{C}}=8.86 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{EC}}>\mathrm{V}_{\mathrm{EB}}
\end{aligned}
$$

\therefore Transistor in active region
15.

Sol:

Let transistor in active region

$$
\mathrm{V}_{\mathrm{E}}=0.7 \mathrm{~V} \quad\left[\because \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}\right]
$$

$\mathrm{I}_{\mathrm{E}}=\frac{10-0.7}{1 \mathrm{k}}=9.3 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{C}}=\frac{\beta}{\beta+1} . \mathrm{I}_{\mathrm{E}}=9.2 \mathrm{~mA}$
$\Rightarrow \mathrm{V}_{\mathrm{C}}=-10+5 \mathrm{~K} \times 9.2 \mathrm{~m}$
$\mathrm{V}_{\mathrm{C}}=36 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EC}}<\mathrm{V}_{\mathrm{EB}}$
Transistor in saturation region
$\Rightarrow \mathrm{V}_{\mathrm{EC}}=0.2$
$\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{C}}=0.2 \Rightarrow \mathrm{~V}_{\mathrm{C}}=0.5 \mathrm{~V}$
$\Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{0.5+10}{5 \mathrm{~K}}=2.1 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{C}}=7.2 \mathrm{~mA}$
$\beta_{\text {forced }}=\frac{I_{c(\text { sat })}}{I_{B}}=\frac{2.1}{7.2}=0.29$
$\beta_{\text {forced }}<\beta_{\text {active }}$ i.e., saturation region
16.

Sol:

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}
$$

$$
\Rightarrow \frac{5-\left(\mathrm{V}_{\mathrm{B}}+0.7\right)}{1 \mathrm{k}}=\frac{\left(\mathrm{V}_{\mathrm{B}}+0.5\right)+5}{10 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{B}}}{10 \mathrm{k}}
$$

$$
10\left(5-V_{B}-0.7\right)=V_{B}+0.5+5+V_{B}
$$

$$
43-10 \mathrm{~V}_{\mathrm{B}}=2 \mathrm{~V}_{\mathrm{B}}+5.5
$$

$$
\mathrm{V}_{\mathrm{B}}=\frac{43-5.5}{12}=3.125 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{B}}=\frac{3.125}{10 \mathrm{~K}}=0.3125 \mathrm{~mA}
$$

$$
V_{C}=V_{B}+0.5=3.625 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{E}}=3.825 \mathrm{~V}
$$

$$
5: \mathrm{I}_{\mathrm{E}}=1.175 \mathrm{~mA}
$$

$$
\therefore \mathrm{I}_{\mathrm{C}}=0.862 \mathrm{~mA}
$$

17.

Sol: Here the lower transistor (PNP) is in cut off

Apply KVL to the base emitter loop:
$5-10 \mathrm{~K} . \mathrm{I}_{\mathrm{B}}-0.7-1 \mathrm{~K} .(1+\beta) \mathrm{I}_{\mathrm{B}}=0$
$\Rightarrow \mathrm{I}_{\mathrm{B}}=\frac{4.3}{(101) \mathrm{K}+10 \mathrm{~K}}$

$$
=38.73 \mu \mathrm{~A}
$$

$\mathrm{I}_{\mathrm{C}}=3.87 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{E}}=3.91 \mathrm{~mA}$
$\Rightarrow \mathrm{V}_{\mathrm{E}}=\mathrm{V}_{0}=\mathrm{I}_{\mathrm{E}}(1 \mathrm{k})=3.91 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{B}}=5-10 \mathrm{k}\left(\mathrm{I}_{\mathrm{B}}\right)=4.61 \mathrm{~V}$
18.

Sol:

$\mathrm{I}_{\mathrm{C}_{1}}=\mathrm{I}_{\varepsilon_{1}}=\frac{2.3 \mathrm{~V}}{2.3 \mathrm{k}}=1 \mathrm{mAmp}$
$\mathrm{V}_{\mathrm{C}_{1}}=12 \mathrm{~V}-4 \times 10^{3} \times 1 \times 10^{-3}=8 \mathrm{~V}$
$\mathrm{V}_{\varepsilon_{2}}=8+0.7 \mathrm{~V}=8.7 \mathrm{~V}$
$\mathrm{I}_{\varepsilon_{2}}=\frac{12 \mathrm{~V}-\mathrm{V}_{\varepsilon 2}}{3.3 \mathrm{k}}=\frac{12 \mathrm{~V}-8.7}{3.3 \mathrm{k}}=1 \mathrm{mAmp}$
$\mathrm{V}_{\mathrm{C}_{2}}=4 \mathrm{k} \times 1 \mathrm{~mA}=4 \mathrm{~V}$
$\mathrm{V}_{\varepsilon 3}=4 \mathrm{~V}-0.7=3.3 \mathrm{~V}$
$\mathrm{V}_{\varepsilon_{4}}=3.3-0.7=2.6 \mathrm{~V}$
$\mathrm{V}_{0}=2.6 \mathrm{~V}$
19.

Sol:

$$
=\frac{\omega^{2} \mathrm{rLC}+\mathrm{r}-\omega^{2} \mathrm{rLC}+\mathrm{j} \omega \mathrm{~L}\left[1-\omega^{2} \mathrm{LC}\right]-\mathrm{j} \omega \mathrm{r}^{2} \mathrm{C}}{\left(1-\omega^{2} \mathrm{LC}\right)^{2}+(\omega \mathrm{rC})^{2}}
$$

Equate Imaginary terms:

$\omega \mathrm{L}-\omega^{3} \mathrm{~L}^{2} \mathrm{C}-\omega \mathrm{r}^{2} \mathrm{C}=0$
$\mathrm{L}-\omega^{2} \mathrm{~L}^{2} \mathrm{C}-\mathrm{r}^{2} \mathrm{C}=0$
$\omega^{2} \mathrm{~L}^{2} \mathrm{C}=\mathrm{L}-\mathrm{r}^{2} \mathrm{C}$
$\omega=\sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{r}^{2} \mathrm{C}}{\mathrm{L}^{2} \mathrm{C}}}$
$\omega=\sqrt{\frac{1}{\mathrm{LC}}-\left(\frac{\mathrm{r}}{\mathrm{L}}\right)^{2}}$
20. Ans: (a \& b)

Sol: Step-1: KCL at collector node of Q_{1} i.e., at C_{1}

$$
\begin{equation*}
\mathrm{I}=\mathrm{I}_{\mathrm{C}_{1}}+\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{C}_{2}}+2 \mathrm{I}_{\mathrm{B}_{2}} \tag{1}
\end{equation*}
$$

$=\mathrm{I}_{\mathrm{C}_{2}}+2 \frac{\mathrm{I}_{\mathrm{C}_{2}}}{\beta}$

$$
\begin{equation*}
=\mathrm{I}_{\mathrm{C}_{2}}\left[1+\frac{2}{100}\right] . \tag{2}
\end{equation*}
$$

$\Rightarrow \mathrm{I}_{\mathrm{C}_{2}}=\mathrm{I}\left[\frac{100}{102}\right]=0.98 \mathrm{I}$
Step-2: KVL foe C-E loop of Q_{1}

$$
\begin{align*}
& \mathrm{I}=\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{4.65 \mathrm{~K} \Omega}=2 \mathrm{~mA} \tag{5}\\
& \Rightarrow \mathrm{I}_{\mathrm{C}_{2}}=1.96 \mathrm{~mA} \ldots \ldots .
\end{align*}
$$

Step-3: KVL for loop of Q_{2}

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}_{2}}=10 \mathrm{~V}-3 \mathrm{~K} \Omega(1.96 \mathrm{~mA})=4.12 \mathrm{~V} \tag{7}
\end{equation*}
$$

Step-4: KVL for C-loop of Q_{1}

$$
\begin{align*}
\mathrm{V}_{\mathrm{C}_{1}} & =10 \mathrm{~V}-\mathrm{I}_{\text {BIAS }} \times 4.65 \mathrm{~K} \ldots \tag{8}\\
& =10 \mathrm{~V}-2 \mathrm{~mA} \times 4.65 \mathrm{~K} \Omega . \tag{9}
\end{align*}
$$

$\therefore \mathrm{V}_{\mathrm{C}_{1}}=0.7 \mathrm{~V}$ \qquad
21.

Sol:

For D.C Analysis:

$$
\mathrm{V}_{\mathrm{B}}=4 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}}=0.7 \Rightarrow \mathrm{~V}_{\mathrm{E}}=4-0.7=3.3 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{E}}=\frac{3.3}{3.3 \mathrm{k}}=1 \mathrm{~mA}
$$

$$
\mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=\frac{25 \mathrm{mV}}{1 \mathrm{~mA}}=25 \Omega
$$

To apply small signal analysis set D.C

$\Rightarrow \mathrm{V}_{0}=-\mathrm{i}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}}$
$\mathrm{V}_{\text {in }}=\mathrm{i}_{\mathrm{b}} \mathrm{r}_{\pi}=\mathrm{i}_{\mathrm{b}} \beta \mathrm{r}_{\mathrm{e}}=\mathrm{i}_{\mathrm{c}} \mathrm{r}_{\mathrm{e}}$
$\therefore \mathrm{A}_{\mathrm{V}}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}$
$=\frac{-\mathrm{i}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}}}{\mathrm{i}_{\mathrm{c}} \mathrm{r}_{\mathrm{e}}}=\frac{-\mathrm{R}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{e}}}=\frac{-4.7 \mathrm{k}}{25}$
$=-188$
22.

Sol: D.C calculation is same as previous question
$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{e}}=25 \Omega$
Apply small signal analysis:

$\frac{V_{0}}{V_{i}}=\frac{-R_{c}}{r_{e}+R_{E}}=\frac{-4700}{25+3300}$
$\therefore \mathrm{A}_{\mathrm{V}}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=-1.413$
23.

Sol: To calculate r_{e} value apply D.C analysis

$$
\begin{aligned}
\mathrm{I}_{\mathrm{E}} & =\frac{\mathrm{V}_{\mathrm{th}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{E}}+\frac{\mathrm{R}_{\mathrm{th}}}{\beta+1}} \\
& =\frac{3-0.7}{2.3 \mathrm{k}+\frac{2 \mathrm{k}}{101}}=0.991 \mathrm{~mA} \\
\mathrm{r}_{\mathrm{e}} & =\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=\frac{25}{0.991}=25.22 \Omega
\end{aligned}
$$

Now apply small signal analysis:

24.

Sol:

Apply KVL at input Loop:
$6-10 \mathrm{k}\left(\mathrm{I}_{\mathrm{B}}\right)-0.7-8 \mathrm{k}(1+\beta) \mathrm{I}_{\mathrm{B}}=0$
$I_{B}=\frac{6-0.7}{10 \mathrm{k}+8 \mathrm{k} \times 101}=6.47 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{E}}=0.65 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=\frac{25}{0.65}=38.5 \Omega$

Apply small signal analysis
$A_{V}=\frac{V_{0}}{V_{i}}=\frac{R_{E}}{r_{e}+R_{E}}$
$=0.995$
$\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \beta \mathrm{R}_{\mathrm{E}_{\text {Total }}}$
$\mathrm{R}_{\mathrm{E}_{\text {Total }}}=\left(\mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{e}}\right)$
$\mathrm{R}_{\mathrm{i}}=10 \mathrm{k}| | 803.85 \mathrm{k}$
$=9.87 \mathrm{k} \Omega$
$\mathrm{R}_{0}=\mathrm{R}_{\mathrm{E}} \| \mathrm{r}_{\mathrm{e}}=38.3 \Omega$
25.

Sol: $\mathrm{V}_{0}=-\mathrm{i}_{\mathrm{c}} \mathrm{R}_{\mathrm{C}}$
$\mathrm{i}_{\mathrm{e}} \approx \mathrm{i}_{\mathrm{c}}=\frac{-\mathrm{V}_{\mathrm{i}}}{\mathrm{r}_{\mathrm{e}}}$
$V_{0}=\left(\frac{V_{i}}{r_{e}}\right) R_{C}$
$\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}$
Given $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
$\Rightarrow \mathrm{r}_{\mathrm{e}}=\frac{25 \mathrm{mV}}{1 \mathrm{~mA}}=25 \Omega$
$A_{V}=\frac{R_{C}}{\text { re }}$
$A_{V}=\frac{10 \mathrm{k} / / 10 \mathrm{k}}{25}=\frac{5000}{25}=200$
$\mathrm{R}_{0}=\mathrm{R}_{\mathrm{C}}=10 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{i}}=\mathrm{r}_{\mathrm{e}}=25 \Omega$
$A_{I}=\frac{i_{0}}{i_{i}}=\frac{v_{0}}{R_{L}} \times \frac{R_{i}}{v_{i}}$

$$
=A_{V} \times \frac{R_{i}}{R_{L}}=\frac{200 \times 25}{10^{4}}=0.5
$$

26.

Sol: For the given differential amplifier,
$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{E}}}=25 \Omega$
$A_{d}=\frac{V_{0}}{V_{i}}=\frac{-R_{c}}{r_{c}}=\frac{-3000}{25}$ (or) $-g_{m} R_{c}$
$\mathrm{A}_{\mathrm{d}}=-120$
27.

Sol:

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{0-(-12)}{12 \mathrm{k}}=1 \mathrm{~mA} \\
& \mathrm{I}_{1}=\frac{0-\mathrm{V}_{\mathrm{B}}}{3 \mathrm{~K}} \\
& \mathrm{~V}_{\mathrm{B}}=-3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}}=0.7 \\
& \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{B}}-0.7 \\
& \mathrm{~V}_{\mathrm{E}}=-3.7 \mathrm{Volt} \\
& \mathrm{I}_{0}=\frac{-3.7+12}{8.3 \mathrm{k}} \\
& \mathrm{I}_{\mathrm{o}}=1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA}
\end{aligned}
$$

$\mathrm{r}_{\mathrm{e}}=\frac{25 \mathrm{mV}}{0.5 \mathrm{~mA}}=50 \Omega$
$A_{d}=\frac{-R_{C}}{r_{e}}=\frac{-2000}{50}$
$\mathrm{A}_{\mathrm{d}}=-40$
28.

Sol: Voltage shunt feedback amplifier and

$$
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{in}}}=\frac{-\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{S}}}=\frac{-10 \mathrm{k}}{1 \mathrm{k}} \approx-10
$$

29.

Sol: Current - series feedback amplifier and

$$
\mathrm{A}_{\mathrm{V}} \approx \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{E}}}=\frac{4.7 \mathrm{k}}{3.3 \mathrm{k}}=1.4242
$$

30.

Sol:

Using millers effect,

$$
\mathrm{R}_{\mathrm{eq}}=\frac{1 \mathrm{k}}{1+100}=9.9 \Omega
$$

$\overrightarrow{\mathrm{L}}_{\mathrm{eq}}$

$$
\mathrm{L}_{\mathrm{eq}}=\frac{1 \mathrm{mH}}{1+1000} \approx 1 \mu \mathrm{H}
$$

31.

Sol:

$\mathrm{C}_{\text {eq }}=1 \mu \mathrm{~F}\left(1+10^{6}\right) \approx 1 \mathrm{~F}$
32.

Sol: $\quad V_{0}=\left(1+\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \mathrm{V}_{\mathrm{i}}$
$\mathrm{V}_{0}=\left(1+\frac{2 \mathrm{k}}{3 \mathrm{k}}\right)^{2}$
$\mathrm{V}_{0}=\frac{10}{3}$ volt $=3.33 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\mathrm{V}_{0}}{1 \mathrm{k}}=\frac{10}{3} \mathrm{~mA} \& \\
& \mathrm{I}_{2}=\frac{\mathrm{V}_{0}-2}{2 \mathrm{k}}=\frac{\frac{10}{3}-2}{2 \mathrm{k}}=\frac{2}{3} \mathrm{~mA} \\
& \therefore \mathrm{I}_{0}=\mathrm{I}_{1}+\mathrm{I}_{2}=4 \mathrm{~mA}
\end{aligned}
$$

33.

Sol: $5 \mathrm{~V}_{0}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{~V}_{\text {in }}$
34.

Sol:

$I_{L}=\frac{I_{i} \times 1 \mathrm{~K}}{2 K}=\frac{I_{i n}}{2}$
$\mathrm{I}_{0}+\mathrm{I}_{\mathrm{in}}+\mathrm{I}_{\mathrm{L}}=0$
$\mathrm{I}_{0}+\mathrm{I}_{\text {in }}+\frac{\mathrm{I}_{\text {in }}}{2}=0$

$$
\begin{aligned}
& 2 \mathrm{I}_{0}+2 \mathrm{I}_{\mathrm{in}}+\mathrm{I}_{\mathrm{in}}=0 \\
& 2 \mathrm{I}_{0}=-3 \mathrm{I}_{\text {in }} \\
& \frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{in}}}=\frac{-3}{2}=-1.5
\end{aligned}
$$

35.

Sol:

$\mathrm{V}_{01}=-\mathrm{I}_{1}$
Apply KCL:
$\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{2}=\frac{0-\mathrm{V}_{0_{2}}}{1}$
$\frac{\mathrm{V}_{01}}{1}+\mathrm{I}_{2}=-\mathrm{V}_{02}$
$\mathrm{V}_{01}+\mathrm{I}_{2}=-\mathrm{V}_{02}$
$-\mathrm{I}_{1}+\mathrm{I}_{2}=-\mathrm{V}_{02}$
$\mathrm{V}_{02}=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$ volt
$\mathrm{I}_{01}+\mathrm{I}_{1}=\mathrm{I}_{\mathrm{x}}$
$I_{01}+I_{1}=V_{01} \quad\left[\because I_{x}=\frac{V_{01}}{1}\right]$
$\mathrm{I}_{01}=\mathrm{V}_{01}-\mathrm{I}_{1}$
$\mathrm{I}_{01}=-2 \mathrm{I}_{1} \quad\left[\because \mathrm{~V}_{01}=-\mathrm{I}_{1}\right]$
$\mathrm{I}_{02}=-\left(\mathrm{I}_{2}+\mathrm{I}_{\mathrm{x}}\right)$
$\mathrm{I}_{02}=-\left(\mathrm{I}_{2}+\mathrm{V}_{01}\right)$
$\mathrm{I}_{02}=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \mathrm{A}$
36.

Sol:

Apply KCL at V_{a} :
$1 \mathrm{~m}=\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{2 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{3 \mathrm{~K}}$
$1 \mathrm{~m}=\frac{3 \mathrm{~V}_{\mathrm{a}}-3 \mathrm{~V}_{\mathrm{b}}+2 \mathrm{~V}_{\mathrm{a}}-2 \mathrm{~V}_{\mathrm{b}}}{6 \mathrm{k}}$
$6=5 \mathrm{~V}_{\mathrm{a}}-5 \mathrm{~V}_{\mathrm{b}}$
$\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=\frac{6}{5}$
$\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=1.2 \mathrm{Volt}$
$\mathrm{I}_{1}=\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}}{2 \mathrm{k}}=\frac{1.2}{2 \mathrm{k}}=0.6 \mathrm{~mA}$
$\mathrm{I}_{2}=\frac{1.2}{3 \mathrm{k}}=0.4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{b}}=0.4 \mathrm{~m} \times 1 \mathrm{k}=0.4$ Volt
$\mathrm{I}_{1}=\frac{\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{0}}{0.5 \mathrm{k}}$
$0.6 \mathrm{~m}=\frac{0.4-\mathrm{V}_{0}}{0.5 \mathrm{k}}$
$0.3=0.4-\mathrm{V}_{0}$
$\therefore \mathrm{V}_{0}=0.1 \mathrm{Volt}$
37.

Sol: $\mathrm{V}_{\mathrm{C}}=\frac{-\mathrm{I}}{\mathrm{C}} . \mathrm{t}=\frac{-10 \times 10^{-3}}{10^{-6}} \times 0.5 \times 10^{-3}$
$\mathrm{V}_{\mathrm{C}}=-5 \mathrm{Volt}$
38.

Sol: Given open loop gain $=10$

$$
\begin{aligned}
& \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\left(1+\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right)}{1+\left(1+\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{1}}\right) \times \frac{1}{\mathrm{~A}_{0 \mathrm{~L}}}} \\
& \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=\frac{(1+3)}{1+\frac{4}{10}} \\
& \mathrm{~V}_{0}=\mathrm{V}_{\mathrm{i}} \times \frac{4}{1+\frac{4}{10}} \\
& \mathrm{~V}_{0}=\frac{2 \times 4}{1+\frac{4}{10}}=5.715 \mathrm{Volt}
\end{aligned}
$$

39.

$$
\text { Sol: } \begin{aligned}
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}} & =\frac{-\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}}{1+\frac{\left(1+\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}\right)}{\mathrm{A}_{\mathrm{OL}}}} \\
\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}} & =\frac{-9}{1+\frac{10}{10}} \\
\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}} & =\frac{-9}{2} \\
\mathrm{~V}_{0} & =-4.5 \mathrm{~V}
\end{aligned}
$$

40.

Sol: $\quad \mathrm{SR}=2 \pi \mathrm{f}_{\max } \mathrm{V}_{0 \text { max }}$

$$
\begin{aligned}
& \mathrm{V}_{0 \max }=\frac{\mathrm{SR}}{2 \pi \mathrm{f}_{\max }}=\frac{10^{6}}{2 \pi \times 20 \times 10^{3}}=7.95 \mathrm{Volt} \\
& \mathrm{~V}_{0}=\mathrm{A} \times \mathrm{V}_{\mathrm{i}} \Rightarrow \mathrm{~V}_{\mathrm{i}}=\frac{\mathrm{V}_{0}}{\mathrm{~A}}=79.5 \mathrm{mV}
\end{aligned}
$$

41.

Sol:

$\mathrm{z}_{2}=\mathrm{R}_{2} \| \frac{1}{\mathrm{sC}}=\frac{\mathrm{R}_{2}}{\mathrm{sCR}_{2}+1}$

$$
\mathrm{z}_{1}=\mathrm{R}_{1}+\mathrm{sL}
$$

$$
\left|\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right|=\frac{\frac{\mathrm{R}_{2}}{\mathrm{sCR} R_{2}+1}}{\mathrm{R}_{1}+\mathrm{sL}}
$$

$$
\left|\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right|=\frac{\mathrm{R}_{2}}{\left(\mathrm{sCR} \mathrm{R}_{2}+1\right)\left(\mathrm{R}_{1}+\mathrm{sL}\right)}
$$

It represent low pass filter with
D.C gain $=\frac{R_{2}}{R_{1}}$
42.

Sol: (i)

Apply KCL at V_{x} :
$\frac{\mathrm{V}_{\mathrm{x}}}{5 \mathrm{k}}=\mathrm{I}_{\mathrm{i}}+\mathrm{I}_{1}$
$\frac{V_{x}}{5 k}=\frac{V_{i}-V_{x}}{10 \mathrm{k}}+\frac{\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{x}}}{20 \mathrm{k}}$
$\frac{\mathrm{V}_{\mathrm{x}}}{5}=\frac{3 \mathrm{~V}_{\mathrm{i}}-3 \mathrm{~V}_{\mathrm{x}}}{20}$
$\mathrm{V}_{\mathrm{x}}=\frac{3}{7} \mathrm{~V}_{\mathrm{i}}$
$I_{i}=\frac{V_{i}-V_{x}}{10 k}$
$\mathrm{I}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{i}}-\frac{3}{7} \mathrm{~V}_{\mathrm{i}}}{10 \mathrm{k}}$
$\mathrm{R}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{I}_{\mathrm{i}}}=17.5 \mathrm{k} \Omega$
(ii)

$$
\begin{aligned}
& \mathrm{R}_{0}=\frac{1}{\mathrm{I}_{\mathrm{x}}} \\
& \mathrm{~V}_{\mathrm{p}}=\frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{s}}} \\
& \mathrm{I}_{\mathrm{x}}=\frac{1-\mathrm{V}_{\mathrm{p}}}{\mathrm{R}_{2}}+\frac{1-\mathrm{V}_{\mathrm{p}}}{\mathrm{R}_{1}} \\
& \mathrm{I}_{\mathrm{x}}=\left(1-\mathrm{V}_{\mathrm{p}}\right)\left(\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{1}}\right) \\
& \mathrm{I}_{\mathrm{x}}=\left(1-\frac{\mathrm{R}_{\mathrm{s}}}{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{s}}}\right)\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{2}}\right) \\
& \mathrm{I}_{\mathrm{x}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{s}}}\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{2}}\right) \\
& \therefore \mathrm{R}_{0}=\frac{1}{\mathrm{I}_{\mathrm{x}}}=\left(\frac{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{R}_{1}
\end{aligned}
$$

43.

Sol: $V_{E}=V_{\text {in }}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}$
$\mathrm{V}_{\mathrm{CE}}=15-\mathrm{V}_{\text {in }}$
given $\mathrm{V}_{\text {in }} 0$ to 5 Volt
\Rightarrow Transistor is in active region
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{0}=\frac{\mathrm{V}_{\text {in }}+15}{10}=\frac{17}{10}=1.7 \mathrm{~A} \quad\left[\because \mathrm{~V}_{\text {in }}=2 \mathrm{~V}\right]$
$\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{I}_{0}}{1+\beta}=\frac{1.7}{100} \mathrm{~A}$
$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{in}}+0.7=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{op}}-\mathrm{V}_{\mathrm{B}}}{100}$
$\frac{\mathrm{V}_{\mathrm{op}}-2.7}{100}=\frac{1.7}{100}$
$\mathrm{V}_{\mathrm{op}}=4.4$ Volt
44.

Sol: Single stage:

$$
\text { Gain }=40 \mathrm{~dB}=100, \mathrm{f}_{\mathrm{T}}=1 \mathrm{MHz}=\text { Gain BW }
$$

$$
\mathrm{BW} \rightarrow \mathrm{f}_{3 \mathrm{~dB}}=\frac{\mathrm{f}_{\mathrm{T}}}{\text { Gain }}=\frac{10^{6}}{100}=10 \mathrm{kHz}
$$

Two stages:

$\mathrm{f}_{3 \mathrm{~dB}}=\frac{1 \mathrm{M}}{10}=100 \mathrm{kHz}, \quad \mathrm{f}_{3 \mathrm{~dB}}=100 \mathrm{kHz}$ (for single stage)
Two stages (Overall):

Overall BW $=\mathrm{f}_{3 \mathrm{~dB}} \sqrt{2^{1 / 2}-1}=100 \mathrm{k}(0.65)$

$$
=65 \mathrm{kHz}
$$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages
45.

Sol: (a)

Gain $=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\text {in }}}=1+\frac{1 \mathrm{M}}{\mathrm{R}_{1}}=100 \Rightarrow \mathrm{R}_{1}=10.1 \mathrm{k} \Omega$

(b)
\rightarrow op-amp draws current
\rightarrow op-amp CKT the curve doesn't pass through ' 0 ' (transfer characteristics)

$$
\mathrm{V}_{0}=\left|\mathrm{V}_{0_{\text {Bios current }}}\right|+\left|\mathrm{V}_{0_{\text {Offset Voltage }}}\right|
$$

$$
\begin{aligned}
& =1 \mathrm{M}\left(\mathrm{I}_{\mathrm{B}}\right)+\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \mathrm{V}_{\mathrm{os}} \\
& =1 \mathrm{M}(100 \mathrm{nA})+100(1 \mathrm{mV}) \\
& =0.2 \mathrm{~V}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\rightarrow \mathrm{R}_{\text {comp }} & =\mathrm{R}_{1} / / \mathrm{R}_{2} \text {, then } \mathrm{V}_{0}=\left(\mathrm{I}_{\mathrm{B} 1}-\mathrm{I}_{\mathrm{B} 2}\right) \mathrm{R}_{2} \\
& =\mathrm{I}_{\mathrm{os}} \mathrm{R}_{2}
\end{aligned}
$$

$$
V_{0}=\left(I_{B 1}-I_{B 2}\right) R_{2}
$$

$$
=\mathrm{I}_{\mathrm{os}} \mathrm{R}_{2}
$$

$$
=1 / 10\left(\mathrm{I}_{\mathrm{B}} \mathrm{R}_{2}\right)
$$

$$
=\frac{1}{10} 100 \mathrm{nA}(1 \mathrm{M})
$$

$$
=0.01 \mathrm{~V}=10 \mathrm{mV}
$$

(d)

$$
\begin{aligned}
\mathrm{V}_{0} & =\left|\mathrm{V}_{0_{\text {Ofisat Volatage }}}\right|+\left|\mathrm{V}_{0_{\text {Bissarurent }}}\right| \\
& =0.1+0.01 \\
& =0.11=110 \mathrm{mV}
\end{aligned}
$$

46.

Sol: Given
$\mathrm{R}_{1}=\mathrm{R}_{3}=10 \mathrm{k} \Omega$
$\mathrm{R}_{2}=\mathrm{R}_{4}=1 \mathrm{M} \Omega$

Given $\mathrm{V}_{\text {os }}=4 \mathrm{mV}$
$\mathrm{I}_{\mathrm{B}}=0.3 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{os}}=50 \mathrm{nA}$

$\mathrm{V}_{0}=\left[1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right] \mathrm{V}_{\text {os }}+\mathrm{I}_{\text {os }} \mathrm{R}_{2}$
$=\left[1+\frac{1 \mathrm{M}}{10 \mathrm{k}}\right] 4 \mathrm{mV}+50 \mathrm{nA}[1 \mathrm{M}]$
$=454 \mathrm{mV}$
47. Ans: (b \& d)

Sol: Step-1: Differential input resistance,

$$
\begin{equation*}
\mathrm{R}_{\mathrm{id}}=\frac{\mathrm{V}_{\mathrm{id}}}{\mathrm{I}_{1}} \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

Consider virtual short circuit between V_{1} \& V_{2} and writing a loop equation,

$$
\begin{align*}
\mathrm{V}_{\mathrm{id}} & =\mathrm{R}_{1} \mathrm{I}_{1}+0+\mathrm{R}_{1} \mathrm{I}_{1} \\
& =2 \mathrm{R}_{1} \mathrm{I}_{1} \ldots \ldots \ldots(3) \tag{3}\\
\therefore & \frac{\mathrm{V}_{\mathrm{id}}}{\mathrm{I}_{1}}=\mathrm{R}_{\mathrm{id}}=2 \mathrm{R}_{1} \ldots \tag{4}
\end{align*}
$$

But $\mathrm{R}_{\text {id }}=20 \mathrm{~K}=2 \mathrm{R}_{1}$
[Given]
$\Rightarrow R_{1}=10 \mathrm{~K} \ldots \ldots$. (6)

Step-2: \because The given circuit is a differential amplifier,

$$
\begin{align*}
& V_{0}=\frac{R_{2}}{R_{1}}\left(V_{A}-V_{B}\right) \ldots \ldots . .(7) \tag{7}\\
\Rightarrow & A_{d}=\frac{V_{0}}{V_{A}-V_{B}}=\frac{R_{2}}{R_{1}}=100 . \tag{8}
\end{align*}
$$

[Given]

$$
\begin{align*}
\Rightarrow \mathrm{R}_{2} & =100 \mathrm{R}_{1} \ldots \ldots \ldots(9) \tag{9}\\
& =100 \times 10 \mathrm{~K} \ldots \ldots .(10 \tag{10}\\
\therefore & \mathrm{R}_{2}=1000 \mathrm{~K}=1 \mathrm{M} \Omega .
\end{align*}
$$

48.

Sol:

KCL

$$
\begin{align*}
& \frac{V_{x}-V_{0}}{(1 / S C)}+\frac{V_{x}}{R}+\frac{V_{x}-V_{f}}{R}=0 \\
& \frac{V_{f}-V_{x}}{R}+\frac{V_{f}}{(1 / S C)}=0 \tag{2}
\end{align*}
$$

From (1) and (2) eliminate V_{x}
$\beta=\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{0}}=\frac{\mathrm{SCR}}{\left[\mathrm{S}^{2} \mathrm{C}^{2} \mathrm{R}^{2}+3 \mathrm{SCR}+1\right]}$
$\beta=\frac{1}{\left[3+\mathrm{SCR}+\frac{1}{\mathrm{SCR}}\right]}$
$\beta=\frac{1}{3+j\left(\omega R C-\frac{1}{\omega R C}\right)}(S=j \omega)$

$A=\frac{V_{0}}{V_{f}}=1+\frac{R_{x}}{R}$
Loop gain $=1 \rightarrow A=1 / \beta$
$\mathrm{A} \beta=1$
$1+\frac{R_{x}}{R}=3+j\left(\omega R C-\frac{1}{\omega R C}\right)$
Equate imaginary parts
$0=\omega R C-\frac{1}{\omega R C}$
$\omega^{2}=\frac{1}{\mathrm{R}^{2} \mathrm{C}^{2}}$
$f=\frac{1}{2 \pi R C}$ frequency of oscillation

Equate

$R_{x}=2 R$
49.

Sol: $\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{0}}=\beta=\frac{0.5 \mathrm{k}}{\mathrm{R}_{\mathrm{x}}+0.5}$
$\mathrm{A}=1+\frac{9 \mathrm{k}}{1 \mathrm{k}}=10$
$\mathrm{A} \beta=1$ for sustained oscillations
$\frac{0.5 \mathrm{k}}{\mathrm{R}_{\mathrm{x}}+0.5 \mathrm{k}} \times 10=1$
$\therefore \mathrm{R}_{\mathrm{x}}=4.5 \mathrm{k} \Omega$
50.

Sol: Given $\beta=\frac{1}{6}$
$A=1+\frac{R_{2}}{R_{1}}$
$\mathrm{A} \beta=1$ for sustained oscillations
$\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \cdot \frac{1}{6}=1$
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=5$
$\mathrm{R}_{2}=5 \mathrm{R}_{1}$
51.

Sol:

$\mathrm{V}_{\text {th }}=\frac{2}{3} \mathrm{~V}_{\mathrm{CC}}=\frac{2}{3} \times 9=6 \mathrm{~V}$
$\mathrm{V}_{\text {th }}-\mathrm{V}_{\mathrm{C}}=2 \times 10^{3} \times \mathrm{I} \quad\left(\mathrm{I}=\frac{9-6}{3 \mathrm{k}}\right)$
$\mathrm{V}_{\text {th }}-\mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {th }}-2=4 \mathrm{~V}$
$\mathrm{V}_{\text {trigger }}=\frac{1}{3} \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}$ to 4 V
52. Ans: (a \& d)

Sol: Case-(i): Consider
$\mathrm{f}_{\mathrm{S}}=$ Series resonant frequency

$$
\begin{equation*}
=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}}} \cdots \cdots \tag{1}
\end{equation*}
$$

$\mathrm{f}_{\mathrm{P}}=$ Parallel resonant frequency

$$
\begin{equation*}
=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{s}} \mathrm{C}_{\mathrm{eq}}}} \tag{2}
\end{equation*}
$$

$\Rightarrow \frac{\mathrm{Eq}(2)}{\mathrm{Eq}(1)}=\frac{\mathrm{f}_{\mathrm{p}}}{\mathrm{f}_{\mathrm{S}}}=\frac{1.0025}{1}=\frac{\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{s}} \mathrm{C}_{\mathrm{eq}}}}}{\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}}}}$.
$\Rightarrow(1.0025)^{2}=\frac{\mathrm{L}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}}{\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{eq}}}$

$$
\begin{equation*}
=\frac{\mathrm{C}_{\mathrm{S}}}{\left[\frac{\mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P}}}\right]} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P}}}=\frac{1}{1.005}=0.995 \ldots \ldots .(6) \tag{6}\\
& \Rightarrow \mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{P}}=\frac{\mathrm{C}_{\mathrm{P}}}{0.995}=\frac{5 \mathrm{PF}}{0.995}=5.025 \mathrm{pF} \\
& \therefore \mathrm{C}_{\mathrm{S}}=5.025 \mathrm{pF}-5 \mathrm{pF}=0.25 \mathrm{pF} \ldots . .(8) \tag{8}
\end{align*}
$$

Case-(ii): Consider $\mathrm{f}_{\mathrm{S}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}}}$.
$\Rightarrow \sqrt{\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}}=\frac{1}{2 \pi \mathrm{f}_{\mathrm{s}}}=\frac{1}{2 \pi \times 1 \mathrm{MHz}}$.
$\Rightarrow \mathrm{L}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}=\left(\frac{1}{2 \pi \times 1 \mathrm{MHz}}\right)^{2}$
$\Rightarrow \mathrm{L}_{\mathrm{S}}=\frac{1}{\mathrm{C}_{\mathrm{S}}} \times \frac{1}{(2 \pi \times 1 \mathrm{MHz})^{2}}$

$$
=\frac{1}{0.25 \mathrm{pF}} \times \frac{1}{4 \pi^{2} \times 1 \times 10^{12} \mathrm{~Hz}} .
$$

$$
\begin{equation*}
=\frac{1}{0.25 \times 10^{-12} \mathrm{~F} \times 4 \pi^{2} \times 10^{12} \mathrm{~Hz}} . \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \mathrm{L}_{\mathrm{S}}=0.10142399 \mathrm{H} . \tag{15}
\end{equation*}
$$

Case-(iii): Quality factor,

$$
\begin{align*}
\mathrm{Q}_{\mathrm{S}} & =\frac{\omega_{\mathrm{S}} \mathrm{~L}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}} \ldots \ldots \ldots(16) \tag{16}\\
& =\frac{2 \pi \mathrm{f}_{\mathrm{S}} \mathrm{~L}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}} \ldots \ldots .(17) \tag{17}\\
& =\frac{2 \pi \times 1 \mathrm{MHz} \times 0.10142399 \mathrm{H}}{20 \Omega} \tag{18}\\
& =0.111464965 \times 10^{6} \ldots \ldots .(19) \tag{19}
\end{align*}
$$

$\therefore \mathrm{Q}_{\mathrm{S}}=111464.965=1,11,465$.
53.

Sol:

$\mathrm{V}_{\mathrm{i}}=8 \sin \mathrm{~V}$
During -Ve cycle, Zener is Forward biased and act as short circuit.
$\Rightarrow V_{0}=V_{i}$
During + Ve cycle,
For $0<V_{i}<4$, Zener OFF Since
Zener is not in break down
$\Rightarrow V_{0}=0$
For $\mathrm{V}_{\mathrm{i}}>4$, Zener is in break down.

$$
\Rightarrow V_{0}=V_{i}-4
$$

54.

Sol:

$\mathrm{I}_{\mathrm{z}}=1 \mathrm{~mA}$ to 60 mA
$\mathrm{I}=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{z}}}{300}$
$\mathrm{I}_{\text {min }}=\frac{\mathrm{V}_{\mathrm{smin}}-10}{300}$ \qquad
$I_{\text {max }}=\frac{\mathrm{V}_{\mathrm{smax}}-10}{300}$
$I_{\text {min }}=I_{\text {zmin }}+I_{L}\left[\because I_{L}+\frac{V_{z}}{1 k}=10 m A\right]$
$\mathrm{I}_{\text {min }}=1 \mathrm{~mA}+10 \mathrm{~mA}=11 \mathrm{~mA}$
$\mathrm{I}_{\text {max }}=60 \mathrm{~mA}+10 \mathrm{~mA}=70 \mathrm{~mA}$
From equation (1) and (2) required range of V_{S} is 13.3 to 31 volt.
55.

Sol:

The current in the diode is minimum when the load current is maximum and v_{s} is minimum.
$\mathrm{R}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{s} \text { min }}-\mathrm{V}_{\mathrm{z}}}{\mathrm{I}_{\mathrm{z} \text { min }}+\mathrm{I}_{\mathrm{L} \text { max }}}$
$\mathrm{R}_{\mathrm{s}}=\frac{20-10}{(10+100) \mathrm{mA}}$
$\mathrm{R}_{\mathrm{s}}=90.9 \Omega$
$\mathrm{I}_{\mathrm{z} \text { max }}=\frac{30-10}{90.9}=0.22 \mathrm{~A}\left[\because \mathrm{I}_{\mathrm{L} \text { min }}=0 \mathrm{~A}\right]$
$\mathrm{P}_{\mathrm{z}}=\mathrm{V}_{\mathrm{z}} \mathrm{I}_{\mathrm{zmax}}$
$\mathrm{P}_{\mathrm{z}}=10 \times 0.22$
$\mathrm{P}_{\mathrm{z}}=2.2 \mathrm{~W}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
56.

Sol:

$\mathrm{V}_{\mathrm{B}}=10 \mathrm{volt}$
$\mathrm{V}_{\mathrm{E}}=10-0.7=9.3 \mathrm{volt}$
$\mathrm{I}_{\mathrm{E}}=9.3 \mathrm{~mA}$
$I_{B}=\frac{I_{E}}{1+\beta}=\frac{9.3 \mathrm{~mA}}{101}=92.07 \mu \mathrm{~A}$
$\mathrm{I}_{1}=\frac{18-10}{300}=26.67 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{B}}=26.57 \mathrm{~mA}$
57.

Sol:

$$
\mathrm{V}_{\mathrm{p}}=10 \mathrm{volt}
$$

$$
\mathrm{I}_{1}=\frac{10}{5 \mathrm{k}}=2 \mathrm{~mA}
$$

$$
\Rightarrow \mathrm{V}_{0}=(6 \mathrm{k}) \mathrm{I}_{1}=12 \mathrm{~V}=\mathrm{V}_{\mathrm{E}}
$$

$$
\mathrm{V}_{\mathrm{C}}=30 \mathrm{volt}
$$

$$
\Rightarrow \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}=18 \text { volt. }
$$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{1}+\mathrm{I}_{\mathrm{L}}
$$

$$
\mathrm{I}_{\mathrm{E}}=2 \mathrm{~m}+\frac{12}{100}=122 \mathrm{~mA}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}_{\mathrm{C}}=\frac{\beta}{1+\beta} \mathrm{I}_{\mathrm{E}} \\
& \Rightarrow \mathrm{I}_{\mathrm{C}}=0.120 \mathrm{Amp} \\
& \Rightarrow \mathrm{P}_{\mathrm{T}}=\mathrm{I}_{\mathrm{C}} \times \mathrm{V}_{\mathrm{CE}} \\
& \therefore \mathrm{P}_{\mathrm{T}}=2.17 \mathrm{~W}
\end{aligned}
$$

58.

Sol:

$$
\mathrm{I}=\frac{20-5}{10 \mathrm{k}}=\frac{15}{10} \mathrm{~mA}
$$

$$
\mathrm{V}_{\mathrm{P}}=10 \mathrm{k} \times \mathrm{I}=15 \text { volt }
$$

$$
\mathrm{I}_{\mathrm{C}}=\frac{20-\mathrm{V}_{\mathrm{P}}}{1 \mathrm{k}}=\frac{20-15}{1 \mathrm{k}}=5 \mathrm{~mA}
$$

$$
\beta \text { large } \Rightarrow \mathrm{I}_{\mathrm{B}} \approx 0 \mathrm{~A}
$$

$$
\therefore \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{0}=5 \mathrm{~mA}
$$

59. Ans: $(a, b \& d)$

Sol: Step-1: KCL at node (A)

$$
\begin{equation*}
I_{S}=I_{Z}+I_{L} \ldots \ldots \tag{1}
\end{equation*}
$$

$\Rightarrow \mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\mathrm{S}}-\mathrm{I}_{\mathrm{L}}$
$\Rightarrow I_{Z_{\text {min }}}=I_{S}-I_{L_{\text {max }}}$
\because Zener diode is ideal, $\mathrm{I}_{\mathrm{Z}_{\text {min }}}=0 \ldots \ldots$...(
$\therefore \mathrm{I}_{\mathrm{S}}=\mathrm{I}_{\mathrm{L}_{\max }}=200 \mathrm{~mA}$
Step-2: KVL for input loop

$$
\begin{equation*}
\mathrm{R}_{\mathrm{S}}=\frac{16 \mathrm{~V}-12 \mathrm{~V}}{200 \mathrm{~mA}}=20 \Omega \tag{6}
\end{equation*}
$$

\qquad

Step-3: From equation (2),

$$
\begin{aligned}
\mathrm{I}_{\mathrm{Z}_{\max }}=\mathrm{I}_{\mathrm{S}}-\mathrm{I}_{\mathrm{L}_{\text {min }}} & =200 \mathrm{~mA} \ldots \\
\Rightarrow \mathrm{P}_{\mathrm{Z}_{\max }}=\mathrm{V}_{\mathrm{Z}} \mathrm{I}_{\mathrm{Z}_{\max }} & =12 \times 200 \mathrm{~mA} \\
& =2.4 \mathrm{Watts}
\end{aligned}
$$

\therefore For satisfactory voltage regulation in the circuit, the power rating of zener diode should be more than 2.4 Watts.

60. Ans: (c)

Sol: The circuit given is the MOS cascode amplifier, Transistor M_{1} is connected in common source configuration and provides its output to the input terminals (i.e., source) of transistor M_{2}. Transistor M_{2} has a constant dc voltage, $\mathrm{V}_{\text {bias }}$ applied at its gate. Thus the signal voltage at the gate of M_{2} is zero and M_{2} is operating as a CG amplifier. Which is current Buffer.

Overall transconductance

$$
\begin{aligned}
\mathrm{g}_{\mathrm{m}} & =\frac{\mathrm{i}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{gs}}}=\left[\frac{\partial \mathrm{i}_{\mathrm{D}}}{\partial \mathrm{~V}_{\mathrm{GS}}}\right]=\frac{\mathrm{i}_{\mathrm{d}_{1}}}{\mathrm{~V}_{\mathrm{gs} \mathrm{~s}_{1}}} \\
& =\mathrm{g}_{\mathrm{m}_{1}}
\end{aligned}
$$

The overall (approximate) transconductance of the cascode amplifier is equal to the transconductance of common source amplifier $\mathrm{g}_{\mathrm{m}_{1}}$

AC model of MOSFET

Let us find the output resistance $\mathrm{R}_{0}=\frac{1 \mathrm{~V}}{\mathrm{I}_{\mathrm{x}}}$

By KVL $\mathrm{V}_{\mathrm{gs} 2}+\mathrm{I}_{\mathrm{x}} \mathrm{r}_{01}=0$
$\mathrm{V}_{\mathrm{gs} 2}=-\mathrm{I}_{\mathrm{x}} \mathrm{r}_{01}----(1)$
By KVL
$-1+\mathrm{I}_{\mathrm{x}} \mathrm{r}_{02}-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{02} \mathrm{~V}_{\mathrm{gs} 2}+\mathrm{I}_{\mathrm{x}} \mathrm{r}_{01}=0$
$-1+\mathrm{I}_{\mathrm{x}} \mathrm{r}_{02}+\mathrm{g}_{\mathrm{m} 2} \mathrm{r}_{02} \mathrm{I}_{\mathrm{x}} \mathrm{r}_{01}+\mathrm{I}_{\mathrm{x}} \mathrm{r}_{01}=0$
$\therefore I_{x}=\frac{1}{r_{01}+r_{02}+g_{m 2} r_{02} r_{01}} \approx \frac{1}{g_{m 2} r_{01} r_{02}}$
$\mathrm{R}_{0}=\frac{1}{\mathrm{I}_{\mathrm{x}}}=\mathrm{g}_{\mathrm{m} 2} \mathrm{r}_{01} \mathrm{r}_{02}$
61.

Sol:

$\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{2}=2\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{1}$
$\mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}$ for both M_{1} and M_{2}
For M_{2} to be in saturation:
$\mathrm{V}_{\mathrm{D}}>\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{TH}}$
$3.3>2-1$
$3.3>1$
So M_{2} will be in saturation if it is ON .
For M_{1} to be in saturation:
$\mathrm{V}_{\mathrm{D}}>\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{TH}}$
$\mathrm{V}_{\mathrm{X}}>2-1$
$\mathrm{V}_{\mathrm{X}}>1 \mathrm{~V}$ but if V_{X} is more than $1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} 2}$ becomes less than 1 V , Which means M_{2} will be off so M_{1} can not be in saturation.
Now, We can conclude that M_{1} is in triode and M_{2} is in saturation
$\mathrm{V}_{\mathrm{GS} 1}=2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{X}}$
$\mathrm{V}_{\mathrm{GS} 2}=2-\mathrm{V}_{\mathrm{X}}$
Now, $\mathrm{I}_{1}=\mathrm{I}_{2}$

$$
\begin{gathered}
\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{1}\left[\left(\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{TH}}\right) \mathrm{V}_{\mathrm{DS} 1}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS} 1}^{2}\right] \\
=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{2}\left(\mathrm{~V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{TH}}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}-\frac{1}{2} \mathrm{~V}_{\mathrm{x}}^{2}=\left(1-\mathrm{V}_{\mathrm{x}}\right)^{2} \\
& 3 \mathrm{~V}_{\mathrm{x}}^{2}-6 \mathrm{~V}_{\mathrm{x}}+2=0 \\
& \mathrm{~V}_{\mathrm{x}}=0.42 \mathrm{~V},-1.58 \mathrm{~V}
\end{aligned}
$$

V_{x} cannot be more than 1 V , since M_{2} will become off
So, $\mathrm{V}_{\mathrm{x}}=0.42 \mathrm{~V}$
62. Ans: (a, b, d)

Sol: The given device is

- N -channel MOSFET with $\mathrm{V}_{\mathrm{T}}=2.5 \mathrm{~V}$
- Current due to only es and E-MOSFET does not have physical channel.

63. Ans: (a \& c)
